科研成果

2020
Cai Y, Wang Z, Yu Z, Ling Y, Chen Q, Yang Y, Bao S, Wu L, Bao L, WANG R, et al. Technology-Array-Algorithm Co-Optimization of RRAM for Storage and Neuromorphic Computing: Device Non-idealities and Thermal Cross-talk, in 2020 IEEE International Electron Devices Meeting (IEDM). IEEE; 2020:13–4.
Yin L-Z, Huang T-J, Wang D, Liu J-Y, Sun Y, Liu* P-K. Terahertz dual phase gradient metasurfaces- high-efficiency binary-channel spoof surface plasmon excitation. Optics Letters. 2020;45(2):411-414.
Han F-Y, Liu* P-K. Terahertz Near-Field Metasurfaces: Amplitude-Phase Combined Steering and Electromagnetostatic Dual-Field Superfocusing. Advanced Optical Materials. 2020;8(6):1901331.
Han F-Y, Liu P-K*. Terahertz Near-Field Metasurfaces: Amplitude–Phase Combined Steering and Electromagnetostatic Dual-Field Superfocusing. Advanced Optical Materials [Internet]. 2020;8(6):1901331. 查看文章
Liu J-Y, Huang T-J, Han F-Y, Yin L-Z, Liu* P-K. Terahertz routing with graphene magnetic metamaterials. Optics Communications. 2020;464:125506.
Luo L, Pan S, Du* C-H, Huang M-G, Liu* P-K. Terahertz ultralow voltage gyrotron with upstream output. IEEE Trans. Plasma Science. 2020;48(4):1195-1201.
Luo L, Pan S, Du* C-H, Huang M-G, Liu* P-K. Terahertz ultralow-voltage gyrotron with upstream output. IEEE Transactions on Plasma Science. 2020;48(4):1195-1201.
Miao X, Zhao J, Shao L, Wex N, Kramer M, Ma B-Q. Tests of conservation laws in post-Newtonian gravity with binary pulsars. Astrophys. J. 2020;898:69.
Li F-H, Du* C-H, Gao Z-C, Pan S, Zhang L, Liu P-K. Theoretical study of a W-band-covering frequency-tunable gyrotron. IEEE Transactions on Electron Devices. 2020;67(2):659-666.
Ni X, Huang H, Jin K-H, Wang Z, Liu F. Theory of Epitaxial Growth of Borophene on Layered Electride: Thermodynamic Stability and Kinetic Pathway. The Journal of Physical Chemistry C. 2020;124:6063–6069.
Yan P, Schroeder R. Is there a Link between Climate Change Scepticism and Populism? An Analysis of Web-tracking and Survey Data from France, Germany, Italy, Spain, UK, and the US., in American Political Science Association (APSA) .; 2020.
Cheng Z, Koh YR, Ahmad H, Hu R, Shi J, Liao ME, Wang Y, Bai T, Li R, Lee E. Thermal Conductance Across Harmonic-matched Epitaxial Al-sapphire Heterointerfaces. Communications Physics. 2020;3(115).
Tang K, Wang X, Dong K, Li Y, Li J, Sun B, Zhang X, Dames C, Qiu C, Yao J, et al. A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal–Insulator Transition. Advanced Materials [Internet]. 2020;32:1907071. 访问链接Abstract
Abstract Thermal radiation from a black body increases with the fourth power of absolute temperature (T4), an effect known as the Stefan–Boltzmann law. Typical materials radiate heat at a portion of this limit, where the portion, called integrated emissivity (εint), is insensitive to temperature (|dεint/dT| ≈ 10-4 °C–1). The resultant radiance bound by the T4 law limits the ability to regulate radiative heat. Here, an unusual material platform is shown in which εint can be engineered to decrease in an arbitrary manner near room temperature (|dεint/dT| ≈ 8 × 10-3 °C–1), enabling unprecedented manipulation of infrared radiation. As an example, εint is programmed to vary with temperature as the inverse of T4, precisely counteracting the T4 dependence; hence, thermal radiance from the surface becomes temperature-independent, allowing the fabrication of flexible and power-free infrared camouflage with unique advantage in performance stability. The structure is based on thin films of tungsten-doped vanadium dioxide where the tungsten fraction is judiciously graded across a thickness less than the skin depth of electromagnetic screening.
Cheng Z, Mu F, You T, Xu W, Shi J, Liao ME, Wang Y, Huynh K, Suga T, Goorsky MS. Thermal Transport across Ion-Cut Monocrystalline β-Ga2O3 Thin Films and Bonded β-Ga2O3–SiC Interfaces. ACS Applied Materials & Interfaces. 2020;12(40):44943-44951.
Liu F, Rong X, Yu Y, Wang T, Sheng BW, Wei JQ, Liu SF, Yang JJ, Bertram F, Xu FJ, et al. Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy. Applied Physics Letters. 2020;116:142104.
Zhang K, Liu L, Li S, Jia N. Thermodynamic Parameters for Quantitative Miscibility Interpretations from the Bulk to Nanometer Scale. Industrial & Engineering Chemistry Research [Internet]. 2020;59:10634-10650. 访问链接
Amy S, Lydia LO, Lin G, Elena K, Igor C, Guirong L, Shangfeng H, Ningning Y, Liping M, Fei G, et al. Thinking critically about critical thinking: validating the Russian HEIghten® critical thinking assessment. Studies in Higher Education. 2020;45:1933-1948.
Sun Z, Pedretti G, Mannocci P, Ambrosi E, Bricalli A, Ielmini D. Time Complexity of In-Memory Solution of Linear Systems. IEEE Transactions on Electron Devices [Internet]. 2020;67(7):2945-2951. 访问链接
Huang Y, Wu X, Qu T. A Time-domain Unsupervised Learning Based Sound Source Localization Method, in 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP).; 2020:26-32.
Cheng Y, Li S-M, Liggio J, Gordon M, Darlington A, Zheng Q, Moran M, Liu P, Wolde M. Top-Down Determination of Black Carbon Emissions from Oil Sand Facilities in Alberta, Canada Using Aircraft Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2020;54:412-418.Abstract
Black carbon (BC) emissions from the Canadian oil sand (OS) surface mining facilities in Alberta were investigated using aircraft measurements. BC emission rates were derived with a top-down mass balance approach and were found to be linearly related to the volume of oil sand ore mined at each facility. Two emission factors were determined from the measurements; production-based BC emission factors were in the range of 0.6-1.7 g/tonne mined OS ore, whereas fuel-based BC emission factors were between 95 and 190 mg/kg-fuel, depending upon the facility. The annual BC emission, at 707 +/- 117 tonnes/year for the facilities, was determined using the production-based emission factors and annual production data. Although this annual emission is in reasonable agreement with the BC annual emissions reported in the latest version of the Canadian national BC inventory (within 16%), the relative split between off-road diesel and stack sources is significantly different between the measurements and the inventory. This measurement evidence highlights the fact that the stack sources of BC may be overestimated and the off-road diesel sources may be underestimated in the inventory and points to the need for improved BC emission data from diesel sources within facilities.

Pages