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ABSTRACT. We prove that the affine space of dimension n≥ 1 over an uncount-
able algebraically closed field k is determined, among connected affine varieties,
by its automorphism group (viewed as an abstract group). The proof is based
on a new result concerning algebraic families of pairwise commuting automor-
phisms.

1. INTRODUCTION

1.1. Characterization of the affine space. In this paper, k is an algebraically
closed field and An

k denotes the affine space of dimension n over k.

Theorem A.– Let k be an algebraically closed and uncountable field. Let n be
a positive integer. Let X be a reduced, connected, affine variety over k. If its
automorphism group Aut(X) is isomorphic to Aut(An

k) as an abstract group, then
X is isomorphic to An

k as a variety over k.

Note that no assumption is made on dim(X); in particular, we do not assume
dim(X) = n. This theorem is our main goal. It would be great to lighten the
hypotheses on k, but besides that the following remarks show the result is optimal:

• The affine space An
k is not determined by its automorphism group in the cate-

gory of quasi-projective varieties because

(1) Aut(An
k) is naturally isomorphic to Aut(An

k×Z) for any projective variety
Z with Aut(Z) = {id};

(2) for every algebraically closed field k there is a projective variety Z over k
such that dim(Z) ≥ 1 and Aut(Z) = {id} (one can take a general curve of
genus ≥ 3; see [15] and [16, Main Theorem]).

• The connectedness is crucial: Aut(An
k) is isomorphic to the automorphism

group of the disjoint union of An
k and Z if Z is a variety with Aut(Z) = {id}.

1.2. Previous results. The literature contains already several theorems that may
be compared to Theorem A. We refer to [4] for an interesting introduction and for
the case of the complex affine plane; see [10, 11] for extensions and generalisations
of Déserti’s results in higher dimension. Some of those results assume Aut(X) to be
isomorphic to Aut(An

k) as an ind-group; this is a rather strong hypothesis. Indeed,
there are examples of affine varieties X and Y such that Aut(X) and Aut(Y ) are
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isomorphic as abstract groups, but not isomorphic as ind-groups (see [12, Theorem
2]). In [13] the authors prove that an affine toric surface is determined by its group
of automorphisms in the category of affine surfaces; unfortunately, their methods
do not work in higher dimension.

1.3. Commutative families. The proof of Theorem A relies on a new result con-
cerning families of pairwise commuting automorphisms of affine varieties. To state
it, we need a few standard notions. If V is a subset of a group G, we denote by 〈V 〉
the subgroup generated by V , i.e. the smallest subgroup of G containing V . We say
that V is commutative if f g = g f for all pairs or equivalently, if 〈V 〉 is an abelian
group. In the following statement, Aut(X) is viewed as an ind-group, so that it
makes sense to speak of algebraic subsets of it (see the definitions in Section 2.2).

Theorem B.– Let k be an algebraically closed field and let X be an affine vari-
ety over k. Let V be a commutative irreducible algebraic subvariety of Aut(X)

containing the identity. Then 〈V 〉 is an algebraic subgroup of Aut(X).

It is crucial to assume that V contains the identity. Otherwise, a counter-example
would be given by a single automorphism f of X for which the sequence n 7→
deg( f n) is not bounded (see Section 2.1). To get a family of positive dimension,
consider the set V of automorphisms fa : (x,y) 7→ (x,axy) of (A1

k \ {0})2, for a ∈
k \ {0}; V is commutative and irreducible, but 〈V 〉 has infinitely many connected
components (hence 〈V 〉 is not algebraic). However, if V satisfies the hypotheses of
Theorem B except that it does not contain the identity, the subset V ·V−1 ⊆Aut(X)

is irreducible, commutative and contains the identity; if its dimension is positive,
Theorem B implies that Aut(X) contains a commutative algebraic subgroup of
positive dimension.

Remark 1.1. As noted by the referee and H. Kraft, Theorem B is equivalent to the
following statement. Let X be an affine variety, over an algebraically closed field
k. Then, any connected commutative ind-subgroup G of Aut(X) is a union of com-
mutative algebraic subgroups. With the vocabulary of [6, §0.9 and 9.4], this means
that the connected commutative ind-subgroups of Aut(X) are nested. Indeed, G
is an increasing union of irreducible, connected, and commutative subvarieties Vi,
i≥ 1, containing idX (see § 2.2.2 below). By Theorem B, G is the increasing union
of the algebraic subgroups Gi := 〈Vi〉.

1.4. Acknowledgement. We thank Jean-Philippe Furter, Hanspeter Kraft, and Chris-
tian Urech for interesting discussions and comments, and the referee for helpful
criticisms and suggestions. Hanspeter Kraft provided many interesting remarks
that greatly improved this article, in particular the proof of Theorem 4.1, using the
ind-group structure of centralizers, is simpler than the first proof we had written.
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2. DEGREES AND IND-GROUPS

2.1. Degrees and compactifications. Let X be an affine variety. Embed X in the
affine space AN

k for some N, and denote by x = (x1, . . . ,xN) the affine coordinates
of AN

k . Let f be an automorphism of X . Then, there are N polynomial functions
fi ∈ k[x] such that f (x) = ( f1(x), . . . , fN(x)) for x ∈ X . One says that f has degree
≤ d if one can choose the fi of degree≤ d; the degree deg( f ) can then be defined as
the minimum of these degrees d. This notion depends on the embedding X ↪→AN

k .
Another way to proceed is as follows. To simplify the exposition, assume that

all irreducible components of X have the same dimension k = dim(X). Fix a com-
pactification X0 of X by a projective variety and let X → X0 be the normalization
of X0. If H is an ample line bundle on X , and if f is a birational transformation of
X , one defines degH( f ) (or simply deg( f )) to be the intersection number

(2.1) deg( f ) = ( f ∗H) · (H)k−1.

Since Aut(X)⊂Bir(X), we obtain a second notion of degree. It is shown in [3, 21]
(see also § 6 below) that these notions of degrees are compatible: if we change the
embedding X ↪→AN

k , or the polarization H of X , or the compactification X , we get
different degrees, but any two of these degree functions are always comparable, in
the sense that there are positive constants satisfying

(2.2) adeg( f )≤ deg′( f )≤ bdeg( f ) (∀ f ∈ Aut(X)).

A subset V ⊂ Aut(X) is of bounded degree if there is a uniform upper bound
deg(g) ≤ D < +∞ for all g ∈ V . This notion does not depend on the choice of
degree. If V ⊂ Aut(X) is of bounded degree, then V−1 = { f−1 ; f ∈V} ⊂ Aut(X)

is of bounded degree too (see [3] and [6] for instance); we shall not use this result.

2.2. Automorphisms of affine varieties and ind-groups. The notion of an ind-
group goes back to Shafarevich, who called these objects infinite dimensional
groups in [19]. We refer to [6, 9] for detailed introductions to this notion.

2.2.1. Ind-varieties. By an ind-variety we mean a set V together with an ascend-
ing filtration V0 ⊂ V1 ⊂ V2 ⊂ ...⊂ V such that the following is satisfied:

(1) V =
⋃

k∈N Vk;
(2) each Vk has the structure of an algebraic variety over k;
(3) for all k ∈ N the inclusion Vk ⊂ Vk+1 is a closed immersion.

