科研成果

2017
Yuan C, He X, Kim Y. Home Ownership, Housing Price and Social Security Expenditure. China Economic Review. 2017;46:290-305.
Xu Y, Shen Z, Ying L, Wang Z, Huang J, Zang R, Jiang Y. Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China. Scientific Reports. 2017;7:1859.Abstract
Evergreen broadleaved woody plants (EBWPs) are dominant components in forests and savanna of the global tropic and subtropic regions. Southern China possesses the largest continuous area of subtropical EBWPs distribution, harboring a high proportion of endemic species. Hotspot and gap analyses are effective methods for analyzing the spatial pattern of biodiversity and conservation and were used here for EBWPs in China. Based on a distribution data set of 6,265 EBWPs with a spatial resolution of 50 × 50 km, we measured diversity of EBWPs in China using four indices: species richness, corrected weighted endemism, relative phylogenetic diversity, and phylogenetic endemism. According to the results based on 10% threshold, 15.73% of China’s land area was identified as hotspots using at least one diversity index. Only 2.14% of China’s land area was identified as hotspots for EBWPs by all four metrics simultaneously. Most of the hotspots locate in southern mountains. Moreover, we found substantial conservation gaps for Chinese EBWPs. Only 25.43% of the hotspots are covered by existing nature reserves by more than 10% of their area. We suggest to promote the establishment and management of nature reserve system within the hotspot gaps.
Huang Y, Du W, Chen Y, Shen G, Su S, Lin N, Shen H, Zhu D, Yuan C, Duan Y, et al. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China. Environmental Pollution [Internet]. 2017;231:635-643. 访问链接
Yang YD, Shao M, Kessel S, Li Y, Lu KD, Lu SH, Williams J, Zhang YH, Zeng LM, Noelscher AC, et al. How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2017;17:7127-7142.Abstract
Total OH reactivity measurements were conducted on the Peking University campus (Beijing) in August 2013 and in Heshan (Guangdong province) from October to November 2014. The daily median OH reactivity was 20 +/- 11 s(-1) in Beijing and 31 +/- 20 s(-1) in Heshan, respectively. The data in Beijing showed a distinct diurnal pattern with the maxima over 27 s(-1) in the early morning and minima below 16 s(-1) in the afternoon. The diurnal pattern in Heshan was not as evident as in Beijing. Missing reactivity, defined as the difference between measured and calculated OH reactivity, was observed at both sites, with 21% missing reactivity in Beijing and 32% missing reactivity in Heshan. Unmeasured primary species, such as branched alkenes, could contribute to missing reactivity in Beijing, especially during morning rush hours. An observation-based model with the RACM2 (Regional Atmospheric Chemical Mechanism version 2) was used to understand the daytime missing reactivity in Beijing by adding unmeasured oxygenated volatile organic compounds and simulated intermediates of the degradation from primary volatile organic compounds (VOCs). However, the model could not find a convincing explanation for the missing reactivity in Heshan, where the ambient air was found to be more aged, and the missing reactivity was presumably attributed to oxidized species, such as unmeasured aldehydes, acids and dicarbonyls. The ozone production efficiency was 21% higher in Beijing and 30% higher in Heshan when the model was constrained by the measured reactivity, compared to the calculations with measured and modeled species included, indicating the importance of quantifying the OH reactivity for better understanding ozone chemistry.
Hua S, Yu X, Li F, Duan J, Ji H, Liu W. Hydrogen titanate nanosheets with both adsorptive and photocatalytic properties used for organic dyes removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;516:211-218.
Wang Z, Xiao C, Niu B, Deng L, Liu Y. Identify sectors' role on the embedded CO2 transfer networks through China's regional trade. ECOLOGICAL INDICATORS. 2017;80:114-123.Abstract
This study developed a framework for combining multi-regional input-output analysis and network indicators to assess the interregional CO2 flows in China. The interregional CO2 flows of eight regions were calculated and visualized based on a multiregional input-output (MRIO) model for China. The focus of the research was intermediate use. The results of the network indicators showed that refined petroleum, coke, nuclear fuel and chemical products (07), and basic metals and fabricated metal sectors (09) played key roles in the complex networks. and these sectors in most regions controlled a large share of CO2 transfer by functioning as key hubs and authorities. They along with commerce, transport, storage, and post (16) acted as agents that brokered the CO2 flows within and between regions. The roles of some other industrial sectors were also identified, e.g., construction (15) functioned as the largest authority. The results demonstrated the importance and effectiveness of network indicators for identifying the characteristics of CO2 emissions embedded in the domestic supply chain, and provided new information relevant to policy implementation.
