科研成果 by Type: 期刊论文

2023
Xu R, Liang D, Shao L. Static spherical vacuum solutions in the bumblebee gravity model. Phys. Rev. D. 2023;107:024011.
Li S, Wang P, Wang Z, Cheng H, Zhang K. Strategy to Enhance Geological CO2 Storage Capacity in Saline Aquifer. Geophysical Research Letters [Internet]. 2023;50:e2022GL101431. 访问链接Abstract
Abstract Geological CO2 storage is an emerging topic in energy and environmental community, which is, as a commonly accepted sense, considered as the most promising and powerful approach to mitigate the global carbon emissions during the transition to net-zero. Of the geological media which initially considered cover the saline aquifers, oil and gas reservoirs, coal beds, and potentially basalts, up to now only the first two choices have been proven to be the most capable storage sites and successfully implemented at pilot/commercial scales. Here, two tandem papers propose novel strategies for the first time, by synthesizing and utilizing new high-dryness CO2 foam, to enhance geological CO2 storage capacity in saline aquifer and oil and gas reservoirs. In this paper, a new high-dryness CO2 foam is synthesized and injected into the saline aquifers to explore the storage capacity enhancement, with the unique foam-induced advantages of sweep area expansion and storage efficiency improvement. Such a new idea is specifically evaluated and validated through a series of static analytical and dynamic performance experiments. With the optimum surfactant concentration of 0.5 wt%, the foaming volume and quality are determined to be 521 mL and 80.81%, respectively, which also shows excellent salt tolerance with 45,000 ppm Na+, 25,000 ppm Ca2+, and 25,000 ppm Mg2+. Moreover, the water consumption for CO2 storage decreases from 464.31 g/mol at 25% foam quality to 67.38 g/mol at 85% foam quality by using the new CO2 foam. Overall, the newly synthesized CO2 foam could effectively enhance geological CO2 storage capacity and concurrently diminish water consumption, therefore realizing the win-win environment and economic benefits.
Zhou Q, Jia L, Li Y, Wu W. Strengthening in microbiota dynamics and C, N, S transformation induced by novel synthesized pyrite/PHBV composites for advanced nitrogen and phosphate removal: Overlooked sulfate reduction process. CHEMICAL ENGINEERING JOURNAL. 2023;463.Abstract
Fine-grained pyrites are difficult to be denitrified under natural environment due to chemical oxidation with O2. In this study, the pyrite/PHBV composites were synthesized through high-temperature melting and realized nitrogen and phosphate removal under natural aerobic conditions. Results showed that pyrite/PHBV-40 composites had the highest denitrification rate of 0.61 mg NO3–N /(LCh) with low SO42-production, and its removal efficiency of nitrogen and phosphorus was 98% and 41%, respectively. Microbial community structure analysis revealed that the enrich sulfate-reducing bacteria (SRB) on the pyrite/PHBV-40 composites demonstrated that the sulfate reduction driven by SRB enhanced denitrification process, and thereby the S cycle could underpin the potential self-sustainability of pyrite/PHBV-40 composites. Co-occurrence network analysis showed that Fe oxidizers/reducers (e.g., Ferruginibacter/Geobacter) and SRB (e.g., Desulfovibrio) were the keystone species in microbial community. Bugbase analysis showed that formed biofilms mainly consisted of aerobic and facultative anaerobic strains, which was corresponding to structure of biofilm including aerobic and anoxic layer. Partial mantel test revealed the total Fe and nutrients (e.g., N and P) are the drivers in OTU and phenotype composition, respectively. Metabolic pathway analysis suggested that pyrite/PHBV composites may not only accelerate glycolysis with rapid hydrolysis of PHBV, but also enhance the TCA cycle with high production of ATP and NADH. The final product of nitrate reduction is N2O or NO, and the cysJ gene play an important role in sulfate reduction in pyrite/PHBV systems. Overall, the novel synthesized pyrite/PHBV composites are an ideal functional material with high denitrification rate, no secondary pollution and long service life. Our study highlights pyrite/PHBV-induced strength in microbiota dynamics and C, N, S transformation, therein, the sulfate reduction process cannot be overlooked.