We refer to [6] for the notion of equivalent filtrations on ind-varieties.
A map Φ : V →W between ind-varieties V =

⋃
k Vk and W =

⋃
l Wl is a mor-

phism if for each k ∈ N there is l ∈ N such that Φ(Vk)⊂Wl and the induced map
Φ : Vk → Vl is a morphism of algebraic varieties. Isomorphisms of ind-varieties
are defined in the usual way. An ind-variety V =

⋃
k Vk has a natural Zariski topol-

ogy: S ⊂ V is closed (resp. open) if Sk := S∩Vk ⊂ Vk is closed (resp. open) for
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every k. A closed subset S ⊂ V inherits a natural structure of ind-variety and is
called an ind-subvariety. An ind-variety V is said to be affine if each Vk is affine.
We shall only consider affine ind-varieties and for simplicity we just call them ind-
varieties. An ind-subvariety S is an algebraic subvariety of V if S⊂ Vk for some
k ∈ N; by definition, a constructible subset will always be a constructible subset
in an algebraic subvariety of V .

2.2.2. Ind-groups. The product of two ind-varieties is defined in the obvious way.
An ind-variety G is called an ind-group if the underlying set G is a group and
the map G ×G → G , defined by (g,h) 7→ gh−1, is a morphism of ind-varieties.
If a subgroup H of G is closed for the Zariski topology, then H is naturally an
ind-subgroup of G ; it is an algebraic subgroup if it is an algebraic subvariety
of G . A connected component of an ind-group G , with a given filtration G0 ⊂
G1 ⊂ G2 ⊂ . . . , is an increasing union of connected components G c

i of Gi. The
neutral component G◦ of G is the union of the connected components of the
Gi containing the neutral element id ∈ G . We refer to [6], and in particular to
Propositions 1.7.1 and 2.2.1, showing that G◦ is an ind-subgroup in G whose index
is at most countable (the proof of [6] works in arbitrary characteristic).

We say that the ind-group G acts morphically on X if the action G ×X → X of
G on X induces a morphism of algebraic varieties Gi×X → X for every i ∈ N.

Theorem 2.1. Let X be an affine variety over an algebraically closed field k. Then
Aut(X) has the structure of an ind-group acting morphically on X.

In particular, if V is an algebraic subset of Aut(X), then V (x) = {v(x) | v ∈
V} ⊂ X is constructible for every x ∈ X by Chevalley’s theorem. The proof can be
found in [9, Proposition 2.1] (see also [6], Theorems 5.1.1 and 5.2.1): the authors
assume that the field has characteristic 0, but their proof works in the general set-
ting. To obtain a filtration, one starts with a closed embedding X ↪→AN

k , and define
Aut(X)d to be the set of automorphisms f such that max{deg( f ),deg( f−1)} ≤ d.
For example, if X =An

k, the ind-group filtration (Aut(An
k)d) of Aut(An

k) is defined
by the following property: an automorphism f is in (Aut(An

k)d) if the polynomial
formulas for f = ( f1, . . . , fn) and for its inverse f−1 = (g1, . . . ,gn) satisfy

(2.3) deg fi ≤ d and deggi ≤ d, (∀i≤ n).

Note that an ind-subgroup is algebraic if and only if it is of bounded degree. Thus,
we get the following basic fact.

Proposition 2.2. Let X be an affine variety over an algebraically closed field k.
Let V be an irreducible algebraic subset of Aut(X) that contains id. Then 〈V 〉 is
an algebraic subgroup of Aut(X), acting algebraically on X, if and only if 〈V 〉 is
of bounded degree.
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Example 2.3. Let g∈SU 2(C) be an irrational rotation, and set V = {g}⊂Aut(A2
C).

Then 〈V 〉 is not an algebraic group, but it is Zariski dense in an abelian algebraic
subgroup of GL 2(C)⊂Aut(A2

C). This shows that id∈V is a necessary hypothesis.

Proof. (See also Chap I, Prop. 2.2 of [2]).– If 〈V 〉 is algebraic, then it is contained
in some Aut(X)d and, as such, is of bounded degree; moreover, Theorem 2.1 im-
plies that the action 〈V 〉×X → X is algebraic. If 〈V 〉 is of bounded degree, then
〈V 〉−1 = 〈V 〉 is of bounded degree too, and 〈V 〉 is contained in some Aut(X)d .
The Zariski closure 〈V 〉 of 〈V 〉 in Aut(X)d is an algebraic subgroup of Aut(X);
we are going to show that 〈V 〉 = 〈V 〉. Set W = V ·V−1, and note that W con-
tains V because id ∈ V . By definition, 〈V 〉 is the increasing union of the sub-
sets W ⊂W ·W ⊂ ·· · ⊂W k ⊂ ·· · , and by Chevalley theorem, each W k ⊂ 〈V 〉 is
constructible. The W k are irreducible, because V is irreducible, and their dimen-
sions are bounded by the dimension of Aut(X)d ; so, there exists ` ≥ 1 such that
W ` = ∪k≥1W k ⊆ 〈V 〉. Since 〈V 〉 ⊆ ∪k≥1W k, we get W ` = 〈V 〉; thus, there exists
a Zariski dense open subset U of 〈V 〉 which is contained in W `. Now, pick any f
in 〈V 〉. Then ( f ·U) and U are two Zariski dense open subsets of 〈V 〉, so ( f ·U)

intersects U and this implies that f is in U ·U−1 ⊂ 〈V 〉. So 〈V 〉 ⊂ 〈V 〉. �

3. ALGEBRAIC VARIETIES OF COMMUTING AUTOMORPHSIMS

Let k be an algebraically closed field. Let X be an affine variety over k of
dimension d. In this section, we prove Theorem B. Since V ⊂Aut(X) is irreducible
and contains the identity, every irreducible component of X is invariant under the
action of V (and of 〈V 〉); thus, we may and do assume X to be irreducible.

3.1. Invariant fibrations, base change, and degrees. Let B and Y be affine vari-
eties and assume that B is irreducible. Let π : Y → B be a dominant morphism. By
definition, Autπ(Y ) is the group of automorphisms g : Y → Y such that π ◦ g = π.
Note that Autπ(Y ) is a closed ind-subgroup of Aut(Y ).

Let B′ be another irreducible affine variety, and let ψ : B′ → B be a quasi-
finite and dominant morphism. Pulling-back π by ψ, we get a new affine variety
Y ×B B′ = {(y,b′) ∈ Y ×B′; π(y) = ψ(b′)}; the projections πY : Y ×B B′→ Y and
π′ : Y ×B B′→ B′ satisfy ψ◦π′ = π◦πY . There is a natural homomorphism

(3.1) ιψ : Autπ(Y )→ Autπ′(Y ×B B′)

defined by ιψ(g) = g×B idB′ . For every g ∈ Autπ(Y ), we have

(3.2) g◦πY = πY ◦ ιψ(g) and π
′ = π

′ ◦ ιψ(g).

If ιψ(g) = id then g ◦πY = πY and g = id because πY is dominant; hence, ιψ is an
embedding. Since πY is dominant and generically finite, the next lemma follows
from Proposition 6.3.
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Lemma 3.1. If S is a subset of Autπ(Y ), then S is of bounded degree if and only if
its image ιψ(S) in Autπ′(Y ×B B′) is of bounded degree.

Let us come back to the example f (x,y) = (x,xy) from Section 1.3. This is an
automorphism of the multiplicative group Gm×Gm that preserves the projection
onto the first factor. The degrees of the iterates f n(x,y) = (x,xny) are not bounded,
but on every fiber {x = x0}, the restriction of f n is the linear map y 7→ (x0)

ny, of
constant degree 1. More generally, if x ∈ B 7→ A(x) is a regular map with values
in GLN(k), then g : (x,y) 7→ (x,A(x)(y)) is a regular automorphism of B×AN

k and,
in most cases, we observe the same phenomenon: the degrees of the restrictions
gn
|{x0}×AN

k
are bounded, but the degrees of gn are not.

