科研成果 by Year: 2019

2019
Liu Q, Liggio J, Li K, Lee P, Li S-M. Understanding the Impact of Relative Humidity and Coexisting Soluble Iron on the OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2019;53:6794-6803.Abstract
The current uncertainties in the reactivity and atmospheric persistence of particle-associated chemicals present a challenge for the prediction of long-range transport and deposition of emerging chemicals such as organophosphate flame retardants, which are ubiquitous in the global environment. Here, the OH-initiated heterogeneous oxidation kinetics of organophosphate flame retardants (OPFRs) coated on inert (NH4)(2)SO4 and redox-active FeSO4 particles were systematically determined as a function of relative humidity (RH). The derived reaction rate constants for the heterogeneous loss of tricresyl phosphate (TCP; k(TCP)) and tris(2-butoxyethyl) phosphate (TBEP; k(TBEP)) were in the range of (2.69-3.57) X 10(-12) and (3.06-5.55) x 10(-12) cm(3) molecules(-1) s(-1) respectively, depending on the RH and coexisting Fe(II) content. The k(TCP), (coated on (NH4)(2)SO4) was relatively constant over the investigated RH range while k(TBEP) was enhanced by up to 19% with increasing RH. For both OPFRs, the presence of Fe(II) enhanced their k by up to 53% over inert (NH4)(2)SO4. These enhancement effects (RH and Fe(II)) were attributed to fundamental changes in the organic phase state (higher RH lowered particle viscosity) and Fenton type chemistry which resulted in the formation of reactive oxygen species, respectively. Such findings serve to emphasize the importance of ambient RH, the phase state of particle-bound organics in general, and the presence of coexisting metallic species for an accurate description of the degradation kinetics and aging of particulate OPFRs in models used to evaluate their atmospheric persistence.
Li X, Zhang S, Huang H, Hu L, Liu F, Wang Q. Unidirectional Spin–Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices. Nano letters. 2019;19:6005–6012.
Zhou H, Yuan X, Ma X. Unification of quantum resources in distributed scenarios. Physical Review A. 2019;99(2):022326.
Chai L, MukeHuang, Fan H, Wang J, Jiang D, Zhang M, Huang Y. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). Chemosphere [Internet]. 2019;220:249 - 258. 访问链接Abstract
Soil organic matter (SOM) play an important role in soil ecology and global carbon dynamic. As one of the most sever and irreversible land use change, urbanization could alter the regional carbon storage and composition pattern. However how urbanization influence on SOM is still unclear. In this study, we collected soil samples from highly urbanized area of Beijing, China and explore the quantity and quality variations of SOM by using fluorescence spectroscopy in combine with parallel factor analysis (PARAFAC). The results shown that the soil physic-chemical properties were shaped by urbanization. Comparing to nature soil, moisture content, total organic carbon and total nitrogen in urban and rural soil significantly decreased. The fluorescence spectrum demonstrated that SOM quality was also altered by urbanization induced environmental changes. Five fluorescent compounds in SOM was identified by PARAFAC model and three of them was assigned to humic-like substances. The fluorescence intensity of humic-like substances in nature land was significantly higher than of rural and urban land, meanwhile microbial related substance accumulated in urban land in comparison with rural and nature land. The multivariate analyses further reveal the relationship between soil physic-chemical properties and SOM composition. These results suggest that urbanization could not only decrease the SOM quantity but also change the SOM composition. The SOM loss caused by urbanization was mainly consist of humic-like substance loss. Besides urbanization also stimulate the accumulation of microbial related substance in SOM which highlight the importance of microorganism is SOM dynamic.
