Objective To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal.Design Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable.Setting CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.Participants Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis.Main outcome measures The instrumental variable estimation was conducted using the ratio of coefficients approach. Using meta-analysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized.Results Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11).Conclusion The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
Using coupled dynamic substance flow and environmental fate models, CiP-CAFE and BETR-Global, we investigated whether degradation of side-chain fluorotelomer-based polymers (FTPs), mostly in waste stocks (i.e., landfills and dumps), serves as a long-term source of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylates (PFCAs) to the global environment. The modelling results indicate that, in the wake of the worldwide transition from long-chain to short-chain products, in-use stocks of C8 FTPs will peak and decline afterwards while the in-use stocks of C6 FTPs and waste stocks of both FTPs will generally grow. FTP degradation in waste stocks is making an increasing contribution to FTOH generation, the bulk of which readily migrates from waste stocks and degrades into PFCAs in the environment; the remaining part of the generated FTOHs degrade in waste stocks, which makes those stocks reservoirs that slowly release PFCAs into the environment over the long run because of the low leaching rate and extr...
An ellipsoid, the simplest nonspherical shape, has been extensively used as a model for elongated building blocks for a wide spectrum of molecular, colloidal, and granular systems. Yet the densest packing of congruent hard ellipsoids, which is intimately related to the high-density phase of many condensed matter systems, is still an open problem. We discover an unusual family of dense crystalline packings of self-dual ellipsoids (ratios of the semiaxes α:√α:1), containing 24 particles with a quasi-square-triangular (SQ-TR) tiling arrangement in the fundamental cell. The associated packing density ϕ exceeds that of the densest known SM2 crystal [ A. Donev et al., Phys. Rev. Lett. 92, 255506 (2004)] for aspect ratios α in (1.365, 1.5625), attaining a maximal ϕ≈0.75806... at α=93/64. We show that the SQ-TR phase derived from these dense packings is thermodynamically stable at high densities over the aforementioned α range and report a phase diagram for self-dual ellipsoids. The discovery of the SQ-TR crystal suggests organizing principles for nonspherical particles and self-assembly of colloidal systems.
The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter–terahertz source development especially for advanced terahertz applications.
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current–voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
PURPOSE: An individual's reading ability cannot be reliably predicted from his/her letter acuity, contrast sensitivity, and visual field extent. We developed a set of Chinese reading acuity charts (C-READ) to assess the reading ability of Chinese readers, based on the collective wisdom of previously published reading acuity charts, especially the MNRead and the Radner Reading Charts. METHODS: The C-READ consists of three charts. Each consists sixteen 12-character simplified Chinese sentences crafted from first- to third-grade textbooks. One hundred eighteen native Chinese-speaking college students (aged 22.1 +/- 2.1 years) with normal or corrected to normal near vision (-0.26 +/- 0.05 logMAR) were included in the study to develop the C-READ charts, to test the homogeneity of the three charts, and to validate the C-READ against the text paragraphs from the International Reading Speed Texts (IReST) with corrected and uncorrected near vision. RESULTS: The reading acuity, critical print size, and maximum reading speed for young normal native Chinese-speaking readers were 0.16 +/- 0.05 logMAR, 0.24 +/- 0.06 logMAR, and 273.44 +/- 34.37 characters per minute (mean +/- SD), respectively. The reliability test revealed no significant differences among the three C-READ charts and no significant test order effect in the three reading parameters. Regression analyses showed that the IReST reading speed could be reliably predicted by the C-READ maximum reading speed under the corrected near-vision condition (adjusted R = 0.72) and by C-READ maximum reading speed and critical print size under the uncorrected near-vision condition (adjusted R = 0.69). CONCLUSIONS: The three C-READ charts are very comparable to each other, and there is no significant order effect. Reading test results can accurately predict continuous text reading performance quantified by the IReST reading speed over a wide range of refractive errors. The C-READ is a reliable and valid clinical instrument for quantifying reading performance in simplified Chinese readers.