If X is an affine variety over k with a morphism π : X → B, we denote by η the
generic point of B and Xη the generic fiber of π. If G is a subgroup of Autπ(X),
then its restriction to Xη may have bounded degree even if G is not a subgroup of
Aut(X) of bounded degree: this is shown by the previous example.

The next proposition provides a converse result. To state it, we make use of
the following notation. Let B be an irreducible affine variety, and let O(B) be
the k-algebra of its regular functions. By definition, AN

B denotes the affine space
SpecO(B)[x1, . . . ,xN ] over the ring O(B) and AutB(AN

B ) denotes the group of O(B)-
automorphisms of AN

B ; AutB(AN
B ) is just another notation for AutprB(A

N × B),
where prB : AN ×B→ B is the projective map to the second factor (see the first
lines of § 3.1). Similarly, GLN(O(B)) is the linear group over the ring O(B). The
inclusion GLN(O(B)) ⊂ AutB(AN

B ) is an embedding of ind-groups. Indeed, the
group GLN(O(B)) may be identified to space of morphisms Mor(B,GLN(k)) be-
tween the affine varieties B and GLN(k). As a subgroup of AutB(AN

B ) it is closed,
because it coincides with

{ f ∈AutB(AN
B ) ; deg f ,deg f−1 ≤ 1 and f fixes

the zero section 0×B⊆ AN×B = AN
B}.

Proposition 3.2. Let X be an irreducible and normal affine variety over k with
a dominant morphism π : X → B to an irreducible affine variety B over k. Let η

be the generic point of B and Xη the generic fiber of π. Let G be a subgroup of
Autπ(X) whose restriction to Xη is of bounded degree. Then there exists

(a) a nonempty affine open subset B′ of B,
(b) an embedding τ : XB′ := π−1(B′) ↪→ Ar

B′ over B′ for some r ≥ 1,
(c) and an embedding ρ : G ↪→ GL r(O(B′))⊆ AutB′(Ar

B′),

such that τ◦g = ρ(g)◦ τ for every g ∈ G.

Notation.– For f ∈ Aut(X) and ξ ∈ O(X) (resp. in k(X)), we denote by f ∗ξ the
function ξ◦ f . The field of constant functions is identified with k⊂ O(X).

Proof of Proposition 3.2. Shrinking B, we assume B to be normal.
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Pick any closed embedding X ↪→ A`
B ⊆ P`

B over B. Let X ′ be the Zariski closure
of X in P`

B. Let X be the normalization of X ′, with the structure morphism π : X →
B; thus, π : X → B is a normal and projective scheme over B containing X as a
Zariski open subset. By Proposition 3.1 in [7, Chap. II], D := X \X is an effective
Weil divisor of X . Denote by Xη the generic fiber of π and by Dη the generic
fiber of π|D. Shrinking B again if necessary, we may assume that all irreducible
components of D meet the generic fiber, i.e. D = Dη.

Write X = SpecA, where A = O(X). Let M be a finite dimensional subspace of
A such that 1 ∈M and A is generated by M as a k-algebra. Since the action of G
on Xη is of bounded degree, there exists m≥ 0 such that the divisor

(3.3) (Div(g∗v)+mD)|Xη

is effective for every v∈M and g∈G. Now, consider Div(g∗v)+mD as a divisor of
X and write Div(g∗v)+mD = D1−D2 where D1 and D2 are effective and have no
common irreducible component. Since g ∈ Autπ(X), we get g∗v ∈ A and D2∩X =

/0. Moreover, D2 ∩Xη = /0. So D2 is contained in X \X , but then we deduce that
D2 is empty because X \X is covered by D and D = Dη.

Observe that H0(X ,mD) is a finitely generated O(B)-module. Denote by N the
G-invariant O(B)-submodule of A generated by the g∗v, for g∈G and v∈M. Since
N ⊆ H0(X ,mD), N is a finitely generated O(B)-module. Let r be the dimension
of the k(B)-vector space N⊗O(B) k(B). Fix a basis (w1, . . . ,wr) of this space made
of elements wi ∈ N. After shrinking B, we may assume that N is a free O(B)-
module generated by w1, . . . ,wr. Let W be a free O(B)-module of rank r with a
basis (z1, . . . ,zr); thus, W =⊕r

i=1O(B)zi and

(3.4) SpecO(B)[W ] = SpecO(B)[z1, . . . ,zr] = Ar
O(B).

Let τ∗W : W →N be the isomorphism of modules defined by τ∗W (zi) =wi. The action
of G on N induces a representation ρ : G→ GLB(W ) such that τ∗W ◦ρ(g) = g∗ ◦τ∗W .

Using the basis (zi), we obtain a homomorphism ρ : G→ GL r(O(B)). Let τ be
the morphism X ↪→ SpecO(B)[W ] = Ar

O(B) over B induced by τ∗W : W → N ⊆ A.
The group GL r(O(B)) can naturally be identified to a subgroup of AutB(Ar

O(B)),
and then τ◦g = ρ(g)◦ τ for every g ∈ G. �

3.2. Orbits. If S is a subset of Aut(X) and x is a point of X the S-orbit of x is
the subset S(x) = { f (x); f ∈ S}. Let V be an irreducible algebraic subvariety of
Aut(X) containing id. Set W = V ·V−1; it is a constructible subset of Aut(X)

containing V (for id ∈V ). Then, the group 〈V 〉 is the union of the sets

(3.5) W k = { f1 ◦ · · · ◦ fk; f j ∈W for all j}.

Since W contains id, the W k form a non-decreasing sequence

(3.6) W 0 = {id} ⊂W ⊂W 2 ⊂ ·· · ⊂W k ⊂ ·· ·
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of constructible subsets of Aut(X); their closures are irreducible, because so is V .
In particular, k 7→ dim(W k) is non-decreasing.

The W k-orbit of a point x ∈ X is the image of W k × {x} by the morphism
Aut(X)×X→ X defining the action on X : applying Chevalley’s theorem one more
time, W k(x) is a constructible subset of X . If U ⊂ X is open, its W k-orbit W k(U) is
open too; thus, 〈W 〉(U) = ∪k≥0W k(U) is open in X .

An increasing union of irreducible constructible sets needs not be stationary: the
sequence of subsets of A2

C defined by Zk =
(
A2

C \{y = 0}
)
∪k

j=1 {( j,0)} provides
such an example. However, we shall see in the next proposition that the W k(x) are
better behaved.

Let π1 and π2 be the projections from X ×X to the first and second factor, re-
spectively. Let ∆X be the diagonal in X×X ; if Y is a subvariety of X , set

(3.7) ∆Y = π
−1
1 (Y )∩∆X = {(y,y) ∈ X×X ; y ∈ Y} ⊂ X×X .

Consider the morphism Φ : Aut(X)×X → X×X defined by

(3.8) Φ(g,x) = (x,g(x)),

and set Γi = Φ(W i×X) for i ∈ Z>0. The family (Γi)i∈N forms a non-decreasing
sequence of constructible sets; we denote by Γ∞ their union. Then, consider the
action of Aut(X) on X×X given by g ·(x,y) = (x,g(y)). By construction, Γi =W i ·
∆X and Γ∞ = 〈W 〉 ·∆X ; similarly W i ·∆Y = Γi∩π

−1
1 (Y ) and 〈W 〉 ·∆Y = Γ∞∩π

−1
1 (Y )

for every subvariety Y ⊂ X .

