Triboelectric nanogenerators (TENGs) utilize the phenomena of contact electrification and electrostatic induction to harvest mechanical energy from the environment. A good match between the motion frequency and the circuit characteristic frequency is critical for the effective power generation of a TENG. However, most TENGs have a time-dependent inherent capacitance (TIC-TENG), which hinders an optimal design for efficient energy conversion. Here, we propose a novel structure of a TENG with a constant inherent capacitance (CIC-TENG) and a mathematical model is established to provide analytical expressions of key output parameters of the device, which gives numerical simulation results that are in good agreement with the experimentally obtained results. Figures of merit and an optimization strategy are also given as guidelines for the optimization of material selection, geometry design, etc. Furthermore, a disk-formed CIC-TENG (DCIC-TENG) with polarity-switched triboelectric pairs is constructed to harvest unidirectional mechanical energy continuously, achieving an output power density of 55 mW/m(2). The effects of the motion frequency, the number of electrodes and triboelectric pairs on the charge transfer efficiency of the DCIC-TENG are assessed and a preferred design strategy is given. Finally, the CIC-TENG demonstrates approximately two-fold advantages in power transfer efficiency over the TIC-TENG, and a DCIC-TENG-based self-powered anemometer was fabricated to measure wind speed in real time.
Excess phosphorus (P) in water can lead to eutrophication and upset ecological balance. In this study, biochar with ultrathin two-dimensional nanosheets from the natural mesocarp of shaddock was chosen as the carrier. The highly dispersed and small particle size of La(OH)3 on the surface of the nanosheets (MSBL3) was successfully achieved using chemical impregnation for the adsorption of P in aqueous solution, and the maximum adsorption capacity was 260.0 mg P g−1 [La]. The differences in surface crystallization of La(OH)3 on biochar at different La loadings were analyzed using the high-precision characterization methods. After six adsorption–desorption cycles, MSBL3 retained 76.7% of its initial performance in terms of the P adsorption capacity. The preparation of 1 g of MSBL3 costs about RMB 1, and it could reduce the P concentration in 2.6 ton of Laoyu River water to below the eutrophication threshold; and the inhibitory effect of MSBL3 on the eutrophication of water bodies was confirmed by the growth state of water hyacinth. Furthermore, 0.1 M MSBL3 could inhibit Escherichia coli and Staphylococcus aureus up to 98.7% and 85.0%, respectively, which indicates that MSBL3 can be used to recover P from water and also to improve water quality. In addition, the growth of the maize seedlings verified that the P-absorbed MSBL3 waste is a good soil fertilizer and can solve the problem of post-treatment of the adsorbent. In conclusion, MSBL3 prepared in this study is a promising P sorbent for application.
The pre-designable structure and unique architectures of covalent organic frameworks (COFs) render them attractive as active and porous medium for water crisis. However, the effect of functional basis with different metrics on the regulation of interfacial behavior in advanced oxidation decontamination remains a significant challenge. In this study, we pre-design and fabricate different molecular interfaces by creating ordered pi skeletons, incorporating different pore sizes, and engineering hydrophilic or hydrophobic channels. These synergically break through the adsorption energy barrier and promote inner-surface renewal, achieving a high removal rate for typical antibiotic contaminants (like levofloxacin) by BTT-DATP-COF, compared with BTT-DADP-COF and BTT-DAB-COF. The experimental and theoretical calculations reveal that such functional basis engineering enable the hole-driven levofloxacin oxidation at the interface of BTT fragments to occur, accompanying with electron-mediated oxygen reduction on terphenyl motif to active radicals, endowing it facilitate the balanced extraction of holes and electrons. The synergetic regulation of the electronic structure and interfacial reaction of covalent organic frameworks (COF) for water purification remains a challenge. Here the authors propose that COFs materials possessing molecular interfaces with ordered pi skeletons, suitable pore size, and hydrophilic/hydrophobic channels synergically break through the adsorption energy barrier achieving high removal rates for micropollutants.