A small and portable incoherent broadband cavityenhanced absorption spectrometer (IBBCEAS) for NO3 and N2O5 measurement has been developed. The instrument features a mechanically aligned non-adjustable optical mounting system, and the novel design of the optical mounting system enables a fast setup and stable operation in field applications. To remove the influence of the strong nonlinear absorption by water vapour, a dynamic reference spectrum through NO titration is used for the spectrum analysis. The wall loss effects of the sample system were extensively studied, and the total transmission efficiencies were determined to be 85 and 55% for N2O5 and NO3, respectively, for our experimental setup. The limit of detection (LOD) was estimated to be 2.4 pptv (1 sigma) and 2.7 pptv (1 sigma) at 1 s intervals for NO3 and N2O5, respectively. The associated uncertainty of the field measurement was estimated to be 19% for NO3 and 22-36% for N2O5 measurements from the uncertainties of transmission efficiency, absorption cross section, effective cavity length, and mirror reflectivity. The instrument was successfully deployed in two comprehensive field campaigns conducted in the winter and summer of 2016 in Beijing. Up to 1.0 ppb NO3 C N2O5 was observed with the presence of high aerosol loadings, which indicates an active night-time chemistry in Beijing.
Background: The melanocortin-4 receptor (MC4R) plays a pivotal role in the regulation of appetite and eating behavior. Variants in the MC4R gene have been related to appetite and obesity.Objective: We aimed to examine whether weight-loss diets modified the effect of the "obesity-predisposing" MC4R genotype on appetite-related measures in a randomized controlled trial.Methods: A total of 811 overweight and obese subjects [25 </= body mass index (BMI; kg/m(2)) </= 40] aged 30-70 y were included in the 2-y POUNDS Lost (Preventing Overweight Using Novel Dietary Strategies) trial. We genotyped MC4R rs7227255 in 735 overweight adults and assessed appetite-related characteristics, including craving, fullness, hunger, and prospective consumption, as well as a composite appetite score. We examined the effects of the genotype-by-weight-loss diet intervention interaction on appetite variables by using general linear models in both the whole population and in white participants only.Results: We found that dietary protein intake (low compared with high: 15% of energy compared with 25% of energy, respectively) significantly modified MC4R genetic effects on changes in appetite score and craving (P-interaction = 0.03 and 0.02, respectively) at 2 y, after adjustment for age, sex, ethnicity, baseline BMI, weight change, and baseline perspective phenotype. The obesity-predisposing A allele was associated with a greater increase in overall appetite score (beta = 0.10, P = 0.05) and craving (beta = 0.13, P = 0.008) compared with the non-A allele among participants who consumed a high-protein diet. MC4R genotype did not modify the effects of fat or carbohydrate intakes on appetite measures. Similar interaction patterns were observed in whites.Conclusion: Our data suggest that individuals with the MC4R rs7227255 A allele rather than the non-A allele might experience greater increases in appetite and food craving when consuming a high-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995.
Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69-89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 +/- 14 to 70 +/- 22 t/ d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 +/- 0.6, 3.1 +/- 1.1, 4.5 +/- 1.5, and 4.1 +/- 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E. The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, forwhich there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurementbased emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.
Stacked transition-metal dichalcogenides on hexagonal boron nitride (h-BN) are platforms for high-performance electronic devices. However, such vertical stacks are usually constructed by the layer-by-layer polymer-assisted transfer of mechanically exfoliated layers. This inevitably causes interfacial contamination and device performance degradation. Herein, we develop a two-step, low-pressure chemical vapor deposition synthetic strategy incorporating the direct growth of monolayer h-BN on Au foil with the subsequent growth of MoS2. In such vertical stacks, the interactions between MoS2 and Au are diminished by the intervening h-BN layer, as evidenced by the appearance of photoluminescence in MoS2. The weakened interfacial interactions facilitate the transfer of the MoS2/h-BN stacks from Au to arbitrary substrates by an electrochemical bubbling method. Scanning tunneling microscope/spectroscopy characterization shows that the central h-BN layer partially blocks the metal-induced gap states in MoS2/h-BN/Au ...