Lemma 3.3. The subset Γ∞ of X×X is constructible.

Proof. Let us prove, by an induction on dim(Y ), that π
−1
1 (Y )∩Γ∞ is constructible

for every irreducible subvariety Y ⊆X . By convention, set dimY =−1 when Y = /0.
So, the case dimY = −1 is trivial. Now assume that dimY ≥ 0 and that the result
holds in dimension < dim(Y ). Set ZY = 〈W 〉 ·∆Y ; this set is invariant under the
action of 〈W 〉 on X ×X . Since W i ·∆Y is irreducible and increasing for each i≥ 0,
there is m≥ 0, such that

(3.9) ZY = 〈W 〉 ·∆Y =W i ·∆Y (∀i≥ m).

Then there is a dense open subset UY of ZY which is contained in W m ·∆Y , hence
in 〈W 〉 ·∆Y . Shrinking UY if necessary, we may assume that π1(UY ) is open in
Y . Then Y \π1(UY ) is a closed subset of X , the irreducible components of which
have dimension < dimY . By the induction hypothesis, π

−1
1 (Y \ π1(UY ))∩Γ∞ is

constructible. We also know that π
−1
1 (π1(UY ))∩Γ∞ = 〈W 〉 ·UY is an open sub-

set of ZY . Thus, π
−1
1 (Y )∩Γ∞ = (π−1

1 (Y \π1(UY ))∩Γ∞)∪ (π−1
1 (π1(UY ))∩Γ∞) is

constructible. �

Proposition 3.4. The orbits W k(x) satisfy the following properties.

(1) The function k ∈ Z>0 7→ dim(W k(x)) is non-decreasing.
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(2) The function x ∈ X 7→ dim(W k(x)) is lower semi-continuous in the Zariski
topology: the subsets {x ∈ X ; dim(W k(x))≤ n} are Zariski closed for all
pairs (n,k) of integers.

(3) The integers

s(x) := max
k≥0
{dim(W k(x))} and sX := max

x∈X
{s(x)}

are bounded from above by dim(X).
(4) There is a Zariski dense open subset U of X and an integer k0 such that

dim(W k(x)) = sX for all k ≥ k0 and all x ∈U.
(5) There is an integer `≥ 0, such that for every x in X, W `(x) = 〈W 〉(x) and

W `(x) is an open subset of 〈W 〉(x).

This result and its proof below are analogous to [6, Prop. 7.1.2] and [1, Sec. 1].

Proof. The first assertion follows from the inclusions (3.6), and the third one is
obvious. Since the action ( f ,x) ∈W k×X 7→ f (x) ∈ X is a morphism, the second
and fourth assertions follow from Chevalley’s constructibility result and the semi-
continuity of the dimension of the fibers (see [8, II, Exercise 3.19] and [20, Section
I.6.3, Corollary] respectively). By Lemma 3.3, Γ∞ is constructible. Since it is
the increasing union of the constructible subsets Γi, there is an integer ` such that
Γ∞ = Γi for i ≥ `. Then, W `(x) = 〈W 〉(x) because W i(x) = π2(Γi ∩π

−1
1 {x}) and

〈W 〉(x) = π2(Γ∞ ∩ π
−1
1 {x}). Now, the constructible set W `(x) contains a dense

open subset U of 〈W 〉(x); since 〈W 〉 acts transitively on W `(x), W `(x) = 〈W 〉(U)

is open in 〈W 〉(x). �

3.3. Open orbits. Let us assume in this paragraph that sX = dimX : there is an
orbit W k(x0) which is open and dense and coincides with 〈W 〉(x0). We fix such
a pair (k,x0). Let f be an element of 〈W 〉. Since f (x0) is in the set W k(x0),
there is an element g of W k such that g(x0) = f (x0), i.e. g−1 ◦ f (x0) = x0. By
commutativity, (g−1 ◦ f )(h(x0)) = h(x0) for every h in W k, and this shows that
g−1 ◦ f = id because W k(x0) is dense in X . Thus, 〈W 〉 coincides with W k, and
〈W 〉= 〈V 〉 is an irreducible algebraic subgroup of the ind-group Aut(X).

Thus, Theorem B is proved in case sX = dimX . The proof when sX < dimX
occupies the next section, and is achieved in § 3.4.4.

3.4. No dense orbit. Assume now that there is no dense orbit; in other words,
sX < dim(X). Fix an integer ` > 0 and a W -invariant open subset U ⊂ X such that

(3.10) s(x) = sX and W `(x) = 〈W 〉(x)

for every x ∈U (see Proposition 3.4, assertions (4) and (5)).
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3.4.1. A fibration. We start with a construction which is reminiscent of Rosen-
licht’s quotient theorem [17]: instead of looking at orbits of an algebraic group G,
we consider “orbits” of the commutative set of transformations W `.

Let C be an irreducible algebraic subvariety of X of codimension sX that inter-
sects the general orbit W `(x) transversally (in k points). As in § 3.2, denote by
π1 : X×X → X the projection to the first factor. The morphism

(3.11) π
′ := (π1)|(X×C)∩Γ`

: (X×C)∩Γ`→ X

is generically finite of degree k. So there is a non-empty open subset V of U such
that π′|π′−1(V ) : π′−1(V )→ V is finite étale. Observe that for every g ∈ 〈W 〉, g(V )

is open in U and π′|π′−1(g(V )) is finite étale of degree k. Set Y := 〈W 〉(V ); it is open
in U and satisfies

(i) for each x ∈ Y the intersection of C and W `(x) is transverse and contains
exactly k points;

(ii) Y is W -invariant.

To each point x ∈ Y , we associate the intersection C∩W `(x), viewed as a point
in the space C[k] of cycles of length k and dimension 0 in C. This gives a dominant
morphism

(3.12) π : Y → B

where, by definition, B is the irreducible variety B = π(Y ) ⊂C[k]. The group 〈W 〉
is now contained in Autπ(Y ). Shrinking B and Y accordingly, we may assume that
B is normal and that π is surjective. Let η be the generic point of B.

The fiber π−1(b) of b∈ B, we denote by Yb. By construction, for every b∈ B(k),
Yb is an orbit of 〈W 〉; and Section 3.3 shows that Yb is isomorphic to the image 〈W 〉b
of 〈W 〉 in Aut(Yb): this group 〈W 〉b coincides with the image of W ` in Aut(Yb) and
the action of 〈W 〉 on Yb corresponds to the action of 〈W 〉b on itself by translation.
Thus, Section 3.3 implies the following properties

(1) every fiber of π, in particular its generic fiber, is geometrically irreducible;
(2) the generic fiber of π is normal and affine, shrinking B (and Y accordingly)

again, we may assume B and Y to be normal and affine;
(3) the action of 〈W 〉 on the generic fiber Yη has bounded degree.

3.4.2. Reduction to Y =UB×B (Gs
m,B). In this section, the variety Y will be mod-

ified, so as to reduce our study to the case when Y is an abelian group scheme
over B. Note that B and Y will be modified several times in this paragraph, keeping
the same names.

By Proposition 3.2, after shrinking B, there exist an embedding τ : Y ↪→ AN
B for

some N ≥ 0 and a homomorphism ρ : 〈W 〉 ↪→ GLN(O(B))⊆ AutB(AN
B ) such that

(3.13) τ◦g = ρ(g)◦ τ (∀g ∈ 〈W 〉).
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Via τ, we view Y as a B-subscheme of AN
B , and via ρ we view 〈W 〉 in GLN(O(B)).

