Antimicrobial resistance (AMR) has emerged as a significant challenge in human health. Wastewater treatment plants (WWTPs), acting as a link between human activities and the environment, create ideal conditions for the selection and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Unfortunately, current treatment processes are ineffective in removing ARGs, resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents. This, in turn, leads to their dispersion and potential transmission to human through water and the food chain. To safeguard human and environmental health, it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies. In this study, we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent, highlighting the key influencing mechanisms. Furthermore, recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided, with the aim to achieve the “One Health” objective.
Declining levels of social welfare caused by climate warming and air pollution place increasing constraints on high-quality, sustainable global development. To achieve global climate-governance goals, it is essential to accelerate the process of peaking carbon emissions and meeting air-quality standards. Despite growing awareness of the impact of low-carbon city policies on the environment, few studies have focused on their impact on urban air quality. Based on panel data drawn from 275 cities between 2011 and 2017, the present study evaluates the effects of a low-carbon city policy on urban sulfur-dioxide emissions, using the low-carbon city policy as a quasi-natural experiment. The findings reveal that urban sulfur-dioxide emissions have obvious spatial-autocorrelation characteristics, showing obvious spatial clustering. The low-carbon city policy not only significantly reduced urban sulfur-dioxide emissions in pilot cities, but also suppressed sulfur-dioxide emissions in surrounding cities through an indirect rebound effect. This paper provides a theoretical reference for collaborative governance, which can help to achieve peak carbon emissions and air-quality standards. To reach those goals, nations must abandon territorial prevention-and-control methods based on administrative divisions and to fully activate cross-city regional joint prevention-and-control measures. This study proposes key policies, including promoting inter-city regional coordination mechanisms, strengthening the collaborative governance in relation to carbon-dioxide and sulfur-dioxide emissions, and promoting the construction of inner-city green facilities.
Summary Global changes over the past few decades have caused species distribution shifts and triggered population declines and local extinctions of many species. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Red List) is regarded as the most comprehensive tool for assessing species extinction risk and has been used at regional, national, and global scales. However, most Red Lists rely on the past and current status of species populations and distributions but do not adequately reflect the risks induced by future global changes. Using distribution maps of >4,000 endemic woody species in China, combined with ensembled species distribution models, we assessed the species threat levels under future climate and land-cover changes using the projected changes in species’ suitable habitats and compared our updated Red List with China’s existing Red List. We discover an increased number of threatened species in the updated Red List and increased threat levels of >50% of the existing threatened species compared with the existing one. Over 50% of the newly identified threatened species are not adequately covered by protected areas. The Yunnan-Guizhou Plateau, rather than the Hengduan Mountains, is the distribution center of threatened species on the updated Red Lists, as opposed to the threatened species on the existing Red List. Our findings suggest that using Red Lists without considering the impacts of future global changes will underestimate the extinction risks and lead to a biased estimate of conservation priorities, potentially limiting the ability to meet the Kunming-Montreal global conservation targets.
Wastewater treatment plants (WWTPs) have been regarded as an important source of antibiotic resistance genes (ARGs) in environment, but out of municipal domestic WWTPs, few evidences show how environment is affected by industrial WWTPs. Here we chose Hangzhou Bay (HZB), China as our study area, where land-based municipal and industrial WWTPs discharged their effluent into the bay for decades. We adopted high-throughput metagenomic sequencing to examine the antibiotic resistome of the WWTP effluent and coastal sediment samples. And we proposed a conceptual framework for the assessment of antibiotic resistome risk, and a new bioinformatic pipeline for the evaluation of the potential horizontal gene transfer (HGT) frequency. Our results revealed that the diversity and abundance of ARGs in the WWTP’s effluent were significantly higher than those in the sediment. Furthermore, the antibiotic resistome in the effluent-receiving area (ERA) showed significant difference from that in HZB. For the first time, we identified that industrial WWTP effluent boosted antibiotic resistome risk in coastal sediment. The crucial evidences included: 1) the proportion of ARGs derived from WWTP activated sludge (WA) was higher (14.3 %) and two high-risky polymyxin resistance genes (mcr-4 and mcr-5) were enriched in the industrial effluent receiving area; 2) the HGT potential was higher between resistant microbiome of the industrial effluent and its ERA sediment; and 3) the highest resistome risk was determined in the industrial effluent, and some biocide resistance genes located on high-risky contigs were related to long-term stress of industrial chemicals. These findings highlight the important effects of industrial activities on the development of environmental antimicrobial resistance.