Wang H, Tian L, Jie Q, Fei S, Wan M, Gao X, Zhang K. Stress-sensitivity analysis of geological confined pores with ultrasonics. International Journal of Rock Mechanics and Mining Sciences [Internet]. 2023;170:105426. 访问链接Abstract
Ultrasonics could be a promising technology to modify the geological formations for geo-energy productions, carbon geological sequestrations, monitoring of crack formation with stress and volcanic activity prediction. However, immature understanding of the post-ultrasonic geological formations seriously restricts the further applications in practices. This paper initially focuses on the in-situ geological porous media of low-permeability sandstones, analysing their stress sensitivity and relevant influential factors post-ultrasonics. Basically, the original and treated in-situ cores with and without ultrasonics were characterized through a series of experimental approaches, including permeability stress sensitivity (PSS), high-pressure mercury intrusion (HPMI), inline nuclear magnetic resonance (NMR), X-ray diffraction tests (XRD), triaxial stress test (TS) and scanning electron microscope (SEM) to explore the stress-induced rock compression mechanisms and the associated effects of pore restructures and mineral re-compositions. The experimental results reveal that the ultrasonics cause desorption of clay minerals at relatively low pressures (<5 MPa), which enlarges the pore throat and increases the permeability by 2.4 times. As the pressure increasing to 5 MPa, the porosity decreases from 8.79% to 6.13% because the plastic deformations of rock become irreversible without the cementing support (i.e., clay minerals). A further pressure increases from 5 to 25 MPa results in more porosity reduction from 6.13% to 5.77% through the rigid compressions. Overall, under the same pore pressure, the core porosity with ultrasonic treatments is usually smaller than the original ones, which thus indicates ultrasonics to some extent augment the stress sensitivity of core with compression. Hence, it is suggested to control pore pressure if the ultrasonics are introduced for geo-energy productions and carbon geological sequestrations.
Sun F, Wu Z, Chen Y. A study on singular boundary integrals and stability of 3D time domain boundary element method. Applied Mathematical Modelling [Internet]. 2023;115:724–753. 访问链接
Tang R, Zhang R, Ma J, Song K, Mabato BRG, Cuevas RAI, Zhou L, Liang Z, Vogel AL, Guo S, et al. Sulfate Formation by Photosensitization in Mixed Incense Burning-Sodium Chloride Particles: Effects of RH, Light Intensity, and Aerosol Aging. Environmental Science and TechnologyEnvironmental Science and Technology. 2023;57:10295-10307.
Xu J. Summertime Urban Ammonia Emissions May Be Substantially Underestimated in Beijing, China. Environmental Science &amp; Technology [Internet]. 2023. PDFAbstract
https://pubs.acs.org/doi/abs/10.1021/acs.est.3c05266
Zhou L, Brito R, Mai Z-F, Shao L. Superradiant instabilities of massive bosons around exotic compact objects. Phys. Rev. D. 2023;108:103025.
Jiang Y, Wen J, Tian Y, Wu M, NING JY, Shi Y, Wu H, ZHOU T, Li J, Bao T. Surf-Net: A deep-learning-based method for extracting surface-wave dispersion curves. Frontiers in Earth Science. 2023;10:1030326.