Consider the inclusion of GLN(O(B)) into GLN(k(B)), and compose it with the
embedding of W into GLN(O(B)). Denote by 〈W 〉η the Zariski closure of 〈W 〉
in GLN(k(B),Yη)⊆ Aut(Yη), where GLN(k(B),Yη) is the subgroup of GLN(k(B))
which preserves Yη. There is a natural inclusion of sets W ↪→W ⊗k k(B): a point x
of W , viewed as a morphism x : Speck(x)→W , is mapped to the point

(3.14) xB : Speck(x)(B⊗k k(x)) = SpecFrac(k(x)⊗k k(B))→W ⊗k k(B),

where k(x)(B⊗k k(x)) is the function field of B⊗k k(x) which is the variety over
the field k(x); note that k being algebraically closed, B⊗k k(x) is irreducible over
k(x) and k(x)⊗k k(B) is an integral domain. The image of this inclusion is Zariski
dense in W ⊗k k(B). The morphism W ↪→ GLN(k(B),Yη) naturally extends to a
morphism W⊗k k(B) ↪→GLN(k(B),Yη). It follows that 〈W 〉η is the Zariski closure
of 〈W ⊗k k(B)〉 in GLN(k(B),Yη).

Since W ⊗k k(B) is geometrically irreducible, 〈W 〉η is a geometrically irre-
ducible commutative linear algebraic group over k(B). As a consequence ([14],
Chap. 16.b), there exists a finite extension L of k(B) and an integer s≥ 0 such that

(3.15) 〈W 〉η⊗k(B) L'UL×Gs
m,L

where UL is a unipotent commutative linear algebraic group over L.
Let ψ : B′ → B be the normalization of B in L. We obtain a new fibration

π′ : Y ×B B′ → B′, together with an embedding ιψ of Autπ(Y ) in Autπ′(Y ×B B′);
by Lemma 3.1, the subgroup 〈W 〉 has bounded degree if and only if its image
ιψ〈W 〉 has bounded degree too. Because the generic fiber of π is geometrically
irreducible, Y ×B B′ is irreducible. After such a base change, we may assume that
〈W 〉η 'Uη×Gs

m,k(B), where Uη corresponds to the group UL of Equation (3.15).
Replacing (this new) B by an affine open subset, and shrinking Y accordingly, we
may assume that Y =UB×B (Gs

m,B), where UB is an integral unipotent commutative
algebraic group scheme over B, and

(3.16) W ⊆UB(B)×Gs
m,B(B)⊆ Autπ(Y )

acts on Y by translation; here UB(B) and Gs
m,B(B) denote the ind-varieties of sec-

tions of the structure morphisms UB→ B and Gs
m,B→ B respectively.

Remark 3.5. A section σ : B→UB defines an automorphism of UB ' B×B UB by
φ(σ×B idUB), where φ : UB×UB → UB is the multiplication morphism of UB; it
defines in the same way an element of Autπ(Y ). Similarly Gs

m,B(B) embeds into
Autπ(Y ), so UB(B)×Gs

m,B(B)⊆ Autπ(Y ), and this is the meaning of (3.16).

Remark 3.6. Both UB(B)×Gs
m,B(B) and Autπ(Y ) are ind-varieties over k and the

inclusions in (3.16) are morphisms between ind-varieties.
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Now, to prove Theorem B, we only need to show that W is contained in an
algebraic subgroup of UB(B)×Gs

m,B(B).

3.4.3. Structure of UB. Let B be a normal affine variety over the algebraically
closed field k, and let UB be an integral, connected and unipotent algebraic group
scheme over B (we do not assume UB to be commutative here).

Lemma 3.7. The ind-group UB(B) is an increasing union of algebraic subgroups.

In the language of [6], Lemma 3.7 says that UB(B) is a nested ind-group (see Re-
mark 1.1). Before describing the proof, let us assume that UB is just an r-dimensional
additive group Gr

a,B. Then, each element of UB can be written

(3.17) f = (a f
1(z), . . . ,a

f
r (z))

where each a f
i (z) is an element of O(B); its n-th power is given by f n =(na f

1(z), . . . ,
na f

r (z)). Thus, viewed as automorphisms of Y , the degrees of the f n are bounded
independently of n, by (a function of) the degrees of the a f

i . Our proof is a variation
on this basic remark, with two extra difficulties: the structure of UB may be more
subtle in positive characteristic (see [18], §VII.2); instead of iterating one element
f , we need to controle the group UB itself.

Proof. Denote by πU : UB → B the structure morphism. Recall, from the end of
Section 3.4.2, that B is an affine variety.

The proof is by induction on the relative dimension of πU : UB → B. If this
dimension is zero, there is nothing to prove. So, we assume that the lemma holds
for relative dimensions ≤ `, for some ` ≥ 0, and we want to prove it when the
relative dimension is `+ 1. Denote by Uη the generic fiber of πU . Our field k
is algebraically closed, and the group UB is connected, so by Corollary 14.55 of
[14] (see also § 14.63), there exists a finite field extension L of k(B) such that
UL :=Uη⊗k(B) L sits in a central exact sequence

(3.18) 0→Ga,L→UL
qL−→VL→ 0,

where VL is an irreducible unipotent group of dimension ` and VL is isomorphic
to A`

L as an L-variety; moreover, there is an isomorphism of L-varieties φL : UL→
VL×Ga,L such that the quotient morphism qL is given by the projection onto the
first factor. So we have a section sL : VL→UL such that qL ◦ sL = id. The section
sL is just given by a regular function on VL, it needs not be a homomorphism of
groups. Doing the base change given by the normalization of B in L, and then
shrinking the base if necessary, we may assume that B is affine and

• there is an exact sequence of group schemes over B,

0→Ga,B→UB
qB−→VB→ 0,

where VB is a unipotent group scheme over B of relative dimension `;
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• there is an isomorphism of B-schemes VB ' A`
B;

• sL extends to a section sB : VB→UB over B: qB ◦ sB = id.

For b ∈ B, denote by Ub, Vb, qb, sb the specialization of UB, VB, qB, sB at b. We
denote by ◦U and ◦V the group laws on the groups UB and VB respectively. The
morphism of B-schemes β : UB→VB×Ga,B sending a point x in the fiber Ub to the
point (qb(x),x− sb(qb(x))) of the fiber Vb×Ga,b defines an isomorphism. We use
β to transport the group law of UB into VB×Ga,B; this defines a law ∗ on VB×Ga,B,
given by

(3.19) a1 ∗a2 = β(β−1(a1)◦U β
−1(a2)),

for a1 and a2 in VB×Ga,B. Denote by O(VB×B VB) the function ring of the k-
variety VB×B VB ' B×A`×A`. We write a point in VB×B VB as (b,x1,x2) where
x1,x2 ∈ VB with the same image b in B. There is an element F(b,x1,x2)(y1,y2) of
O(VB×B VB)[y1,y2] such that

(3.20) (x1,y1)∗ (x2,y2) = (x1 ◦V x2,F(b,x1,x2)(y1,y2))

for all b ∈ B and (x1,y1),(x2,y2) ∈ Vb×Ga. For every fixed (x1,y1,x2), the mor-
phism y2 7→ F(b,x1,x2)(y1,y2) is an automorphism of the variety Ga. Thus, we
can write

(3.21) F(b,x1,x2)(y1,y2) =C0(b,x1,x2)(y1)+C2(b,x1,x2)(y1)y2.

