科研成果

2020
Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, Chen Q, Ni J. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. Isme JournalIsme Journal. 2020;14:2488-2504.Abstract
The recent discovery of comammoxNitrospiraas complete nitrifiers has fundamentally renewed perceptions of nitrogen cycling in natural and engineered systems, yet little is known about the environmental controls on these newly recognized bacteria. Based on improved phylogenetic resolution through successful assembly of ten novel genomes (71-96% completeness), we provided the first biogeographic patterns for planktonic and benthic comammoxNitrospirain the Yangtze River over a 6030 km continuum. Our study revealed the widespread distributions and relative abundance of comammoxNitrospirain this large freshwater system, constituting 30 and 46% of ammonia-oxidizing prokaryotes (AOPs) and displaying 30.4- and 17.9-fold greater abundances than canonicalNitrospirarepresentatives in water and sediments, respectively. ComammoxNitrospiracontributed more to nitrifier abundances (34-87% of AOPs) in typical oligotrophic environments with a higher pH and lower temperature, particularly in the plateau (clade B), mountain and foothill (clade A) areas of the upper reach. The dominant position of planktonic comammoxNitrospirawas replaced by canonicalNitrospirasublineages I/II and ammonia-oxidizing bacteria from the plateau to downstream plain due to environmental selection, while the dissimilarity of benthic comammoxNitrospirawas moderately associated with geographic distance. A substantial decrease (83%) in benthic comammoxNitrospiraabundance occurred immediately downstream of the Three Gorges Dam, consistent with a similarly considerable decrease in overall sediment bacterial taxa. Together, this study highlights the previously unrecognized dominance of comammoxNitrospirain major river systems and underlines the importance of revisiting the distributions of and controls on nitrification processes within global freshwater environments.
Poonoosamy J, Haber-Pohlmeier S, Deng H, Deissmann G, Klinkenberg M, Gizatullin B, Stapf S, Brandt F, Bosbach D, Pohlmeier A. Combination of MRI and SEM to assess changes in the chemical properties and permeability of porous media due to barite precipitation. Minerals. 2020;10:226.
Shao L. Combined search for anisotropic birefringence in the gravitational-wave transient catalog GWTC-1. Phys. Rev. D. 2020;101:104019.
Wang Y, Hu M, Wang YC, Li X, Fang X, Tang R, Lu S, Wu Y, Guo S, Wu Z, et al. Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence for the Significant Influence of Anthropogenic Sulfate and NOx. Environmental Science and Technology LettersEnvironmental Science and Technology LettersEnvironmental Science and Technology Letters. 2020;7:787-794.Abstract
Organosulfates (OSs) are an important group of secondary organic aerosols, but the key influential factors of their formation in polluted atmospheres are not well understood. In this study, we monitored particulate OSs (carboxy OSs, hydroxyacetone sulfate, and isoprene-and monoterpene-derived OSs) at an urban site and a regional site in Beijing and examined their compositions and formation pathways under contrasting atmospheric conditions. The quantified OSs were most abundant in the summer at the regional site due to higher biogenic emissions and favorable formation conditions (higher aerosol acidity and humidity), followed by urban summer and winter conditions. Larger fractions of inorganic sulfate were converted to organosulfur when sulfate was less abundant. This implies that OSs would play more important roles in aerosol properties as the decline of sulfate. Monoterpene-derived nitrooxy-OSs were enhanced via NO3oxidation in the summer under high-NOxconditions at night, while the day-night variations in the winter were not as obvious. Among isoprene-OSs, IEPOX (isoprene epoxydiols)-OS formation was clearly suppressed under high-NOxconditions, while other isoprene-OSs that are favored under high-NOxconditions showed increasing formation with NOx. The results highlight that isoprene-OS formation pathways in polluted atmospheres could be different from the IEPOX-dominated regions reported for the low-NOxenvironments in the literature. © 2020 American Chemical Society. All rights reserved.