Jia J, Xie J, Zhang D-Q. Surjective endomorphisms of projective surfaces - the existence of infinitely many dense orbits. Mathematische Zeitschrift [Internet]. 2023;303(39). pdf
Yu Y, Yu C, Wu Z, Huang B, Zhou P, Zhang H, Liu W, Liu Y, Xiong Z, Lai B. Switching the primary mechanism from a radical to a nonradical pathway in electrocatalytic ozonation by onsite alternating anode and cathode. Chemical Engineering Journal [Internet]. 2023;457:141340. 访问链接Abstract
Concurrently elevating the degradation efficiency of pollutants and realizing the reduction of iron sludge in Fe-based catalytic ozonation is important but still challenging. Herein, we developed an electrocatalytic ozonation (ECO) system with iron plate cathode and graphite felt anode (ECO-Fe-cathode), which was free from added chemical reagents. Unlike the iron plate as a sacrificial anode in the ECO (ECO-Fe-anode) system, this delicately designed system shows a much higher degradation rate of ibuprofen (kobs = 1.490 min−1) than that of the ECO-Fe-anode system (kobs = 0.345 min−1). Simultaneously, the effluent was totally limpid without the corrosion of iron plates and the formation of iron sludge in the ECO-Fe-cathode system. Unexpectedly, the generation of singlet oxygen (1O2) which is indirectly generated by the single-electron transfer derived from superoxide ion (O2•-) is the primary reactive oxygen species (ROS) in the ECO-Fe-cathode system, which is different from the ECO-Fe-anode system with hydroxyl radicals (•OH). Moreover, linear sweep voltammetry (LSV) was applied to reveal the oxygen evolution reaction (OER) performance of the iron plate and graphite felt, and the results showed that graphite felt as anode has better electrocatalytic performance. The electrochemical analysis and density functional theory (DFT) calculation revealed that ozone adsorbed on the iron plate surface is more conducive to facilitating and triggering subsequent reactions. Finally, the different degradation pathways of ibuprofen in both systems were proposed. This work represents a fundamental breakthrough toward the design of an efficient and harmless ECO system for wastewater treatment.
Wang X, Xiong Z, Shi H, Wu Z, Huang B, Zhang H, Zhou P, Pan Z, Liu W, Lai B. Switching the reaction mechanisms and pollutant degradation routes through active center size-dependent Fenton-like catalysis. Applied Catalysis B: Environmental [Internet]. 2023;329:122569. 访问链接Abstract
Rationally regulating reaction mechanisms in Fenton-like reactions by tuning the properties of catalysts is of great significance, but still challenging. Herein, we synthesized various active center size-dependent catalysts to realize the switching of reaction mechanisms and pollutant degradation routes in peroxymonosulfate (PMS) activation systems. The results illustrated that the reaction mechanism transformed from radical oxidation (51.64%) to nonradical oxidation (89.92%) with the decrease of active center size from nanoparticle (CoNP-NC) to single atom (CoSA-NC). The evolution of reactive species switched the degradation intermediates and pathway of sulfisoxazole (SIZ). The generation of singlet oxygen (1O2) in CoSA-NC/PMS tends to selectively attack electron-rich site of SIZ, while reaction between radicals and SIZ prefers non-selective oxidation in CoNP-NC/PMS system. Besides, the toxicity tests indicated that the conversion from non-selective to selective oxidation resulted in lower toxicity of effluent after reaction, which can further reduce environmental risks of effluent.
Li Q, Yang C, Xu L, Liu S, Fang S, Xu L, Yang J, Ma J, Li Y, Wu B, et al. Symmetric and Excellent Scaling Behavior in Ultrathin n- and p-Type Gate-All-Around InAs Nanowire Transistors. Advanced Functional Materials [Internet]. 2023;n/a:2214653. 访问链接Abstract
Abstract Complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) are the key component of a chip. Bulk indium arsenide (InAs) owns nearly 30 times higher electron mobility µe than silicon but suffers from a much lower hole mobility µh (µe/µh = 80), thus unsuited to CMOS application with a single material. Through the accurate ab initio quantum-transport simulations, the performance gap between the NMOS and PMOS is significantly narrowed is predicted and even vanished in the sub-2-nm-diameter gate-all-around (GAA) InAs nanowires (NW) FETs because the inversion of the light and heavy hole bands occurs when the diameter is shorter than 3 nm. It is further proposed several feasible strategies for further improving the performance symmetry in the GAA InAs NWFETs. Short-channel effects are effectively depressed in the symmetric n- and p-type GAA InAs NWFETs till the gate length is scaled down to 2 nm according to the standards of the International Technology Roadmap for Semiconductors. Therefore, the ultrasmall GAA InAs NWFETs possess tremendous prospects in CMOS integrated circuits.