The function C2(b,x1,x2)(y1) does not vanish on VB×B VB×A1 ' B×A2`+1; thus,
C2 is an element of O(B). By symmetry we get

(3.22) F(b,x1,x2)(y1,y2) =C0(b,x1,x2)+C1(b)y1 +C2(b)y2

and

(3.23) (x1,y1)∗ (x2,y2) = (x1 ◦V x2,C0(b,x1,x2)+C1(b)y1 +C2(b)y2).

Now, apply this equation for x1 = x2 = 0 (the neutral element of VB). The restriction
of β to the fiber q−1

b (0) is x 7→ x− sb(0), so for (0,y1) and (0,y2) in Vb×Ga, we
obtain (0,y1)∗ (0,y2) = (0,y1 + y2 + sb(0)); then C1 =C2 = 1.

We identify now the ind-varieties UB(B) and VB(B)×Ga(B). By induction,
the ind-group VB(B) is an increasing union of algebraic subgroups Vi; as observed
before the proof of this lemma, the ind-group Ga(B) is an increasing union of
subgroups G j. If S and T are elements of VB(B) and Ga(B) respectively, we set

(3.24) δV (S) = min{i ; S ∈Vi}, δGa(T ) = min{ j ; T ∈ G j}.

Each element of UB(B) is given by a section (S,T ) ∈VB(B)×Ga(B) and the group
law in UB(B) corresponds to the law

(3.25) (S1,T1)∗ (S2,T2) = (S1 ◦V S2,C0(S1,S2)+T1 +T2)
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because C1 = C2 = 1. Here C0 : VB(B)×VB(B)→ Ga(B) is a morphism of ind-
varieties, so there is a function α : N→ N such that

(3.26) δGaC0(S1,S2)≤ α(δV (S1)+δV (S2)).

Now, note that Vi×Gα(2i) is an algebraic subgroup of UB(B), because

δGa(C0(S1,S2)+T1 +T2) ≤ max{δGa(C0(S1,S2)),δGa(T1),δGa(T2)}.(3.27)

Thus, UB(B) is the increasing union of the algebraic subgroups Vi×Gα(2i). �

3.4.4. Subgroups of Gs
m(B) and conclusion.

Lemma 3.8. If Z is an irreducible subvariety of Gs
m(B) containing id, then 〈Z〉 is

an algebraic subgroup of Gs
m(B).

This lemma may be derived from [6, Proposition 4.4.1.]; it means that (Gs
m(B))

◦

is nested. We provide the proof for completeness.

Proof of Lemma 3.8. Pick a projective compactification B of B. After taking the
normalization of B, we may assume B to be normal. If h is any non-constant
rational function on B, denote by Div(h) the divisor (h)0− (h)∞ on B.

Let y= (y1, . . . ,ys) be the standard coordinates on Gs
m. Each element f ∈Gs

m(B)
can be written as (b f

1(z), . . . ,b
f
s (z)), for some b f

j ∈ O∗(B). Let R be an effective
divisor whose support Support(R) contains B\B. Replacing R by some large mul-
tiple, Z is contained in the subset PR of Gs

m(B) made of automorphisms f ∈Gs
m(B)

such that Div(b f
i )+R≥ 0 and Div(1/b f

i )+R≥ 0 for all i = 1, . . . ,s. Let us study
the structure of this set PR ⊂Gs

m(B).
Let K be the set of pairs (D1,D2) of effective divisors supported on B \B such

that D1 and D2 have no common irreducible component, D1 ≤ R, D2 ≤ R, and
D1 and D2 are rationally equivalent. Then K is a finite set. For every pair α =

(Dα
1 ,D

α
2 ) ∈ K, we choose a function hα ∈ O∗(Y ) such that Div(hα) = Dα

1 −Dα
2 ;

if h is another element of O∗(Y ) such that Div(h) = Dα
1 −Dα

2 , then h/hα ∈ k∗.
By convention α = 0 means that α = (0,0), and in that case we choose hα to be
the constant function 1. For every β = (α1, . . . ,αs) ∈ Ks, denote by Pβ the set of
elements f ∈ Gs

m(B) such that the b f
i ∈ O∗(B) satisfy Div(b f

i ) = Dαi
1 −Dαi

2 for all
i = 1, . . . ,s. Then Pβ 'Gs

m(k) is an irreducible algebraic variety over k. Moreover,
id ∈ Pβ if and only if β = 0, and P0 is an algebraic subgroup of Gs

m(B), isomorphic
to Gs

m(k) as an algebraic group.
Observe that PR is the disjoint union PR =

⊔
β∈Ks Pβ. Since id ∈ Z, Z is irre-

ducible, and Z ⊆ PR, we obtain Z ⊂ P0. Since P0 is an algebraic subgroup of
Gs

m(B), 〈Z〉 coincides with (Z ·Z−1)` for some `≥ 1, and 〈Z〉 is a connected alge-
braic group. �

Proof of Theorem B. By Proposition 2.2, we only need to prove that W = 〈V 〉 is of
bounded degree. By Lemma 3.1 W is a subgroup of bounded degree if and only if
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W ⊂ Autπ(Y ) is a subgroup of bounded degree. Moreover, by (3.16), W is a sub-
group of UB(B)×Gs

m(B)⊂ Autπ(Y ). Denote by π1 : UB(B)×Gs
m(B)→UB(B) the

projection to the first factor and π2 : UB(B)×Gs
m(B)→Gs

m(B) the projection to the
second. By Lemma 3.7, there exists an algebraic subgroup H1 of UB(B) containing
π1(W ). Since π2(W ) is irreducible and contains id, Lemma 3.8 shows that π2(W )

is contained in an algebraic subgroup H2 of Gm(B). Then W is contained in the
algebraic subgroup H1×H2 of UB(B)×Gs

m(B). This concludes the proof. �

4. ACTIONS OF ADDITIVE GROUPS

Theorem 4.1. Let k be an uncountable, algebraically closed field. Let X be a con-
nected affine variety over k. Let G⊂Aut(X) be an algebraic subgroup isomorphic
to Gr

a, for some r ≥ 1. Let H = {h ∈ Aut(X)| gh = hg for every g ∈G} be the cen-
tralizer of G. If H/G is at most countable then G acts simply transitively on X, so
that X is isomorphic to G as a G-variety.

This section is devoted to the proof of this result. A proof is described in [6,
§10.4] when X is irreducible and the characteristic of k is 0; we just explain how
to extend the proof of Furter and Kraft.

Proof. Let X1 be an irreducible component of X on which G acts non-trivially.
Denote by X j, j ≥ 2 the remaining components.

Suppose that G acts transitively on X1. Then X = X1, because otherwise X1

would intersect another component of X on a proper G-invariant set; so, the state-
ment is proved in that case. We now assume towards a contradiction that G does
not act transitively on X1. Pick a G-orbit O1 ⊂ X1, and set Z1 = O1 or Z1 = X1 \O1

if O1 = X1. By construction, Z1 is a proper, closed, and G-invariant subset of X1.
Hence, the ideal I1 ⊂ O(X) of functions vanishing on Z1 and on each of the Xi for
i 6= 1 is not reduced to 0. If we choose a function f1 in I1\{0}, its G-orbit generates
a G-invariant, finite dimensional subspace of I1 (see [22, §1.2]); since G is isomor-
phic to Gr

a, there is a non-zero invariant vector f in this space (this is an instance of
the Lie-Kolchin theorem). Such a function is not constant since it vanishes on Z1.
This implies that IG

1 is an infinite dimensional vector space over k, for it contains
f k[ f ].