Wang Y, Hu M*, Wang Y-C, Li X, Fang X, Tang R, Lu S, Wu Y, Guo S, Wu Z, et al. Comparative Study of Particulate Organosulfates in ContrastingAtmospheric Environments: Field Evidence for the SignificantInfluence of Anthropogenic Sulfate and NOx. Environmental Science and Technology Letters [Internet]. 2020;7(11):787-794. 访问链接
Comparative study of strong-field ionization of alkaline-earth-metal atoms. PHYSICAL REVIEW A [Internet]. 2020;101(5):053433. 访问链接Abstract
We report on a comparative study of strong-field ionization of alkaline-earth-metal atoms by intense femtosecond laser pulses from near-infrared to midinfrared wavelengths. By collecting the ionization signals only produced within the central portion of the laser focus, the focus volume effect is largely reduced and the saturation intensities for different alkaline-earth-metal atoms are reliably determined, which permits us to directly test the strong-field-ionization theories. We demonstrate that the Perelomov-Popov-Terent'ev model accurately predicts the experimental ionization yields and saturation intensities in general for arbitrary values of the Keldysh parameter, while the Ammosov-Delone-Krainov simulations agree with the experiments for the tunneling-ionization regime and also for the regime when the Keldysh parameter is around 1. Our work presents benchmark data for strong-field ionization of alkaline-earth metals over a broad range of laser parameters and confirms the validity of Keldysh's picture for such atoms.
Huang K, Chen J, Liu C, ZHANG L. A Comparative Study of the Relationship between Subjective Difficulty, Objective Difficulty of Search Task and Search Behavior. In the proceedings of JCDL’ 20. 2020.
Lin H, Zhang P. Comparing Topics of Scholars’ Blog Posts in an Academic Social Networking Site and Publication Keywords, in Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. Virtual Event, China: Association for Computing Machinery; 2020:499–500. 访问链接
C C, Wang J, L L, WG X, JG*. L. Comparison of fluorotelomer alcohol emissions from wastewater treatment plants into atmospheric and aquatic environments. Environment Internatinal [Internet]. 2020;139(105718). 访问链接Abstract
Recent studies have revealed that wastewater treatment plants (WWTPs) are an important source of fluorotelomer alcohols (FTOHs) in the environment. However, it remains unclear whether volatilization to the atmosphere or discharge with wastewater effluent into receiving water bodies is the dominant pathway through which FTOHs enter the environment; it also remains unclear how the relative importance of these two emission pathways varies among seasons and homologs. Here, we estimated the emissions of 6:2 and 8:2 FTOHs through these two pathways from a typical WWTP in Beijing, China, by measuring height-dependent air concentrations above the wastewater surface; we also measured wastewater concentrations among the four annual seasons. Our results showed that atmospheric emissions dominate total annual FTOH emissions, but are not dominant in every single season. Emission to the aquatic environment is dominant during seasons with less wind (i.e., summer and fall). While the abundance of 6:2 FTOH has increased in recent years, 8:2 FTOH remains the major FTOH homolog released into the environment in China. This study provides comprehensive information regarding FTOH emissions from WWTPs to the environment and practical guidance for future monitoring practices.
Liu K, Ostadhassan M, Xu X. A comparison study of the unloading behavior in shale samples in nanoindentation experiments using different models. Journal of Petroleum Science and Engineering. 2020;186:106715.Abstract
Recently, nanoindentation has become an increasingly popular method for geomechanical analysis of rock samples in petroleum industry. Unloading curves of shale samples from the nanoindentation, which are considered as the pure elastic response, are used to determine the mechanical properties such as Young's modulus. In order to find a suitable model to characterize the unloading behavior of shale samples, in this study, we collected one Bakken Shale sample and performed nanoindentation tests on aliquots. First, the characteristics of the unloading curves were analyzed and then parameters such as: contact displacement and Young's modulus, based on two different prominent models (Oliver-Pharr model and Zeng-Chiu model) were calculated. Finally, values obtained from these two models were compared. The results showed that the unloading curves from the shale samples are nonlinear while Oliver-Pharr and Zeng-Chiu models both can be applied to represent the unloading curves. The mean Young's modulus from Oliver-Pharr model is around 1.2 times the value from Zeng-Chiu model. Using the Mori-Tanaka method, the upscaled Young's modulus value (32.14 GPa) from the Oliver-Pharr model is slight larger than the value from Zeng-Chiu model (28.70 GPa). In conclusion, the Oliver-Pharr model and Zeng- Chiu model can be both applied to study the unloading behavior of the nanoindentation curves.
