Racemic β-hydroxy ketones were kinetically resoluted into the enantiopure isomers and (E)-α,β-unsaturated ketones using catalytic asymmetric intramolecular dehydration for the first time. Synthetic tetrapeptides were used to imitate fatty acid dehydratases to efficiently discriminate racemic β-hydroxy ketones, enantioselectively catalyze the intramolecular dehydration, and result in highly enantioenriched β-hydroxy and (E)-α,β-unsaturated ketones in the environmentally benign process. Mechanistically, the high discrimination of the racemic substrates and successive enantioselective dehydration are highly dependent on the cooperative catalysis of the NH2 and COOH groups of the peptide.
This letter reports a normally-OFF Al2O3/GaN gate-recessed MOSFET using a low-damage digital recess technique featuring multiple cycles of plasma oxidation and wet oxide removal process. The wet etching process eliminates the damage induced by plasma bombardment induced in conventional inductively coupled plasma dry etching process so that good surface morphology and high interface quality could be achieved. The fully recessed Al2O3/GaN MOSFET delivers true enhancement-mode operation with a threshold voltage of +1.7 V. The maximum output current density is 528 mA/mm at a positive gate bias of 8 V. A peak field-effect mobility of 251 cm(2)/V.s is obtained, indicating high-quality Al2O3/GaN interface.
Field measurements of atmospheric peroxides were obtained during the summer on two consecutive years over urban Beijing, which highlighted the impacts of aerosols on the chemistry of peroxide compounds and hydroperoxyl radicals (HO2). The major peroxides were determined to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP), and peroxyacetic acid (PAA). A negative correlation was found between H2O2 and PAA in rainwater, providing evidence for a conversion between H2O2 and PAA in the aqueous phase. A standard gas phase chemistry model based on the NCAR Master Mechanism provided a good reproduction of the observed H2O2 profile on non-haze days but greatly overpredicted the H2O2 level on haze days. We attribute this overprediction to the reactive uptake of HO2 by the aerosols, since there was greatly enhanced aerosol loading and aerosol liquid water content on haze days. The discrepancy between the observed and modeled H2O2 can be diminished by adding to the model a newly proposed transition metal ion catalytic mechanism of HO2 in aqueous aerosols. This confirms the importance of the aerosol uptake of HO2 and the subsequent aqueous phase reactions in the reduction of H2O2. The closure of HO2 and H2O2 between the gas and aerosol phases suggests that the aerosols do not have a net reactive uptake of H2O2, because the conversion of HO2 to H2O2 on aerosols compensates for the H2O2 loss. Laboratory studies for the aerosol uptake of H2O2 in the presence of HO2 are urgently required to better understand the aerosol uptake of H2O2 in the real atmosphere.