Forecast combination integrates information from various sources by consolidating multiple forecast results from the target time series. Instead of the need to select a single optimal forecasting model, this paper introduces a deep learning ensemble forecasting model based on the Dirichlet process. Initially, the learning rate is sampled with three basis distributions as hyperparameters to convert the infinite mixture into a finite one. All checkpoints are collected to establish a deep learning sub-model pool, and weight adjustment and diversity strategies are developed during the combination process. The main advantage of this method is its ability to generate the required base learners through a single training process, utilizing the decaying strategy to tackle the challenge posed by the stochastic nature of gradient descent in determining the optimal learning rate. To ensure the method’s generalizability and competitiveness, this paper conducts an empirical analysis using the weekly dataset from the M4 competition and explores sensitivity to the number of models to be combined. The results demonstrate that the ensemble model proposed offers substantial improvements in prediction accuracy and stability compared to a single benchmark model.
Flagella and their property would influence the initial attachment of bacteria onto plastics, yet their impacts have not been investigated. In present study, four types of E. coli with or without flagella as well as with normal or sticky flagella were utilized to investigate the effects of flagella and their property on the initial attachment behaviors of bacteria onto six types of plastics in freshwater systems. We found that E. coli with flagella exhibited better initial attachment performance onto all six types of plastics than strain without flagella. Flagella could help bacteria swim near to plastics, pierce the energy barrier, and subsequently attach onto plastics. With stronger adhesive force, sticky flagella could further facilitate bacterial attachment onto plastics. Moreover, flagella especially sticky flagella could help bacteria form more rigid attachment layer on plastics. Even with humic acid in suspensions or in river water, flagellar E. coli showed greater attachment onto plastics than E. coli without flagella. Humic acid might adsorb onto sticky flagella and thus decreased the attachment of bacteria with sticky flagella onto plastics. Obviously, flagella as well as their property would impact the initial attachment of bacteria onto plastics and the subsequent formation of plastisphere in freshwater.
This paper assesses mental health responses to information on environmental risks. We exploit the progressive implementation of a national program in China that introduces more comprehensive air pollution monitoring and provides real-time air-pollution information to the public. The program leads to a sharp increase in public awareness and attention to air pollution issues and results in a large increase in the sensitivity of individual’s mental health to changes in air quality, especially among those with more exposure to pollution information and those more susceptible to mental illnesses. Information of worsening air quality has a direct effect on mental health as a source of stressors and an indirect behavioral effect through reducing outdoor activities and social integration. Our findings shed light on the design and delivery of environmental information disclosure programs, especially for countries with pressing environmental threats.
Peracetic acid (CH3C(O)OOH, PAA)-based heterogeneous advanced oxidation process (AOP) has attacked intensive interests due to production of various reactive species. Herein, Co(OH)2 nanoparticles decorated biochar (Co(OH)2/BC) was fabricated by a simple and controllable method, which was used to degrade tetracycline hydrochloride (TTCH) in water through PAA activation. The results indicated that 100% TTCH (C0 = 10 µmol/L) degradation efficiency was realized within 7 min at pH 7, with a high kinetic rate constant (k1) of 0.64 min−1 by the optimized Co(OH)2/BC. Material characterizations suggested that Co(OH)2 nanoparticle was successfully decorated on biochar, leading to more active sites and electronic structure alteration of biochar, thus greatly promoting the catalytic cleavage of PAA for radicals production. Then, the reactive oxygen species (ROS) quenching experiments and electron paramagnetic resonance (EPR) analysis demonstrated the key species were alkoxyl radicals (R–O•, mainly CH3CO2• and CH3CO3•), HO• and 1O2 in this system. Besides, density functional theory (DFT) calculation on Fukui index further revealed that the vulnerable sites of TTCH and three possible degradation pathways were proposed. This study can provide a new strategy for synthesis functional materials in PAA activation AOPs for removal of antibiotics in water.
