BACKGROUND: A previous study from our laboratory showed that polybrominated diphenyl ethers (PBDEs) were metabolized to hydroxylated PBDEs (HO-PBDEs) in mice and that para-HO-PBDEs were the most abundant and, potentially, the most toxic metabolites. OBJECTIVE: The goal of this study was to determine the concentrations of HO-PBDEs in blood from pregnant women, who had not been intentionally or occupationally exposed to these flame retardants, and from their newborn babies. METHODS: Twenty human blood samples were obtained from a hospital in Indianapolis, Indiana, and analyzed for both PBDEs and HO-PBDEs using electron-capture negative-ionization gas chromatographic mass spectrometry. RESULTS: The metabolite pattern of HO-PBDEs in human blood was quite different from that found in mice; 5-HO-BDE-47 and 6-HO-BDE-47 were the most abundant metabolites of BDE-47, and 5'-HO-BDE-99 and 6'-HO-BDE-99 were the most abundant metabolites of BDE-99. The relative concentrations between precursor and corresponding metabolites indicated that BDE-99 was more likely to be metabolized than BDE-47 and BDE-100. In addition, three bromophenols were also detected as products of the cleavage of the diphenyl ether bond. The ratio of total hydroxylated metabolites relative to their PBDE precursors ranged from 0.10 to 2.8, indicating that hydroxylated metabolites of PBDEs were accumulated in human blood. CONCLUSIONS: The quite different PBDE metabolite pattern observed in humans versus mice indicates that different enzymes might be involved in the metabolic process. Although the levels of HO-PBDE metabolites found in human blood were low, these metabolites seemed to be accumulating.
Cao G, Liang L, Ma S, Zhao D. Image Quality Assessment Using Spatial Frequency Component, in Advances in Multimedia Information Processing - PCM 2009, 10th Pacific Rim Conference on Multimedia, Bangkok, Thailand, December 15-18, 2009 Proceedings.; 2009:201–211. 访问链接
The effect of organic particle mass loading from 1 to >= 100 mu g m(-3) on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of alpha-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Kohler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 mu g m(-3) and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 mu g m(-3) and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.