Yi H, Liu H, Wang Z, Xue H, Sylvia S, Shi H, Teuwen DE, Han Y, Qin J. The Competence of Village Clinicians in the Diagnosis and Management of Childhood Epilepsy in Southwestern China and Its Determinants: A Cross-Sectional Study. The Lancet Regional Health - Western Pacific. 2020;3:100031.
Guo W, Sylvia S, Umble K, Chen Y, Zhang X, Yi* H. The competence of village clinicians in the diagnosis and treatment of heart disease in rural China: A nationally representative assessment. The Lancet Regional Health - Western Pacific. 2020;2:100026.
Peng C, Wu X, Qu T. Competing speaker count estimation on the fusion of the spectral and spatial embedding space, in INTERSPEECH 2020. Shanghai China; 2020:3077-3081.
Xiong YZ, Tan DL, Zhang YX, Yu C. Complete cross-frequency transfer of tone frequency learning after double training. Journal of Experimental Psychology: General [Internet]. 2020;149(1):94-103. 访问链接Abstract
A person’s ability to discriminate fine differences in tone frequency is vital for everyday hearing such as listening to speech and music. This ability can be improved through training (i.e., tone frequency learning). Depending on stimulus configurations and training procedures, tone frequency learning can either transfer to new frequencies, which would suggest learning of a general task structure, or show significant frequency specificity, which would suggest either changes in neural representations of trained frequencies, or reweighting of frequency-specific neural responses. Here we tested the hypothesis that frequency specificity in tone frequency learning can be abolished with a double-training procedure. Specifically, participants practiced tone frequency discrimination at 1 or 6 kHz, presumably encoded by different temporal or place coding mechanisms, respectively. The stimuli were brief tone pips known to produce significant specificity. Tone frequency learning was indeed initially highly frequency specific (Experiment 1). However, with additional exposure to the other untrained frequency via an irrelevant temporal interval discrimination task, or even background play during a visual task, learning transferred completely (1-to-6 kHz or 6-to-1 kHz) (Experiments 2-4). These results support general task structure learning, or concept learning in our term, in tone frequency learning despite initial frequency specificity. They also suggest strategies to design efficient auditory training in practical settings.
Zheng Y, Li X, Liu J, Zhang Q, Zhu T. A component-specific exposure-mortality model for ambient PM2. 5 in China: findings from a nationwide epidemiology based on outputs from a chemical transport model. Faraday Discussions. 2020.
