科研成果

2018
Dong F, Liu Y, Wu Z, Chen Y, Guo H. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction. JOURNAL OF HYDROLOGY. 2018;562:577-588.Abstract
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.
Wang WX, Wei YW, Li SY, Li XQ, Wu XS, Feng J, He L. Imaging the dynamics of an individual hydrogen atom intercalated between two graphene sheets. Physical Review B [Internet]. 2018;97. 访问链接
Liu X, Du P, Pan W, Dang C, Qian T, Liu H, Liu W, Zhao D. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Applied Catalysis B: Environmental [Internet]. 2018;231:11 - 22. 访问链接Abstract
Abstract A niobate/titanate nanoflakes (Nb/TiNFs) composite was synthesized through a one-step hydrothermal method. Nb/TiNFs displayed a heterojunction structure owing to deposition of a small fraction of niobate onto tri-titanate nanoflakes. Tri-titanate (Na1.6H0.4Ti3O71.7H2O) was the primary crystal phase, and the molar ratio of niobate (Na2Nb2O6H2O) to titanate was determined to be 1:15.9. Nb/TiNFs showed rapid adsorption kinetics and high adsorption capacity for U(VI) (Langmuir Qmax = 298.5 mg/g). Ion-exchange and surface complexation were the key mechanisms for U(VI) uptake, and the adsorption was further enhanced by the unique tunnel lattice structure of the heterojunction. Moreover, Nb/TiNFs were able to convert U(VI) into its immobile form, UO2(s) under solar light through photocatalytic reduction. More than 89.3% of (VI) was transformed into U(IV) after 4 h of solar irradiation (initial U(VI) = 20 mg/L, pH = 5.0). Diffuse reflectance UV–vis absorption spectra and Mott-Schottky plots indicated a narrowed band gap energy of Nb/TiNFs compared to neat TNTs. Density functional theory (DFT) calculation on band structure and density of states further confirmed the heterojunction architecture of niobate and titanate, resulting in offset of the conduction bands for the two phases in the composite material. Therefore, transfer of photo-excited electrons from titanate to niobate leads to inhibition of recombination of the electron-hole pairs. In addition, the trapping of uranium in the tunnel lattice of titanate and niobate heterojunction prevents re-oxidation of U(IV) to U(VI), thus achieving long-term immobilization of uranium. Remobilization tests indicated that only 18.7% of U(VI) was re-oxidized to U(VI) and almost no U dissolved into the aqueous phase when exposed air for 90 days. The new material is promising for separation and safe disposal of high strength radionuclides in water.
Xie J, Dai* H, Hong L. The impact of carbon tax on the industrial competitiveness of Chongqing in China. Energy for Sustainable Development. 2018.
Logan BE, Zikmund E, Yang W, Rossi R, Kim K-Y, Saikaly PE, Zhang F. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Environmental science & technology. 2018;52(15):8977-8985.
Logan BE, Zikmund E, Yang W, Rossi R, Kim K-Y, Saikaly PE, Zhang F. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Environmental science & technology. 2018;52:8977–8985.
Qin MR, Chen ZM, Shen HQ, Li H, Wu HH, Wang Y. Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study. Atmospheric Environment [Internet]. 2018;183:144-153,. 访问链接Abstract
Atmospheric peroxides play important roles in atmospheric chemistry, acting as reactive oxidants and reservoirsof HOx and ROx radicals. Field measurements of atmospheric peroxides were conducted over urban Beijing from2015 to 2016, including dust storm days, haze days and different seasons. We employed a box model based onRACM2 mechanism to conduct concentration simulation and budget analysis of hydrogen peroxide (H2O2) andperoxyacetic acid (PAA). In this study, heterogeneous reaction is found to be a significant sink for atmosphericH2O2 and PAA in urban Beijing. Here, we recommend a suitable uptake coefficient formula considering thewater effect for model research of peroxides. It is found that H2O2 and PAA unexpectedly maintained considerableconcentrations on haze days, even higher than that on non-haze days. This phenomenon is mainlyascribed to relatively high levels of volatile organic compounds and ozone on haze days. In addition, high levelsof water vapor in pollution episode can promote not only the heterogeneous uptake to aerosol phase but also theproduction of H2O2. Atmospheric PAA formation is suggested to be sensitive to alkenes and NOx in urbanBeijing. In particular, with the help of peroxides, sulfate formation rate from heterogeneous uptake could increaseby ∼4 times on haze days, indicating the potential effect of peroxides on enhancement of aerosol oxidativeproperty and secondary sulfate formation.