Zhang D, Liu Y, Song Y, Sun X, Liu W, Duan J, Cai Z. Synergistic effect of Fe and Ce on Fe doped CeO2 for catalytic ozonation of amoxicillin: Efficiency evaluation and mechanism study. Separation and Purification Technology [Internet]. 2023:123430. 访问链接Abstract
A Fe-doped CeO2 was fabricated for catalytic ozonation of Amoxicillin (AMX), and the catalytic mechanisms were explored in this study. Under optimal conditions (the initial solution pH of 7.0, FC-0.3 dosage of 0.5 g/L, O3 dosage of 4 mg/min), the AMX and TOC removal by the optimal material (FC-0.3, at Fe/Ce atomic ratio of 0.3) reached 98.1% at 24 min and 55.2% at 36 min, respectively. Improved the AMX mineralization efficiency by 3.7 times. The experiments and theoretical calculation reveal the mechanisms of promoted catalytic ozonation by FC-0.3: 1) Highly abundant surface-active sites (i.e., -OH) enabled the adsorption of H2O and O3, which was favorable to the generation of reactive oxygen species (ROS) and improved the reaction probability for ROS and contaminants. 2) The synergistic effect between Ce4+/Ce3+ and Fe3+/Fe2+ redox couples accelerated the electron transfer and formation of ROS. More than 42% of •OH was generated in the presence of FC-0.3, and the •OH, •O2− and 1O2 were the main ROS that contributed to AMX degradation. The surface OH groups played a key role in the catalytic ozonation. The oxygen vacancies (OVs) played an important role in electron transfer, Ce and Fe were the active sites of electrons transfer following the sequence of (Ce3+ + Fe2+) → (Ce4+ + Fe3+) → (Ce3+ + Fe2+) redox reaction. The degradation pathway investigation and toxicity evaluation revealed that some more toxic intermediates were generated during the ozonation process, and sufficient mineralization is required to meet safe discharge. This study provides reference for the synthesis of new catalysts and insight into the reaction mechanisms in the heterogeneous catalytic ozonation process.
Liang J, Wu J, Gan P, Liu Y, Zhen P, Li Y, Zhao Z, Liu W, Tong M. The synergistic effect of radical and non-radical processes on the dephosphorization of dimethoate by vacuum ultraviolet: The overlooked roles of singlet oxygen atom and high-energy excited state. Water Research [Internet]. 2023;247:120775. 访问链接Abstract
Organophosphorus pesticides are extensively utilized worldwide, but their incomplete dephosphorization poses significant environmental risks. This study investigates the dephosphorization of dimethoate (DMT), a representative organophosphorus pesticide, using a vacuum ultraviolet system. Surprisingly, in addition to hydroxyl radicals (•OH), non-radical processes such as photoexcitation and singlet oxygen atoms (O(1D)) exert more significant effects on DMT dephosphorization. The degradation kinetics of DMT demonstrate a perfect linear correlation with the radical yield in both UV-based and VUV-based advanced oxidation processes (AOPs), with greater efficacy of radical attack observed in the VUV system. This heightened efficiency is attributed to the excitation of DMT to a high-energy excited state induced by UV185 radiation. Additionally, •OH alone is inadequate for achieving complete dephosphorization of DMT. The Fukui index and singly occupied orbital (SOMO) analysis reveal that the O(1D) generated by UV185-induced photolysis of O2 exhibits exceptional selectivity towards P=S bonds, thereby playing an indispensable role in the dephosphorization process of DMT. This study highlights the significant contribution of non-radical pathways in DMT dephosphorization by VUV, which holds great implications for the advancement of photochemical-based AOPs.
