A metal-insulator-metal vertical nanocavity is proposed to be integrated at the center of a plasmonic lens. Utilizing cavity resonance effect, the light intensity at the center of the integrated plasmonic lens gets enhancement up to 5500 times compared to that without the cavity, and the light field is tightly confined into a spot as small as 6.0 x 10(-3)lambda(2)(0). The Purcell factor of the cavity reaches up to 1400, ensuring greatly enhanced light-matter interaction inside the cavity. Moreover, the proposed structure takes advantage of linearly polarized light excitation and easy fabrication. (C) 2012 Optical Society of America
This paper presents a high-efficiency rectifying circuit for wireless power transmission at 2.45 GHz. A filtering and matching network designed by quarter wavelength stubs was developed for suppressing the second and the third order harmonics of 2.45 GHz, 4.9 GHz and 7.35 GHz, respectively. The measured RF-to-DC conversion efficiency is 66.5 % for an input power level of 10 mW.