Silver bismuth iodide (Ag-Bi-I) as an environmentally friendly semiconductor with suitable band gap and high stability has been regarded as a potential photovoltaic material, while the reported mesoscopic devices all showed poor open circuit voltage (V-oc) of 0.5-0.6 V. Here, we successfully fabricated AgBiI4 planar heterojunction solar cells via a solution method with a Voc approaching 0.9 V, in which 2 wt % lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI) was added into the AgI:BiI3 precursor. The device presents a power conversion efficiency of 2.50 +/- 0.20% with a V-oc of 0.82 +/- 0.20 V. Experimental results indicated that the readily coordinated component in the organic salt, TFSI-, could assist film growth and result in a full coverage morphology. Furthermore, double layer devices showed the carrier separation occurred in the interface of SnO2/AgBiI4. These results indicated interface extraction and film enhancement should be concerned in further improvements.
Ectomycorrhizal fungi can enhance the tolerance of plants to heavy metal stress by reducing the accumulation of heavy metals in the aerial parts of the plants. Extracellular chelation is a major mechanism of heavy metal tolerance in ectomycorrhizal fungi in which extracellular slime plays a fundamental role. The objectives of this study were to investigate the potential metal-binding ability and the protein composition of extracellular slime. The extracellular slime of&nbsp;<em>Laccaria bicolor</em>&nbsp;(<em>L. bicolor</em>) cultivated under Cd2+&nbsp;and Cu2+&nbsp;stress was separated using various ultrasonic pre-treatments. The protein content, composition, and metal content of the extracellular slime were measured. The results showed that the protein content in the extracellular slime significantly increased under both Cd2+&nbsp;and Cu2+&nbsp;stress. The SDS-PAGE profile showed that Cd2+&nbsp;and Cu2+&nbsp;stress induced the expression of several new proteins. Heavy metal quantification revealed that the Cd content fixed in the extracellular slime accounted for 22–28% of the metal fixed by the fungal mycelia. Meanwhile, no Cu was detected in the fungal extracellular slime, implying that the extracellular slime may not be effective for the fixation of essential metallic elements such as Cu. Taken together, these results provided evidence that&nbsp;<em>L. bicolor</em>&nbsp;was able to ameliorate the intracellular Cd content by stimulating extracellular slime exudation and altering the composition of the proteins therein. Nevertheless, this blocking strategy may be effective only for the non-essential element Cd and was ineffective for the physiological element Cu.
Naphthalene (Nap) and methylnaphthalene (MN) are the most abundant polycyclic aromatic hydrocarbons (PAHs) in atmosphere and have been proposed to be important precursors of anthropogenic secondary organic aerosol (SOA) derived from laboratory chamber experiments. In this study, atmospheric Nap/MN and their gas-phase photooxidation products were quantified by a Proton Transfer Reaction-Quadrupole interface Time-of-Flight Mass Spectrometer (PTR-QiTOF) during the 2016 winter in Beijing. Phthalic anhydride, a late generation product from Nap under high-NOx conditions, appeared to be more prominent than 2-formylcinnamaldehyde (early generation product), possibly due to more sufficient oxidation during the haze. 1,2-Phthalic acid (1,2-PhA), the hydrated form of phthalic anhydride, was capable of partitioning into aerosol phase and served as a tracer to explore the contribution of Nap to ambient SOA. The measured fraction in particle phase (Fp) of 1,2-PhA averaged at 73 ± 13% with OA mass loadings of 52.5–87.8 μg/m3, lower than the value predicted by the absorptive partitioning model (100%). Using tracer product-based and precursor consumption-based methods, 2-ring PAHs (Nap and MN) were estimated to produce 14.9% (an upper limit) of the SOA formed in the afternoon during the wintertime haze, suggesting a comparable contribution of Nap and MN with monocyclic-aromatics on urban SOA formation.
Triboelectric nanogenerator (TENG) harvesting living environmental energy has been demonstrated to be a potential energy source for internet of things, for its unique properties, such as high-output performance, clean, sustainability, low-cost etc., which have resulted in an explosive growth of related research in the past several years. However, due to the unique features of electrical output signals of TENGs like the pulsed output with random amplitude and frequency, ultra-high voltages and impedance, the electrical power generated by TENGs is hard to be delivered to the load efficiently or stored directly by the classical power management methods. Meanwhile, the mechanical energy from the environment is time dependent, unstable and sometime unpredictable, but the power required to drive electronics is regulated with a fixed input voltage and power. So it is important to store the generated energy in a battery or capacitor, so that it can be used to power a device sustainably. Fortunately, both the power management and energy storage for TENG have obtained significantly progress recently. Here, this paper reviews the progress made in power management and storage, including theoretical development, charge boosting, buck converting, energy storage, and the new enabled applications, aiming at building a self-charging power unit (SCPU) that can be a standard power package for sustainable operation of an electronic device. Finally, we will give an outlook for future development of applying SCPU for internet of things.