Sulfadiazine (SDZ), as a broad-spectrum pharmaceutical antibiotic, has drawn extensive attention owing to its wide application and persistence. Photocatalytic oxidation has been considered as a high-efficiency and environment-friendly technology for degrading organic contaminants. A novel BiOI/UiO-66 p-n heterojunction (BiU-x) was fabricated via the in-situ deposition of p-type BiOI nanoplates on n-type UiO-66 octahedrons with the aid of a controlled precipitation method. The optimizing BiU-9 heterojunction exhibited a remarkably enhanced photocatalytic efficiency in removing SDZ, in which the SDZ (5 mg/L) removal efficiency over BiU-9 (0.5 g/L) reached nearly 100 % within 90 min of visible light irradiation. The influence of some important environmental factors (e.g., photocatalyst dosage, pH, co-existing inorganic anions and real sunlight irradiation) were systematically investigated. Such improvement mechanism should be assigned to the following three factors. Firstly, the introduction of narrow gap semiconductor BiOI effectively improved photo adsorption capacity. Secondly, benefiting by the large specific surface area, the involvement of UiO-66 contributed to boost the surface active sites. Most importantly, an internal electric field at the contact interface between UiO-66 and BiOI accelerated the separation of photo-generated electrons and holes. Furthermore, ·O2− and photo-generated holes were identified as the dominating reactive species accounting for the SDZ removal. The decomposition pathways of SDZ and ecotoxicities of the intermediates were analyzed via combing with LC-MS/MS and T.E.S.T theoretical calculation. This work may provide an alternative way for enhanced photocatalytic performance of MOF-based materials through construction of p-n heterojunction with bismuth-based semiconductors.
In this study, an integrated treatment system was proposed and applied in situ, including detention tank, multistage constructed wetlands (CWs) and wastewater treatment plants (WWTPs), preventing nutrients flowing into Dianchi Lake, in which the treatment performance of multistage CWs were evaluated principally. Results skillfully realized the bypass purification of upstream river at dry reasons, as well as the effective management and treatment of the collected diffuse pollution at rainy reasons. The purified water flowing into water bodies could satisfy the Grade III of environmental quality standards for surface water in China with the average effluent concentrations of COD, NH4+-N, TN and TP decreased to 10 (51.2-72.7%), 0.5 (67.2-83.0%), 1.0 (71.2-79.6%) and 0.15 (72.3-89.4%) mg L-1, respectively. High-throughput sequencing results indicated that the application of poly-3-hydroxybutyrate-cohyroxyvelate-sawdust (PS) blends could enrich norank\_f\_Anaerolineaceae (7.95%) and Bradyrhizobium (10.2%), which were distinct from the dominant genera of Pleurocapsa (13.0%) in gravel -based CWs. Functional genes and metabolism analysis uncovered that the heterotrophic denitrification was the main pathway of nitrogen removal with the abundance of genes encoding TCA cycle, glycolysis and deni-trification process up-regulated. In addition, molecular ecological network (MEN) analysis suggested the deni-trification genes were positively correlated with the predominant microbes in PS-based CWs, favorable for denitrifiers to transfer and utilize electron donors during denitrification process. This study proved that the developed PS blends as carbon supplies in CWs and the proposed integrated treatment system are effective methods for watershed management, providing valuable reference to low-pollution wastewater treatment in practical engineering projects.