摘要:
Hyperspectral imaging plays a critical role in numerous scientific and industrial fields. Conventional hyperspectral imaging systems often struggle with the trade-off between spectral and temporal resolution, particularly in dynamic environments. In ours work, we present an innovative event-based active hyperspectral imaging system designed for real-time performance in dynamic scenes. By integrating a diffraction grating and rotating mirror with an event-based camera, the proposed system captures high-fidelity spectral information at a microsecond temporal resolution, leveraging the event camera's unique capability to detect instantaneous changes in brightness rather than absolute intensity. The proposed system trade-off between conventional frame-based systems by reducing the bandwidth and computational load and mosaic-based system by remaining the original sensor spatial resolution. It records only meaningful changes in brightness, achieving high temporal and spectral resolution with minimal latency and is practical for real-time applications in complex dynamic conditions.