Identify G(k) to the vector space kr, and pick an element g0 ∈ G(k) that acts
non-trivially on X1. To each s in IG

1 we associate the map x ∈ X(k) 7→ s(x)g0 ∈ kr

and the automorphism of X defined by Fs(x) = (s(x)g0)(x). If Fs = idX , then g0

is an element of the stabilizer Gx for every x at which s(x) 6= 0. If s vanishes on
a proper subset of X1, this implies that g0 acts trivially on X1, a contradiction. So,
Fs 6= idX for s 6= 0. This means that F : s ∈ IG

1 7→ Fs ∈ H is injective.
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Now, by Proposition 10.4.4(1) of [6], the homomorphism F is a morphism of
ind-groups. Thus, H contains an infinite dimensional ind-group. Since k is not
countable, we get a contradiction and we are done. �

5. PROOF OF THEOREM A

In this section, we prove Theorem A. So, k is an uncountable, algebraically
closed field, X is a connected affine algebraic variety over k, and ϕ : Aut(An

k)→
Aut(X) is an isomorphism of (abstract) groups.

5.1. Translations and dilatations. Let Tr ⊂ Aut(An
k) be the group of all transla-

tions and Tri the subgroup of translations of the i-th coordinate:

(5.1) (x1, . . . ,xn) 7→ (x1, . . . ,xi + c, . . . ,xn)

for some c in k. Let D ⊂ GL n(k) ⊂ Aut(An
k) be the diagonal group (viewed as a

maximal torus) and let Di be the subgroup of automorphisms

(5.2) (x1, . . . ,xn) 7→ (x1, . . . ,axi, . . . ,xn)

for some a ∈ k∗. A direct computation shows that Tr (resp. D) coincides with its
centralizer in Aut(An

k).

Lemma 5.1. Let G be a subgroup of Tr whose index is at most countable. Then,
the centralizer of G in Aut(An) is Tr.

Proof. The centralizer of G contains Tr. Let us prove the reverse inclusion. The
index of G in Tr being at most countable, G is Zariski dense in Tr. Thus, if h
centralizes G, we get hg = gh for all g ∈ Tr, and h is in fact in the centralizer of Tr.
Since Tr coincides with its centralizer, we get h ∈ Tr. �

5.2. Closed subgroups. As in Section 2.2, we endow Aut(X) with the structure
of an ind-group, given by a filtration by algebraic varieties Aut j for j ≥ 1.

Lemma 5.2. The groups ϕ(Tr), ϕ(Tri), ϕ(D) and ϕ(Di) are closed subgroups of
Aut(X) for all i = 1, . . . ,n.

Proof. Since Tr ⊂ Aut(An
k) coincides with its centralizer, ϕ(Tr) ⊂ Aut(X) coin-

cides with its centralizer too and, as such, is a closed subgroup of Aut(X). The
same argument applies to ϕ(D)⊂Aut(X). To prove that ϕ(Tri)⊂Aut(X) is closed
we note that ϕ(Tri) is the subset of elements f ∈ ϕ(Tr) that commute to every ele-
ment g ∈ ϕ(D j) for every index j 6= i in {1, . . . ,n}. Analogously, ϕ(Di)⊂ Aut(X)

is a closed subgroup because an element f of D is in Di if and only if it commutes
to all elements g of Tr j for j 6= i. �

5.3. Proof of Theorem A.
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5.3.1. Abelian groups (see [14, 18]). Before starting the proof, let us recall a few
important facts on abelian, affine algebraic groups. Let G be an algebraic group
over the field k, such that G is abelian, affine, and connected.

(1) If char(k) = 0, then G is isomorphic to Gr
a×Gs

m for some pair of integers
(r,s); if G is unipotent, then s = 0. (see [18], §VII.2, p.172)

(2) If char(k) > 0, then G is a product of a multiplicative type subgroup Gs

and a unipotent subgroup Gu (see [14], Theorem 17.17). Moreover, since
k is algebraically closed, Gs is isomorphic to an algebraic torus Gs

m for
some s≥ 0.

We list two criteria on the p-torsion elements of a commutative connected algebraic
group G that may rigidify the structure of Gs and Gu:

(3) If char(k) = p > 0, G is unipotent, and all non-trivial elements of G have
order p, then G is isomorphic to Gr

a for some r ≥ 0. (see [18], §VII.2,
Prop. 11, p.178)

(4) If char(k) = p > 0, and there is no non-trivial element in G of order p`,
for any `≥ 0, then G is isomorphic to Gs =Gs

m for some s≥ 0. (see [14],
Theorem 16.13 and Corollary 16.15, and [18], §VII.2, p.176)

To keep examples in mind, note that all non-trivial elements of Tr1(k) have order p
and D1(k) does not contain any non-trivial element of order p` when char(k) = p.

5.3.2. Proof of Theorem A. Let us now prove Theorem A.
By Lemma 5.2, ϕ(Tr1)⊂Aut(X) is a closed subgroup; in particular, ϕ(Tr1) is an

ind-subgroup of Aut(X). Let ϕ(Tr1)
◦ be the connected component of the identity

of ϕ(Tr1); from Section 2.2.2, we know that the index of ϕ(Tr1)
◦ in ϕ(Tr1) is at

most countable. The ind-group ϕ(Tr1)
◦ is an increasing union ∪iVi of irreducible

algebraic varieties Vi, each Vi containing the identity. Theorem B implies that each
〈Vi〉 is an irreducible algebraic subgroup of Aut(X). Since ϕ(Tr1) does not contain
non-trivial elements of order k < ∞ with k∧char(k) = 1, it follows from properties
(1) and (2) of Section 5.3.1 that 〈Vi〉 is unipotent; moreover, by properties (1) and
(3) of Section 5.3.1, 〈Vi〉 is isomorphic to Gri

a for some ri. Thus

(5.3) ϕ(Tr1)
◦ = ∪i≥0Fi

where the Fi form an increasing family of unipotent algebraic subgroups of Aut(X),
each of them isomorphic to some Gri

a . We may assume that dimF0 ≥ 1.
Similarly, ϕ(D1)

◦ ⊂ ϕ(D1) is a subgroup of countable index and

(5.4) ϕ(D1)
◦ = ∪i≥Gi,

where the Gi are increasing irreducible commutative algebraic subgroups of Aut(X)

(we do not assert that Gi is of type Gsi
m yet). We may assume that dimG0 ≥ 1.
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The group Di acts by conjugation on Tri for every i≤ n, this action has exactly
two orbits {0} and Tri \ {0}, and the action on Tri \ {0} is free; hence, the same
properties hold for the action of ϕ(Di) on ϕ(Tri) by conjugation.

Let Hi be the subgroup of ϕ(Tr1) generated by all g ◦ f ◦ g−1 with f in Fi and
g in Gi. Theorem B shows that Hi is an irreducible algebraic subgroup of ϕ(Tr1).
We have Hi ⊆ Hi+1 and g◦Hi ◦g−1 = Hi for every g ∈ Gi.