Ashfaq MY, Al-Ghouti* MA, Qiblawey H, Zouari N, Rodrigues DF, Hu Y. Use of DPSIR Framework to Analyze Water Resources in Qatar and Overview of Reverse Osmosis as an Environment Friendly Technology. Environmental Progress & Sustainable Energy [Internet]. 2019;38:13081. LinkAbstract
Qatar and other countries of Gulf Cooperation Council are among the most water scarce countries in the world and are being characterized as “high-water risk” countries by Water Resource Institute. Therefore, it is important to implement sustainable water resource management that encompass economic, societal, and environmental aspects. In this review article, the Driver-Pressure-State-Impact-Response framework was used to analyze the water resource system in Qatar in terms of drivers, pressures, change in state, impacts, and responses. It was noted that both economic and population growth together with unsustainable water consumption are major driving forces that are pressurizing the Qatar's water resources (desalinated seawater and renewable groundwater). Currently, desalination plants using Multi-Stage Flash (MSF) techniques are predominantly being used to meet the rising water demands. However, widespread use of MSF techniques poses several environmental and economic impacts. Therefore, in addition to other management and corrective measures, reverse osmosis (RO) technique has also been suggested to be utilized in desalination industry as a “response” to mitigate those impacts. Since, the performance of RO is mainly affected by biofouling and mineral scaling, the paper also highlights the recent materials (polymers and nano-materials) used to tackle these problems. © 2018 American Institute of Chemical Engineers Environ Prog, 38:e13081, 2019
Zhang Z, Ni X, Huang H, Hu L, Liu F. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Physical Review B. 2019;99:115441.
McArdle S, Jones T, Endo S, Li Y, Benjamin SC, Yuan X. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Information. 2019;5(1):1-6.
Jones T, Endo S, McArdle S, Yuan X, Benjamin SC. Variational quantum algorithms for discovering Hamiltonian spectra. Physical Review A. 2019;99(6):062304.
Yan P, Schroeder R. Variations in the adoption and use of mobile social apps in everyday lives in urban and rural China. Mobile Media & Communication [Internet]. 2019;8(3):318–341. 访问链接
Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals
Li J, Hao Y, Simayi M, Shi Y, Xi Z, Xie S. Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals. Atmospheric Chemistry and Physics [Internet]. 2019;19:5905–5921. 访问链接Abstract
\textlessp\textgreater\textlessstrong\textgreaterAbstract.\textless/strong\textgreater Improving the accuracy of the anthropogenic volatile organic compound (VOC) emission inventory is essential for reducing air pollution. In this study, we established an emission inventory of anthropogenic VOCs in the Beijing–Tianjin–Hebei (BTH) region of China for 2015 based on the emission factor (EF) method. Online ambient VOC observations were conducted in one urban area of Beijing in January, April, July, and October, which, respectively, represented winter, spring, summer, and autumn in 2015. Furthermore, the developed emission inventory was evaluated by a comprehensive verification system based on the measurements and satellite retrieval results. Firstly, emissions of the individual species of the emission inventory were evaluated according to the ambient measurements and emission ratios versus carbon monoxide (CO). Secondly, the source structure of the emission inventory was evaluated using source appointment with the Positive Matrix Factorization (PMF) model. Thirdly, the spatial and temporal distribution of the developed emission inventory was evaluated by a satellite-derived emission inventory. According to the results of the emission inventory, the total anthropogenic VOC emissions in the BTH region were 3277.66 Gg in 2015. Online measurements showed that the average mixing ratio of VOCs in Beijing was approximately 49.94 ppbv in 2015, ranging from 10.67 to 245.54 ppbv. The annual emissions for 51 of 56 kinds of non-methane hydrocarbon species derived from the measurements agreed within \textlessspan class="inline-formula"\textgreater±100\textless/span\textgreater % with the results of the emission inventory. Based on the PMF results and the emission inventory, it is evident that vehicle-related emissions dominate the composition of anthropogenic VOCs in Beijing. The spatial correlation between the emission inventory and satellite inversion result was significant (\textlessspan class="inline-formula"\textgreater\textitp<0.01\textless/span\textgreater) with a correlation coefficient of 0.75. However, there were discrepancies between the relative contributions of fuel combustion, emissions of oxygenated VOCs (OVOCs), and halocarbons from the measurements and inventory. To obtain a more accurate emission inventory, we propose the investigation of the household coal consumption, the adjustment of EFs based on the latest pollution control policies, and the verification of the source profiles of OVOCs and halocarbons.\textless/p\textgreater