Flexible electronic devices have shown increasingly promising value facilitating our daily lives. However, flexible spintronic devices remain in their infancy. Here, this research demonstrates a type of nonvolatile, low power dissipation, and programmable flexible spin logic device, which is based on the spin-orbit torque in polyimide (PI)/Ta/Pt/Co/Pt heterostructures fabricated via capillary-assisted electrochemical delamination. The magnetization switching ratio is shown to be about 50% for the flexible device and does not change after 100 cycles of bending, indicating the device has stable performance. By designing the path of pulse current, five Boolean logic gates AND, NAND, NOT, NOR, and OR can be realized in an integrated two-element device. Moreover, such peeling-off devices can be successfully transferred to almost any substrate, such as paper and human skin, and maintain high performance. The flexible PI/Ta/Pt/Co/Pt spin logic device serves as logic-in-memory architecture and can be used in wearable electronics.
China has made great efforts in industrial pollution control, but for the different industrial sectors under various development stages, it is not so clear whether there is synergistic effects among them, and how it changes with the environmental policies. This study filled this knowledge gap by comiling the China Industrial Economic and Pollutant Emission data (WatSim-CIEPE) using 1.28 million individual enterprise data. The results demonstrated a power function decreasing trend for the emission per unit output value. The load reduction at different stages had synergic effects, and coastal cities reached the inflection point earlier. There is a completely opposite pattern between pollutant emission and GIOV in spatial evolution, mainly because the chemical and metal sectors with high pollutant emissions and low GIOV migrated to western China. The year gap between the implementation of the national development strategy and the break-point of gravity center variation of GIOV indicates a hysteresis effect for the influence of development policies. There may be three risks in China's industrial pollution control: (a) NH pollution gets serious in the western regions; (b) the food sector may become a new dominant pollution source; (c) the imbalance between industrial development and pollution control may further aggravate.
Liu Y, Xu X, Dimitrov D, Pellissier L, Borregaard MK, Shrestha N, Su X, Luo A, Zimmermann NE, Rahbek C, et al.An updated floristic map of the world. Nature Communications. 2023;14:2990.Abstract
Floristic regions reflect the geographic organization of floras and provide essential tools for biological studies. Previous global floristic regions are generally based on floristic endemism, lacking a phylogenetic consideration that captures floristic evolution. Moreover, the contribution of tectonic dynamics and historical and current climate to the division of floristic regions remains unknown. Here, by integrating global distributions and a phylogeny of 12,664 angiosperm genera, we update global floristic regions and explore their temporal changes. Eight floristic realms and 16 nested sub-realms are identified. The previously-defined Holarctic, Neotropical and Australian realms are recognized, but Paleotropical, Antarctic and Cape realms are not. Most realms have formed since Paleogene. Geographic isolation induced by plate tectonics dominates the formation of floristic realms, while current/historical climate has little contribution. Our study demonstrates the necessity of integrating distributions and phylogenies in regionalizing floristic realms and the interplay of macroevolutionary and paleogeographic processes in shaping regional floras.
The wastewater treatment plant (WWTP) effluent discharge affects the microorganisms in the receiving water bodies. Despite the ecological significance of microbial communities in pollutant degradation and element cycling, how the community diversity is affected by effluent remains obscure. Here, we compared the sediment bacterial communities exposed to different intensities of WWTP effluent discharge in Hangzhou Bay, China: i) a severely polluted area that receives effluent from an industrial WWTP, ii) a moderately polluted area that receives effluent from a municipal WWTP, and iii) less affected area that inner the bay. We found that the sediment bacterial diversity decreased dramatically with pollution levels of inorganic nutrients, heavy metals, and organic halogens. Microbial community assembly model analysis revealed increased environmental selection and decreased species migration rate in the severely polluted area, resulting in high phylogenetic clustering of the bacterial communities. The ecological networks were less complex in the two WWTP effluent receiving areas than in the inner bay area, as suggested by the smaller network size and lower modularity. Fewer negative network associations were detected in the severely (6.7%) and moderately (8.3%) polluted areas than in the less affected area (16.7%), indicating more collaborative inter-species behaviors are required under stressful environmental conditions. Overall, our results reveal the fundamental impacts of WWTP effluents on the ecological processes shaping coastal microbial communities and point to the potential adverse effects of diversity loss on ecosystem functions.