Write Hi = Gl
a for some l ≥ 1. We claim that Gi ' Gr

a ×Gs
m for a pair of

integers r, s ≥ 0 with r + s ≥ 1. This follows from properties (1), (2) and (3) of
Section 5.3.1 because, when char(k) = p > 1, the only element in ϕ(D1) of order
p`, ` ≥ 0, is the identity element. Since the action of ϕ(D1) on ϕ(Tr1 \ {0}) is
free, the action of Gi on Fi \ {0} is free too, and thus, we get an action of Gr

a by
automorphisms of the algebraic group Gl

a without fixed point in Gl
a \{0}, and this

forces r = 0 (an instance of the Lie-Kolchin theorem). Let q be a prime number
with q∧ char(k) = 1. Then Gs

m contains a copy of (Z/qZ)s, and D1 does not
contain such a subgroup if s > 1; so, s = 1, Gi 'Gm and Gi = Gi+1 for all i≥ 0. It
follows that ϕ(D1)

◦ 'Gm. Since the index of ϕ(D1)
◦ in ϕ(D1) is countable, there

exists a countable subset I ⊆ ϕ(D1) such that ϕ(D1) = th∈Iϕ(D1)
◦ ◦h.

Let f ∈ Fi be a nontrivial element. Since the action of ϕ(D1) on ϕ(Tr1 \{0}) is
transitive,

(5.5) Fi \{0}=
⋃
h∈I

 ⋃
g∈ϕ(D1)◦

(g◦h)◦ f ◦ (g◦h)−1

∩Fi

 .

The right hand side is a countable union of subvarieties of Fi \{0} of dimension at
most one. It follows that dimFi = 1, Fi 'Ga, and ϕ(Tr1)

◦ 'Ga. Thus, we have

(5.6) ϕ(Tr1)
◦ 'Ga, and ϕ(D1)

◦ 'Gm.

Since each ϕ(Tri)
◦ is isomorphic to Ga, ϕ(Tr)◦ is an n-dimensional commuta-

tive unipotent group and its index in ϕ(Tr) is at most countable. By Lemma 5.1,
the centralizer of ϕ−1(ϕ(Tr)◦) in Aut(An

k) is Tr. It follows that the centralizer of
ϕ(Tr)◦ in Aut(X) is ϕ(Tr). Then Theorem 4.1 implies that X is isomorphic to An

k.

6. APPENDIX: THE DEGREE FUNCTIONS FOR RATIONAL SELF-MAPS

Here, we follow [3, 21] to prove a general version of Lemma 3.1. As above, k
is an algebraically closed field. We first start with the case of projective varieties.

6.1. Degree functions on projective varieties. Let X be a projective and normal
variety over k of pure dimension d = dim(X). Let H be a big and nef divisor on X .
For every dominant rational self-map f of X , and every j = 0, . . . ,d, set

(6.1) deg j,H f = ( f ∗(H j) ·Hd− j).
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Pick a normal resolution of f ; by this we mean a projective and normal variety
Γ, a birational morphism π1 : Γ→ X and a morphism π2 : Γ→ X satisfying f =
π2 ◦ π

−1
1 . Then we have deg j,H f = (π∗2(H

j) · π∗1(Hd− j)) > 0, for f is dominant.
Let L be another big and nef divisor. There is c > 1 such that cL−H and cH−L
are big. Then we have deg j,H f = (π∗2(H

j) ·π∗1(Hd− j)) ≤ cd(π∗2(L
j) ·π∗1(Ld− j)) =

cd deg j,L f . Symetrically, we get deg j,L f ≤ (c′)d deg j,H f for some c′ > 1. Thus,
two big and nef divisors give rise to comparable degree functions:

(6.2) C−1 deg j,H( f )≤ deg j,L( f )≤C deg j,H( f ) (∀0≤ j ≤ d)

for all rational dominant maps f : X 99K X , and some C > 1.

Lemma 6.1. Let Y be a projective and normal variety over k of pure dimension d.
Let π : Y 99K X be a dominant and generically finite rational map. Let H and L
be big and nef divisors, on X and Y respectively. Then there is a constant C > 1
such that for every j = 0, . . . ,d, and every pair of dominant rational self-maps
f : X 99K X and g : Y 99K Y satisfying f ◦π = π◦g, we have

C−1 deg j,L(g)≤ deg j,H( f )≤C deg j,L(g).

Proof. Denote by x1, . . . ,xs the generic points of X and y1, . . . ,yr the generic points
of Y . Since π is dominant and generically finite, there is a surjective map σ :
{1, . . . ,r} → {1, . . . ,s} such that π(yi) = xσ(i), i = 1, . . . ,r. For every i = 1, . . . ,r,
set ti = deg[k(yi) : π∗k(xσ(i))] and then

(6.3) m = min
i=1...,s

( ∑
l∈σ−1(i)

tl), m′ = max
i=1...,s

( ∑
l∈σ−1(i)

tl)

Take a resolution of π, defined by a projective and normal variety Z, a birational
morphism π1 : Z → Y and a morphism π2 : Z → X satisfying π = π2 ◦ π

−1
1 . Set

h := π
−1
1 ◦g◦π1 : Z 99K Z. For each index 0 ≤ j ≤ d, the projection formula (see

[3], Theorem 2.3.2(iv) and the references therein, notably [5], Proposition 1.7)
gives

(6.4) deg j,L g = deg j,π∗1L h

(6.5) mdeg j,H f ≤ deg j,π∗2H h≤ m′ deg j,H f .

Since π∗1L and π∗2H are big and nef on Z, there is a constant C1 > 1 that depends
only on π∗1L and π∗2H such that

(6.6) C−1
1 deg j,π∗2H h≤ deg j,π∗1L h≤C1 deg j,π∗2H h.

We conclude the proof by combining the last three equations. �
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6.2. Equivalent functions. Let S be a set. We shall say that two functions F,G :
S→ R≥0, are equivalent if there is a constant C > 1 such that

(6.7) C−1 max{G,1} ≤max{F,1} ≤C max{G,1},

where max{G,1} denotes the maximum between G and 1. We denote by [F ] the
equivalence class of F ; the equivalence class [1] coincides with the set of bounded
functions S→ R≥0.

6.3. Degree functions on varieties. Now, let X be a variety of pure dimension d
over k. Let π : Z 99K X be a birational map such that Z is projective and normal,
and let H be a big and nef divisor on Z. Then, define the degrees deg j,H f of any
rational dominant map f : X 99K X by deg j,H f = deg j,H π−1 ◦ f ◦π. The previous
paragraph shows that if we change the model (Z,π) or the divisor H (to H ′), then
we get two notions of degrees deg j,H and deg j,H ′ which are equivalent functions,
in the sense of § 6.2, on the set of rational dominant self-maps of X . This justifies
the following definition.

Let S be a family of dominant rational maps fs : X 99K X , s ∈ S. A notion of
degree on S in codimension j is a function deg j : S→R≥0 in the equivalence class
[deg j,H ] for some normal projective model Z→ X and some big and nef divisor H
on Z. The equivalence class [deg j] is unique.

Remark 6.2. Assume further that X is affine. In Section 2.1, we defined a notion
of degree f 7→ deg f (in codimension 1) on the set of automorphisms of X ; this
notion depends on an embeding X ↪→ AN

k ,N ≥ 0. However, its equivalence class
on Aut(X) does not depend on the choice of such an embedding and is equal to the
class [deg1] defined in this section.

From Lemma 6.1 and the definitions, we obtain:

Proposition 6.3. Let π : Y 99K X be a dominant and generically finite rational map
between two varieties X and Y over k, each of pure dimension d. Let S be a family
of dominant rational maps gs : Y 99KY such that for every s in S there is a rational
map fs : X 99K X that satisfies π ◦ gs = fs ◦ π. Then, for each j = 0, . . . ,d, the
equivalence classes of the degree functions s ∈ S 7→ deg j(gs) and s ∈ S 7→ deg j( fs)

are equal.
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