Wu Q, Du Y, Huang Z, Gu J, Leung JYS, Mai B, Xiao T, Liu W, Fu J. Vertical profile of soil/sediment pollution and microbial community change by e-waste recycling operation. Science of The Total Environment [Internet]. 2019;669:1001 - 1010. 访问链接Abstract
The present study aims to assess the effect of electronic waste (e-waste) recycling on microbial community and the underlying modulation mechanism. Core soil/sediment samples were collected from an abandoned e-waste burning site and neighboring farmland/stream sites in Guiyu, China. High concentrations and health risks of toxic heavy metals, particularly, Sb and Sn, and halogenated flame retardants (HFRs), including decabromodiphenyl ether (BDE 209) and decabromodiphenyl ethane (DBDPE) were mostly retained at the top surface layers of soils/sediments (0–30 cm) after more than one year of natural vertical diffusion and microbe-facilitated biodegradation. Heavy metals, such as Ag, Cd, Cu, Pb, Sb, and Sn, played a critical role for the reduction of microbial diversity. This is the first study reporting the open burning of e-waste caused an obvious heat effect and enriched thermophilic/mesophilic microbes in local area. The acid washing during e-waste recycling process may result in the enrichment of acidophilic microbes. This investigation showed that e-waste processing operation resulted in not only severe pollution of the soils/sediments by various pollutants, but also reduction of microbial diversity that was difficult to self-store by the local ecosystem.
Liu W, Li Y, Liu F, Jiang W, Zhang D, Liang J. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Research [Internet]. 2019;150:431 - 441. 访问链接Abstract
Metal-free photocatalysts have attracted growing concern in recent years. In this work, a new class of carbon quantum dots (CQDs) modified porous graphitic carbon nitride (g-C3N4) is synthesized via a facile polymerization method. With the optimal CQDs loading, the CQDs modified g-C3N4 exhibits ∼15 times higher degradation kinetic towards diclofenac (DCF) than that of pure g-C3N4. The enhanced photocatalytic activity can be ascribed to the improved separation of charge carriers as well as the tuned band structure. Moreover, a photosensitation-like mechanism is proposed to elucidate the photo-generated electrons transfer and reactive radicals formation. CQDs are anchored to g-C3N4 surface via CO bond, which provide channels for the preferential transfer of photo-excited electrons on DCF molecule to the conduction band of g-C3N4. Superoxide radical (·O2−) dominates the degradation of DCF, while holes (h+) show a negligible contribution. Density functional theory (DFT) calculation successfully predicts that the sites on DCF molecule with high Fukui index (f0) are preferable to be attacked by radicals. DCF degradation pathway mainly includes ring hydroxylation, ring closure and CN bond cleavage processes. Acute toxicity estimation indicates the formation of less toxic intermediates/products compared to DCF after photocatalysis. Moreover, the hybrid photocatalysts exhibit good reusability in five consecutive cycles. This work not only proposes a deep insight into photosensitation-like mechanism in the photocatalysis system by using C3N4-based materials, but also develops new photocatalysts for potential application on removal of emerging organic pollutants from waters and wastewaters.
Tian M, Hu B, Yang H, Tang C, Wang M, Gao Q, Xiong X, Zhang Z, Li T, Li X, et al. Wafer scale mapping and statistical analysis of radio frequency characteristics in highly uniform CVD graphene transistors. Advanced Electronic Materials. 2019;5:1800711.
Xiang L, Xia F, Zhang H, Liu Y, Liu F, Liang X, Hu Y. Wafer-Scale High-Yield Manufacturing of Degradable Electronics for Environmental Monitoring. Advanced Functional Materials. 2019.
Xiang L, Xia F, Zhang H, Liu Y, Liu F, Liang X, Hu Y. Wafer-Scale High-Yield Manufacturing of Degradable Electronics for Environmental Monitoring. Advanced Functional Materials. 2019.