Shen H, Chen Y, Russell AG, Hu Y, Shen G, Yu H, Henneman LRF, Ru M, Huang Y, Zhong Q, et al. Impacts of rural worker migration on ambient air quality and health in China: From the perspective of upgrading residential energy consumption. Environment International [Internet]. 2018;113:290-299. 访问链接
Xie Y, Dai* H, Dong H. Impacts of SO2 taxations and renewable energy development on CO2, NOx and SO2 emissions in Jing-Jin-Ji region. Journal of Cleaner Productions [Internet]. 2018;171:1386-1395. 访问链接
Wang Z, Wang Y, Li J, Henne S, Zhang B, Hu J, Zhang J. Impacts of the degradation of 2,3,3,3-tetrafluoropropene into trifluoroacetic acid from its application in automobile air conditioners in China, the United States and Europe. Environmental Science & Technology. 2018;52(5).Abstract
Abstract HFO-1234yf (2,3,3,3-tetrafluoropropene) was proposed as a mobile air conditioners (MACs) refrigerant worldwide. However, its atmospheric degradation product is the highly soluble and phytotoxic trifluoroacetic acid (TFA), which persists in aquatic environments. We used a global 3-D chemical transport model to assess the potential environmental effects resulting from complete future conversion of all MACs to HFO-1234yf in China, the United States and Europe. The annual mean atmospheric concentrations of HFO-1234yf were 2.62, 2.20 and 2.73 pptv, and the mean deposition rates of TFA were 0.96, 0.45 and 0.52 kg km-2 yr-1, in three regions. Regional TFA deposition sources mainly came from emissions within the same region. Annual TFA deposition in the North Pole region was lower than the global average and mainly originated from European emissions. A potential doubling in the future HFO-1234yf emissions in China mainly affected the local TFA depositions. The TFA concentrations in rainwater were strongly affected by the regional precipitation rates. North Africa and the Middle East, regions with scant rainfall had, extremely high TFA concentrations. The rainwater concentrations of TFA during individual rain events can exceed the level considered to be safe, indicating substantial potential regional risks from future HFO-1234yf use.
Kuang W, Sun H, Liu M, Lin X, Chen D. Improved Drain Current Density of E-Mode AlGaN/GaN HEMT with Double-Doped P-Gate, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Qingdao, China, China: IEEE; 2018:1-3. 访问链接Abstract
A novel E-mode AlGaN/GaN HEMT with double-doped p-gate (DDP) is proposed to improve output current and verified by TCAD simulation. The heavily p-doped region of the AlGaN gate layer ensures enhancement-mode (E-mode) operation and the lightly p-doped region of the AlGaN gate layer reduces the channel resistance. The simulated results have demonstrated that DDP HEMT delivers a much larger maximum drain current (IMAX = 334 mA/mm) than the conventional p-gate (CP) HEMT (IMAX = 144 mA/mm) while maintaining a high threshold voltage (VTH ~1.5 V). The simulated results also indicate that the DDP gate structure could decrease the peak electric field (EC) and thus improve the reliability of the device under off-state high-drain-bias (HDBT).
Wang R, Guo Y, Zhang D, Zhou H*, Zhao D*, Zhang Y*. Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant. Macromol. Rapid Commun. [Internet]. 2018;39(14):1700726. [Read Online]Abstract
Attaining control on charge injection properties is significant for meaningful applications of organic field-effect transistors (OFETs). Here, molecular electron-doping is applied with an air-stable dimer dopant for n-type OFETs based on (naphthalene diimide-diketopyrrolopyrrole) polymer hosts. Through investigating the doping effect on contact and transport properties, it is found that the electron transport increases in n-doped OFETs at low doping regime with remaining large on/off ratios. These favorable meliorations are reconciled by the mitigated impacts of contact resistance and interfacial traps, as well as the surface morphology exhibiting features of increased ordering. The occurrence of doping in the presence of dimer dopants is evidenced by the observed shift of Fermi level toward vacuum level coupled with compositional analysis. Without applying vacuum-deposition-based contact doping, charge injection efficiencies are gained without losing OFET characteristics using the solution-based methodology.
