HCHO and CHOCHO are important trace gases in the atmosphere, serving as tracers of VOC oxidations. In the past decade, high concentrations of HCHO and CHOCHO have been observed for the Pearl River Delta (PRD) region in southern China. In this study, we performed box model simulations of HCHO and CHOCHO at a semi-rural site in the PRD, focusing on understanding their sources and sinks and factors influencing the CHOCHO to HCHO ratio (RGF). The model was constrained by the simultaneous measurements of trace gases and radicals. Isoprene oxidation by OH radicals is the major pathway forming HCHO, followed by degradations of alkenes, aromatics, and alkanes. The production of CHOCHO is dominated by isoprene and aromatic degradation; contributions from other NMHCs are of minor importance. Compared to the measurement results, the model predicts significant higher HCHO and CHOCHO concentrations. Sensitivity studies suggest that fresh emissions of precursor VOCs, uptake of HCHO and CHOCHO by aerosols, fast vertical transport, and uncertainties in the treatment of dry deposition all have the potential to contribute significantly to this discrepancy. Our study indicates that, in addition to chemical considerations (i.e., VOC composition, OH and NOx levels), atmospheric physical processes (e.g., transport, dilution, deposition) make it difficult to use the CHOCHO to HCHO ratio as an indicator for the origin of air mass composition.
HCHO and CHOCHO are important trace gases in the atmosphere, serving as tracers of VOC oxidations. In the past decade, high concentrations of HCHO and CHOCHO have been observed for the Pearl River Delta (PRD) region in southern China. In this study, we performed box model simulations of HCHO and CHOCHO at a semi-rural site in the PRD, focusing on understanding their sources and sinks and factors influencing the CHOCHO to HCHO ratio (R-GF). The model was constrained by the simultaneous measurements of trace gases and radicals. Isoprene oxidation by OH radicals is the major pathway forming HCHO, followed by degradations of alkenes, aromatics, and alkanes. The production of CHOCHO is dominated by isoprene and aromatic degradation; contributions from other NMHCs are of minor importance. Compared to the measurement results, the model predicts significant higher HCHO and CHOCHO concentrations. Sensitivity studies suggest that fresh emissions of precursor VOCs, uptake of HCHO and CHOCHO by aerosols, fast vertical transport, and uncertainties in the treatment of dry deposition all have the potential to contribute significantly to this discrepancy. Our study indicates that, in addition to chemical considerations (i.e., VOC composition, OH and NOx levels), atmospheric physical processes (e.g., transport, dilution, deposition) make it difficult to use the CHOCHO to HCHO ratio as an indicator for the origin of air mass composition.
Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.
The support for the elderly is facing big challenges with the problem of population aging. Transfers from adult children could partly insure elderly parents against low income and high medical expenditure. There are two main motives for transfers in the literature, namely altruism and exchange. By using data from a new household survey of people aged 45 years and above in China, we estimate the transfer derivatives with the adjustment of medical expenditure in elderly parents' income. We find a large negative impact of adjusted income on transfers at the lower end of income distribution, which is consistent with the altruistic motive. Evidence on the exchange motive is found only for sons, but not for daughters. In addition, there is evidence on the 'exchange-for-service' motive, which interprets transfer as a payment to parents' family services, such as taking care of grandchildren.
Surface plasmon polariton, a kind of surface electromagnetic wave propagating along the interface between metals and dielectrics, provides an excellent platform for the realization of integrated photonic devices due to its unique properties of confining light into subwavelength scales. Our recent research progresses of nanoscale integrated photonic devices based on surface plasmon polaritons, including all-optical switches, all-optical logic discriminator, and all-optical routers, are introduced in detail.