Iyer G, Cui R, Edmonds J, Fawcett A, Hultman N, McJeon H, Ou Y. Taking stock of nationally determined contributions: Continued ratcheting of ambition is critical to limit global warming to 1.5° C. One Earth. 2023;6(9):1089-1092.
Chen Y, Mu Y, Tian L, Zheng L-L, Mei Y, Xing Q-J, Liu W, Zou J-P, Yang L, Luo S, et al. Targeted Decomplexation of Metal Complexes for Efficient Metal Recovery by Ozone/Percarbonate. Environmental Science & Technology [Internet]. 2023;57:5034-5045. 访问链接Abstract
Traditional methods cannot efficiently recover Cu from Cu(II)–EDTA wastewater and encounter the formation of secondary contaminants. In this study, an ozone/percarbonate (O3/SPC) process was proposed to efficiently decomplex Cu(II)–EDTA and simultaneously recover Cu. The results demonstrate that the O3/SPC process achieves 100% recovery of Cu with the corresponding kobs value of 0.103 min–1 compared with the typical •OH-based O3/H2O2 process (81.2%, 0.042 min–1). The carbonate radical anion (CO3•–) is generated from the O3/SPC process and carries out the targeted attack of amino groups of Cu(II)–EDTA for decarboxylation and deamination processes, resulting in successive cleavage of Cu–O and Cu–N bonds. In comparison, the •OH-based O3/H2O2 process is predominantly responsible for the breakage of Cu–O bonds via decarboxylation and formic acid removal. Moreover, the released Cu(II) can be transformed into stable copper precipitates by employing an endogenous precipitant (CO32–), accompanied by toxic-free byproducts in the O3/SPC process. More importantly, the O3/SPC process exhibits excellent metal recovery in the treatment of real copper electroplating wastewater and other metal–EDTA complexes. This study provides a promising technology and opens a new avenue for the efficient decomplexation of metal–organic complexes with simultaneous recovery of valuable metal resources.
Luo Y, Abidian MR, Ahn J-H, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, et al. Technology Roadmap for Flexible Sensors. ACS Nano [Internet]. 2023;17:5211-5295. 访问链接Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Qiu J, Xie D, Li Y, Qu Y, Liu Y, Zhu T, Xiong J, Liu YJ. Temperature dependence of volatile organic compound emissions from surface coatings: Inter-species difference observed in real indoor environments and mechanistic understanding. Building and Environment [Internet]. 2023;229:109954. 访问链接Abstract
Coatings often cover two-thirds of the surfaces in indoor environments and represent important sources of indoor volatile organic compounds (VOCs). Temperature is known to affect VOC emission rates from coatings, yet inter-species difference in the temperature dependence still needs to be understood. Based on time-resolved VOC measurements in an indoor air campaign conducted in residences in Beijing, China, we identified dibasic ester (DBE), a solvent mixture often used in coatings, and found that the concentration ratios of DBE components exhibited strong temperature dependence in an apartment when the indoor temperature declined stepwise over a multiweek period. To interpret the observational results, we developed a simplified mechanistic model relating the temperature dependence of VOC emission rates from coated surfaces to the temperature dependence of the diffusion coefficient of the emitted VOCs in the coating layer and further to a predicable molecular property of the emitted VOCs, molar volumes at 0 K, based on the free-volume theory. This correlation was quantitatively verified using the DBE data as well as using the data of alkanes, another set of VOCs that might be emitted from coatings, observed in two apartments in the same campaign. Given that indoor temperature varies considerably over seasons and across regions, the correlation proposed herein may help better predict indoor VOC emissions from coatings.
Liao ME, Huynh K, Cheng Z, Shi J, Graham S, Goorsky MS. Thermal transport and structural improvements due to annealing of wafer bonded β-Ga2O3| 4H-SiC. Journal of Vacuum Science & Technology A. 2023;41(6).

Pages