Zhang X, Zou L. IMPROVE-QA: An Interactive Mechanism for RDF Question/Answering Systems, in Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.; 2018:1753–1756. link
Wang T, Heianza Y, Sun D, Huang T, Ma W, Rimm EB, Manson JE, Hu FB, Willett WC, Qi L. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies. BMJBMJ. 2018;360:j5644.Abstract
OBJECTIVE: To investigate whether improving adherence to healthy dietary patterns interacts with the genetic predisposition to obesity in relation to long term changes in body mass index and body weight. DESIGN: Prospective cohort study. SETTING: Health professionals in the United States. PARTICIPANTS: 8828 women from the Nurses' Health Study and 5218 men from the Health Professionals Follow-up Study. EXPOSURE: Genetic predisposition score was calculated on the basis of 77 variants associated with body mass index. Dietary patterns were assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (AMED). MAIN OUTCOME MEASURES: Five repeated measurements of four year changes in body mass index and body weight over follow-up (1986 to 2006). RESULTS: During a 20 year follow-up, genetic association with change in body mass index was significantly attenuated with increasing adherence to the AHEI-2010 in the Nurses' Health Study (P=0.001 for interaction) and Health Professionals Follow-up Study (P=0.005 for interaction). In the combined cohorts, four year changes in body mass index per 10 risk allele increment were 0.07 (SE 0.02) among participants with decreased AHEI-2010 score and -0.01 (0.02) among those with increased AHEI-2010 score, corresponding to 0.16 (0.05) kg versus -0.02 (0.05) kg weight change every four years (P<0.001 for interaction). Viewed differently, changes in body mass index per 1 SD increment of AHEI-2010 score were -0.12 (0.01), -0.14 (0.01), and -0.18 (0.01) (weight change: -0.35 (0.03), -0.36 (0.04), and -0.50 (0.04) kg) among participants with low, intermediate, and high genetic risk, respectively. Similar interaction was also found for DASH but not for AMED. CONCLUSIONS: These data indicate that improving adherence to healthy dietary patterns could attenuate the genetic association with weight gain. Moreover, the beneficial effect of improved diet quality on weight management was particularly pronounced in people at high genetic risk for obesity.
Stroud CA, Makar PA, Zhang J, Moran MD, Akingunola A, Li S-M, Leithead A, Hayden K, Siu M. Improving air quality model predictions of organic species using measurement-derived organic gaseous and particle emissions in a petrochemical-dominated region. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2018;18:13531-13545.Abstract
This study assesses the impact of revised volatile organic compound (VOC) and organic aerosol (OA) emissions estimates in the GEM-MACH (Global Environmental Multiscale-Modelling Air Quality and CHemistry) chemical transport model (CTM) on air quality model predictions of organic species for the Athabasca oil sands (OS) region in Northern Alberta, Canada. The first emissions data set that was evaluated (base-case run) makes use of regulatory-reported VOC and particulate matter emissions data for the large oil sands mining facilities. The second emissions data set (sensitivity run) uses total facility emissions and speciation profiles derived from box-flight aircraft observations around specific facilities. Large increases in some VOC and OA emissions in the revised-emissions data set for four large oil sands mining facilities and decreases for others were found to improve the modeled VOC and OA concentration maxima in facility plumes, as shown with the 99th percentile statistic and illustrated by case studies. The results show that the VOC emission speciation profile from each oil sand facility is unique and different from standard petrochemical-refinery emission speciation profiles used for other regions in North America. A significant increase in the correlation coefficient is reported for the long-chain alkane predictions against observations when using the revised emissions based on aircraft observations. For some facilities, larger long-chain alkane emissions resulted in higher secondary organic aerosol (SOA) production, which improved OA predictions in those plumes. Overall, the use of the revised-emissions data resulted in an improvement of the model mean OA bias; however, a decrease in the OA correlation coefficient and a remaining negative bias suggests the need for further improvements to model OA emissions and formation processes. The weight of evidence suggests that the top-down emission estimation technique helps to better constrain the fugitive organic emissions in the oil sands region, which are a challenge to estimate given the size and complexity of the oil sands operations and the number of steps in the process chain from bitumen extraction to refined oil product. This work shows that the top-down emissions estimation technique may help to constrain bottom-up emission inventories in other industrial regions of the world with large sources of VOCs and OA.