Sun X, Wang X, Wang P, Sheng B, Li M, Su J, Zhang J, Liu F, Rong X, Xu F, et al. Identifying a doping type of semiconductor nanowires by photoassisted kelvin probe force microscopy as exemplified for GaN nanowires. Optical Materials Express. 2017;7:904–912.
Bai Y, Zhang L, Yi* H, Zheng L, Rozelle S. The Impact of an Academic High School Tuition Relief Program on Students’ Matriculation into High Schools in Rural China. China Economic Review. 2017;43:16-28.
Mendelsohn R, Wang J. The impact of climate on farm inputs in developing countries agriculture. Atmósfera. 2017;30:77–86.
Li F, Song Y, Yi H, Wei J, Zhang L, Shi* Y, Chu J, Johnson N, Loyalka P, Rozelle S. The Impact of Conditional Cash Transfers on the Matriculation of Junior High School Students into Rural China's High Schools. Journal of Development Effectiveness. 2017;9:41-60.
Gao X, Thomsen H, Zhang Y, Breitling LP, Brenner H. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes. Clin Epigenetics [Internet]. 2017;9:87. 访问链接Abstract
{BACKGROUND: Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (+/- 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. RESULTS: We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set
Yang W, Kim K-Y, Saikaly PE, Logan BE. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy & Environmental Science. 2017;10:1025–1033.
Yang W, Kim K-Y, Saikaly PE, Logan BE. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy & Environmental Science. 2017;10(5):1025-1033.
Wang D, Hou Z, Zhang Q, Zhou Y, Lu X-X. Impact of the Biodegradation of 6:2 Fluorotelomer Alcohol on the Bacterial Community Structure of Surface Sediment. Huanjing Kexue/Environmental Science [Internet]. 2017;38:4747-4755. 访问链接Abstract
Fluorotelomer alcohol (6:2 FTOH) is a polyfluoalkyl substance that has been widely used in industry and consumer products in recent years, causing potential harm to the environment. However, currently the impact of 6:2 FTOH and its degradation products on microbial communities in sediment is unclear. The purpose of this study is to explore the impact of the biodegradation of 6:2 FTOH on bacterial community structures in surface sediment based on gene analysis. Surface sediment and river water were collected from Hai river, Tianjin, and a microcosm experiment was performed in the laboratory. The concentration of 6:2 FTOH and its degradation products were analyzed by liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS). The bacterial community structure was analyzed by denaturing gradient gel electrophoresis and high-throughput sequencing. The results showed that 6:2 FTOH could be degraded by microorganisms (half-life was less than 3 d), producing transient products such as 6:2 fluorotelomer carboxylic acid (FTCA) and 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA) and stable products such as 5:2 fluorotelomer (FT) ketone, 5:2 fluorotelomer alcohol (sFTOH), perfluorohexanoic acid(PFHxA), perfluoro-n-pentanoic acid (PFPeA), perfluorobutanoic acid (PFBA) and 5:3 polyfluorinated acid. At different stages of 6:2 FTOH degradation, a change of bacteria and the predominant population became somewhat different. Based on the experimental results for 100 d, at the Phylum level, the biodegradation of 6:2 FTOH greatly increases the abundance of Chloroflexi (+24.8%) and decreases the abundance of Proteobacteria (-17.8%) and Firmicutes (-15.9%). At the Class level, due to the biodegradation of 6:2 FTOH, bacteria with notable increases included Anaerolineae (+19.6%) and δ-Proteobacteria (+4.3%), while bacteria with notable decreases included ε-Proteobacteria (-20.0%), Clostridia (-10.1%), Bacilli (-5.8%) and γ-Proteobacteria (-4.2%). At the Genus level, due to the biodegradation of 6:2 FTOH, bacteria with notable increases included Anaerolineaceae_(uncultured) (+19.1%) and Thioalkalispira (+13.3%), while bacteria with notable decreases included Vibrio (-14.1%), Sulfurimonas (-13.2%), Bacillus (-5.1%), Sulfurovum (-4.2%) and Fusibacter (-4.1%). These results are helpful for predicting the response of bacteria to the contamination of polyfluoalkyl substances and isolating the bacteria capable of the biodegradation of polyfluoalkyl substances. © 2017, Science Press. All right reserved.
