We investigate the excluded volumes of clusters in tetrahedral particle packing using an ideal tetrahedron model and Monte Carlo simulation. Both the influences of the size and topology of clusters on the excluded volume are studied. We find that the excluded volumes of the dimer composed of two tetrahedra and the wagon wheel composed of five tetrahedra are relatively lower than other cluster forms. For large clusters, the excluded volume decreases when the topology of a cluster approaches the wagon-wheel geometry. The results give an explanation to the cluster distribution which demonstrates that the dimer and wagon wheel are the dominative cluster forms in the packing structure of tetrahedra.
A submicron asymmetric dielectric-coated metal slit with a Fabry-Perot (FP) nano-resonator is experimentally fabricated to realize an ultra-small on-chip polarization splitter. In the hybrid plasmonic structure, both of the transverse-electric (TE) and transverse-magnetic (TM) modes can be efficiently generated on the front metal surface. Based on the quite different resonant conditions and the different field confinements of the two orthogonal polarization modes in the FP resonator, the TM and TE modes are generated to propagate in the opposite directions along the metal surface. In this device, there are no coupling waveguide regions, and the excitation and the splitting of the TE and TM modes are integrated into the same asymmetric nano-slit. This considerably shrinks the device dimension to only about 850 nm (about one wavelength). In such a submicron asymmetric slit, the measured extinction ratios for the two opposite directions can reach up to (eta(L)/eta(R))(TM) approximate to 1:14 and (eta(L)/eta(R))(TE) approximate to 11:1 at lambda = 820 nm. This on-chip submicron polarization splitter is of importance in highly integrated photonic circuits. (C) 2014 AIP Publishing LLC.
Two Fano resonances are theoretically predicted in a single defect nanocavity, consisting of a rectangular cavity with a small stub defect, side-coupled with a plasmonic waveguide. These two Fano resonances are found to originate from two different mechanisms. One is caused by the excitation of a high-order resonant mode in the rectangular cavity owing to the structural breaking, and the other is attributed to the inherent resonant mode in the small stub defect. The narrow high-order mode and inherent mode couple with the broad low-order resonant mode in the rectangular cavity, giving rise to two Fano resonances. Because of the different origins, these two Fano resonances exhibit quite different responses to the variations of the structural dimensions. This has important applications in highly sensitive and multiparameter sensing in the complicated environments. (C) 2013 Optical Society of America
Wang Y, Fan X, Zhao L, Ma S, Zhao D, Gao W. A fast intra coding algorithm for HEVC, in 2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France, October 27-30, 2014.; 2014:4117–4121. 访问链接
Wang S, Ma S, Jiang X, Fan J, Zhao D, Gao W. A fast intra optimization algorithm for HEVC, in 2014 IEEE Visual Communications and Image Processing Conference, VCIP 2014, Valletta, Malta, December 7-10, 2014.; 2014:241–244. 访问链接