Polarity-dependent homo-epitaxy on (0001)-Zn and (000 (1) over bar)-O surfaces of cleaved ZnO microwires was investigated by in situ growth in ESEM and DFT simulations. ZnO monomers adsorption, adatoms desorption and chemisorption were simulated to understand the explicit mechanism.
Rationale: Unprecedented pollution control actions during the Beijing Olympics provided a quasi-experimental opportunity to examine biologic responses to drastic changes in air pollution levels.Objectives: To determine whether changes in levels of biomarkers reflecting pulmonary inflammation and pulmonary and systemic oxidative stress were associated with changes in air pollution levels in healthy young adults.Methods: We measured fractional exhaled nitric oxide, a number of exhaled breath condensate markers (H+, nitrite, nitrate, and 8-isoprostane), and urinary 8-hydroxy-2-deoxyguanosine in 125 participants twice in each of the pre- (high pollution), during(low pollution), and post-Olympic (high pollution) periods. We measured concentrations of air pollutants near where the participants lived and worked. We used mixed-effects models to estimate changes in biomarker levels across the three periods and to examine whether changes in biomarker levels were associated with changes in pollutant concentrations, adjusting for meteorologic parameters.Measurements and Main Results: From the pre- to the during-Olympic period, we observed significant and often large decreases (ranging from -4.5% to -72.5%) in levels of all the biomarkers. From the during-Olympic to the post-Olympic period, we observed significant and larger increases (48-360%) in levels of these same biomarkers. Moreover, increased pollutant concentrations were consistently associated with statistically significant increases in biomarker levels.Conclusions: These findings support the important role of oxidative stress and that of pulmonary inflammation in mediating air pollution health effects. The findings demonstrate the utility of novel and noninvasive biomarkers in the general population consisting largely of healthy individuals.
The significance of clay particles on the transport and deposition kinetics of bacteria in irregular quartz sand was examined by direct comparison of both breakthrough curves and retained profiles with clay particles in bacteria suspension versus those without clay particles. Two representative cell types, Gram-negative strain E. coli DH5 alpha and Gram-positive strain Bacillus subtilis were utilized to systematically determine the influence of clay particles (bentonite) on cell transport behavior. Packed column experiments for both cell types were conducted in both NaCl (5 and 25 mM ionic strengths) and CaCl2 (5 mM ionic strength) solutions at pH 6.0. The breakthrough plateaus with bentonite in solutions (30 mg L-1 and 50 mg L-1) were lower than those without bentonite for both cell types under all examined conditions, indicating that bentonite in solutions decreased cell transport in porous media regardless of cell types (Gram-negative or Gram-positive) and solution chemistry (ionic strength and ion valence). The enhanced cell deposition with bentonite particles was mainly observed at segments near to column inlet, retained profiles for both cell types with bentonite particles were therefore steeper relative to those without bentonite. The increased cell deposition with bentonite observed in NaCl solutions was attributed to the codeposition of bacteria with bentonite particles whereas, in addition to codeposition of bacteria with bentonite, the bacteria bentonite bacteria cluster formed in suspensions also contributed to the increased deposition of bacteria with bentonite in CaCl2 solution.