Zhou D, Li B, Huang X, Virkkula A, Wu H, Zhao Q, Zhang J, Liu Q, Li L, Li C, et al. The Impacts of Emission Control and Regional Transport on PM2.5 Ions and Carbon Components in Nanjing during the 2014 Nanjing Youth Olympic Games. Aerosol and Air Quality Research [Internet]. 2017;17:730-740. 访问链接
Tong Y, Bu X, Chen C, Yang X, Lu Y, Liang H, Liu M, Lin H, Zhang H, Lin Y, et al. Impacts of sanitation improvement on reduction of nitrogen discharges entering the environment from human excreta in China. Science of The Total Environment [Internet]. 2017;593–594:439-448. 访问链接Abstract
Identifying the sanitation efficacy in reducing contaminations entering the environment is an important step for water pollution controls and developing management strategies to further improve sanitation conditions. With continuous efforts in sanitation improvement during the past decade, reductions in discharges of aquatic nutrients are expected in China. In this study, we estimated the aquatic nitrogen discharges from human excreta in 31 provinces in China during 2006–2014. The results indicated that the nitrogen discharges entering the environment from human excreta are largely determined by both local population and sanitation conditions. In 2014, the nitrogen discharges from human excreta in the rural areas (2118(1219–3140) Gg per year) (median and 95% confidence interval) are higher than those in the urban areas (1485(626–2495) Gg per year). The significant relationship (R2 = 0.38, n = 29) between the total nitrogen concentrations in lakes and corresponding local nitrogen discharges indicated that, the lakes might be potentially affected by the contaminant inputs from human excreta. The further calculations under two policy scenarios showed that through sanitation improvement, further reduction of nitrogen discharges from human excreta in the developed regions might be limited. The sanitation improvement in the less-developed regions, such as Tibet, Qinghai, and Ningxia, should be considered a priority due to the larger reduction potentials.
Dai H, Zhang HB, Wang W. The impacts of U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost of China, EU, and Japan under the constraints of the global carbon emission space. Advances in Climate Change Research [Internet]. 2017;13. 访问链接
Dai H, Fujimori S, Herran DS, Shiraki H, Masui T, Matsuoka Y. The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model. Energy Economics [Internet]. 2017;64:627-637. 访问链接
Zhang C, Romagnoli A, Kim JY, Azli AAM, Rajoo S, Lindsay A. Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts. Energy Policy [Internet]. 2017;106:525–535. 访问链接Abstract
As an important way to increase industrial energy efficiency, Waste Heat to Power (WHP) technologies have been gaining popularity in recent years. In order to appraise the market potential of WHP technologies in Southeast Asia, a techno-economic assessment for WHP technologies is conducted in this paper. The technical and economic market potential of WHP in Southeast Asia is estimated to be 1788MW and 1188MW respectively. The main market drivers and barriers for WHP market expansion in Southeast Asia are also analyzed. Given the fact that WHP is a far cheaper power generation technology as compared with traditional and renewable power generation, the WHP market is expected to increase fast in the coming years. Mounting electricity price from grid, government emissions regulations and subsidies, the integration of WHP products with original equipment manufacturer, capital cost reduction induced by technology development are identified as the key drivers for the market growth. The above arguments are proofed through the analysis of a power plant WHP project in Southeast Asia.
Yan CQ, Zheng M*, Bosch C, Andersson A, Desyaterik Y, Sullivan AP, Collett JL, Zhao B, Wang SX, He KB, et al. Important fossil source contribution to brown carbon in Beijing during winter. Sci. Rep. 2017;Scientific Reports 7, Article number: 43182 (2017):Doi:10.1038/srep43182.Abstract
Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.

Pages