Wavelength-dependent nonsequential double ionization of magnesium by intense femtosecond laser pulses. PHYSICAL REVIEW A [Internet]. 2019;100(3). 访问链接Abstract
We report on a systematic investigation of wavelength scaling strong-field double ionization of Mg in intense laser fields. A significant decrease of nonsequential double ionization (NSDI) yield with increasing wavelength from 800–2000 nm is observed. Our data is well reproduced by a three-dimensional Monte Carlo simulation considering recollision impact excitation cross section. We demonstrate that the NSDI of Mg mainly occurs via the first ionic excited state Mg + * ( 3 p 2 P 3 / 2 , 1 / 2 ) pumped by returning electron impact process. The recollision impact direct ionization pathway plays a minor role here. The wavelength dependence of the NSDI ratio is due to the recollision energy-dependent excitation cross section as well as the electron wave packet diffusion effects, both sensitively depending on the wavelength. Our work represents a step towards strong-field double ionization experiments on Mg in the long wavelength limit and sheds light on the NSDI mechanism of alkaline-earth metal atoms.
Shang Z, Zhou F, Smith P, Saikawa E, Ciais P, Chang J, Tian H, Grosso SDJ, Ito A, Chen M, et al. Weakened growth of cropland N2O emissions in China associated with nationwide policy interventions. Global Change Biology. 2019;25(25):3706-3719.
Ren Z, Zheng Q, Wang H, Guo H, Miao L, Wan J, Xu C, Cheng S, Zhang H. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy [Internet]. 2019:104243. 访问链接Abstract
With wearable electronic devices arising, a flexible hybrid energy harvester that is capable to continuously harvest multi-types of energy and seamlessly integrate with human body draws great attentions. In this paper, we introduce a novel self-cleaning flexible hybrid energy harvesting system which includes a groove-shape micro/nanostructured haze thin film (GHF), a flexible power management circuit, and a hybrid energy harvester is integrated by a flexible organic solar cells (F-OSC) with an autonomous single-electrode triboelectric nanogenerator (AS-TENG) via one common-electrode. This system allows for simutaneously harvesting both solar and mechanical energy through two separate parts (i.e. the top F-OSC and the bottom AS-TENG). The flexible power management circuit simultaneously utilizes the large current of the solar cell and the high voltage of the TENG. In addition, GHF with excellent optical properties, large surface area and super-hydrophobicity has been introduced into the hybrid cell, which serves not only as a triboelectric layer to increase the surface charge density of the AS-TENG, but also as a light-trapping layer to improve the photoelectric conversion efficiency (PCE) of the F-OSC. Meanwhile, GHF helps this device to achieve unique functions, such as dust-proof, self-cleaning and self-encapsulating, which significantly improve the stability and repeatability of hybrid power unit in practical applications.
Xu B, Lin Y, TANG X, Li S, Shen L, Sun N, Pan DZ. WellGAN: Generative-Adversarial-Network-Guided Well Generation for Analog/Mixed-Signal Circuit Layout, in 2019 56th ACM/IEEE Design Automation Conference (DAC).; 2019:1-6.Abstract
In back-end analog/mixed-signal (AMS) design flow, well generation persists as a fundamental challenge for layout compactness, routing complexity, circuit performance and robustness. The immaturity of AMS layout automation tools comes to a large extent from the difficulty in comprehending and incorporating designer expertise. To mimic the behavior of experienced designers in well generation, we propose a generative adversarial network (GAN) guided well generation framework with a post-refinement stage leveraging the previous high-quality manually-crafted layouts. Guiding regions for wells are first created by a trained GAN model, after which the well generation results are legalized through post-refinement to satisfy design rules. Experimental results show that the proposed technique is able to generate wells close to manual designs with comparable post-layout circuit performance.
Zhou Y, Jin K-H, Huang H, Wang Z, Liu F. Weyl points created by a three-dimensional flat band. Physical Review B. 2019;99:201105.

Pages