Ting H, Zhang D, He Y, Wei S, Li T, Sun W, Wu C, Chen Z, Wang Q, Zhang G, et al. Improving device performance of perovskite solar cells by micro-nanoscale composite mesoporous TiO2. JAPANESE JOURNAL OF APPLIED PHYSICS. 2018;57.Abstract
In perovskite solar cells, the morphology of the porous TiO2 electron transport layer (ETL) largely determines the quality of the perovskites. Here, we chose micro-scale TiO2 (0.2 mu m) and compared it with the conventional nanoscale TiO2 (20 nm) in relation to the crystallinity of perovskites. The results show that the micro-scale TiO2 is favorable for increasing the grain size of the perovskites and enhancing the light scattering. However, the oversized TiO2 results in an uneven surface. The evenness of the perovskites can be improved by nanoscale TiO2, while the crystallinity and compactness are not as good as those of the films based on micro-scale TiO2. To combine the advantages of both micro-scale and nanoscale TiO2, by mixing 0.2 mu m/20nm TiO2 with a ratio of 1 : 2 as the composite ETL, the device average power conversion efficiency was increased to 11.2% from 9.9% in the case of only 20 nm TiO2. (C) 2018 The Japan Society of Applied Physics
Li F, Kang Y. Improving Forecasting Performance Using Covariate-Dependent Copula Models. International Journal of Forecasting [Internet]. 2018;34:456–476. 访问链接Abstract
Copulas provide an attractive approach to the construction of multivariate distributions with flexible marginal distributions and different forms of dependences. Of particular importance in many areas is the possibility of forecasting the tail-dependences explicitly. Most of the available approaches are only able to estimate tail-dependences and correlations via nuisance parameters, and cannot be used for either interpretation or forecasting. We propose a general Bayesian approach for modeling and forecasting tail-dependences and correlations as explicit functions of covariates, with the aim of improving the copula forecasting performance. The proposed covariate-dependent copula model also allows for Bayesian variable selection from among the covariates of the marginal models, as well as the copula density. The copulas that we study include the Joe-Clayton copula, the Clayton copula, the Gumbel copula and the Student’s t-copula. Posterior inference is carried out using an efficient MCMC simulation method. Our approach is applied to both simulated data and the S&P 100 and S&P 600 stock indices. The forecasting performance of the proposed approach is compared with those of other modeling strategies based on log predictive scores. A value-at-risk evaluation is also performed for the model comparisons.
Dai C, Liu J, Hu Y*. Impurity-bearing ferrihydrite nanoparticle precipitation/deposition on quartz and corundum. Environ. Sci.: Nano [Internet]. 2018;5:141-149. LinkAbstract
During ferrihydrite precipitation, metal ions can be sequestered in it to form impurity-bearing ferrihydrite (IBF). Using grazing-incidence small-angle X-ray scattering (GISAXS), heterogeneous precipitation/deposition of pure and IBF nanoparticles on quartz (SiO2) and corundum (Al2O3) was quantified in 0.1 mM Fe3+ solutions in the absence and presence of 1 mM Mn2+ or Al3+ (pH = 3.8 ± 0.1). The impurity ions (Mn and Al) greatly affected ferrihydrite nanoparticle precipitation/deposition on substrates. On SiO2, ferrihydrite nanoparticle precipitation/deposition was promoted in the presence of Mn but was inhibited in the presence of Al. On Al2O3, Mn- and Al-bearing ferrihydrite nanoparticle precipitation/deposition was slower than for pure ferrihydrite. Compared with on SiO2, pure and IBF nanoparticle precipitation/deposition on Al2O3 was significantly inhibited. To understand the mechanisms, interactions among impurity ions, substrates, and precipitates were explored. Surface enrichment of Mn and Al on precipitates was found to increase the zeta potential of ferrihydrite nanoparticles. The changes in surface charges of the precipitates and substrates affected heterogeneous IBF precipitation/deposition significantly. The rates and mechanisms of heterogeneous IBF precipitation/deposition provided here can help predict pollutant transport and design catalyst synthesis.
Rossi R, Yang W, Zikmund E, Pant D, Logan BE. In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresource technology. 2018;265:200-206.
Rossi R, Yang W, Zikmund E, Pant D, Logan BE. In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresource technology. 2018;265:200–206.

Pages