Zhang S, Zhao J, Yao M*. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution [Internet]. 2020;11(12):1609-1625. 访问链接
Lin CS, Huang RJ, Xu W, Duan J, Zheng Y, Chen Q, Hu WW, Li YJ, Ni HY, Wu YF, et al. Comprehensive Source Apportionment of Submicron Aerosol in Shijiazhuang, China: Secondary Aerosol Formation and Holiday Effects. Acs Earth and Space Chemistry. 2020;4:947-957.Abstract
To get a comprehensive source apportionment of the non-refractory submicron aerosol (NR-PM,), a merged dataset of the organic fragments and the inorganic species, measured by an aerosol chemical speciation monitor (ACSM) during winter 2014 in Shijiazhuang, was used as input for positive matrix factorization (PMF) analysis using the multilinear engine (ME-2) algorithm. Four primary factors were resolved by constraining the profiles of the previously separated organic factors, while three unconstrained secondary factors were resolved. Secondary factors (sum of organic and inorganic components) accounted for over half of NR-PM, during normal days (NDs, 58% or 105.7 mu g m(-3)) and Chinese New Year (CNY, 79% or 72.6 mu g m(-3)). Among the organic components of the total secondary aerosol, 38-48% (8.0-14.4 mu g m(-3)) of the oxygenated organic aerosol (OOA) was attributed to the nitrate-rich OOA (i.e., OOA-NO3) factor, indicating that a part of the OOA was freshly formed and/or had similar volatility as nitrate. In comparison, a portion of 25-26% (5.5-7.7 mu g m(-3)) of the OOA was attributed to the regionally transported sulfate-rich OOA (i.e., OOA-SO4) while 26-37% (7.3-7.4 mu g m(-3)) of the OOA to aged primary aerosol. The positive relationship between OOA-SO4 and aerosol liquid water content (ALWC) in the same air mass suggested an aqueous-phase reaction pathway, which produced nearly half as much OOA as sulfate (12.0-17.0 mu g m(-3)), while photochemical reactions could produce similar amounts of OOA as nitrate (8.6-15.4 mu g m(-3)), as indicated by the positive relationship between OOA-NO3 and O-x (O-3 + NO2). During CNY, the NR-PM, concentrations (91.9 mu g m(-3)) were reduced by similar to 50% when compared to the nonholiday periods (182.7 mu g m(-3)). This reduction was primarily due to the reduced anthropogenic activities, resulting in a 65-89% reduction in the primary emissions from traffic, cooking, biomass burning, and coal combustion, as well as a 1-44% reduction in secondary factors. The results in our study have significant implications for controlling primary emissions, while joint measures over a regional scale are needed to reduce the secondary aerosols in Shijiazhuang.
Jia T, Ju Y, Gu J. A compute-adaptive elastic clock chain technique with dynamic timing enhancement for 2D PE array based accelerators, in International Solid-State Circuits Conference (ISSCC).; 2020.
Ma L, Zhang C, Wang Y, Ruan W, Wang J, Tang W, Ma X, Gao X, Gao J. Concare: Personalized clinical feature embedding via capturing the healthcare context, in Proceedings of the AAAI Conference on Artificial Intelligence.Vol 34.; 2020:833–840.
Li F, Wei Z, He K, Blaney L, Cheng X, Xu T, Liu W, Zhao D. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Water Research [Internet]. 2020;185:116219. 访问链接Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as a major concern in aquatic systems worldwide due to their widespread applications and health concerns. Perfluorooctanoic acid (PFOA) is one of the most-detected PFAS. Yet, a cost-effective technology has been lacking for the degradation of PFAS due to their resistance to conventional treatment processes. To address this challenge, we prepared a novel adsorptive photocatalyst, referred to Fe/TNTs@AC, based on low-cost commercial activated carbon (AC) and TiO2. The composite material exhibited synergistic adsorption and photocatalytic activity and enabled a novel “concentrate-&-destroy” strategy for rapid and complete degradation of PFOA in water. Fe/TNTs@AC was able to adsorb PFOA within a few minutes, thereby effectively concentrating the target contaminant on the photoactive sites. Subsequently, Fe/TNTs@AC was able to degrade >90% of PFOA that was preconcentrated on the solid in 4 h under UV irradiation (254 nm, 21 mW cm‒2), of which 62% was completely mineralized to F−. The efficient photodegradation also regenerated Fe/TNTs@AC, eliminating the need for expensive chemical regenerants, and after six cycles of adsorption/photodegradation, the material showed no significant drop in adsorption capacity or photocatalytic activity. Simulations based on the density functional theory (DFT) revealed that Fe/TNTs@AC adsorbs PFOA in the side-on parallel mode, facilitating the subsequent photocatalytic degradation of PFOA. According to the DFT analysis, scavenger tests, and analysis of degradation intermediates, PFOA decomposition is initiated by direct hole oxidation, which activates the molecule and leads to a series of decarboxylation, C–F bond cleavage, and chain shortening reactions. The innovative “concentrate-&-destroy” strategy may significantly advance conventional adsorption or photochemical treatment of PFAS-contaminated water and holds the potential to degrade PFOA, and potentially other PFAS, more cost-effectively.

Pages