The first book to systematically introduce gyro-TWT theory, method and physics
A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents the most advanced theory, methods and physics in a gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars.
Visual patterns, i.e., high-order combinations of visual words, contributes to a discriminative abstraction of the high-dimensional bag-of-words image representation. However, the existing visual patterns are built upon the 2D photographic concurrences of visual words, which is ill-posed comparing with their real-world 3D concurrences, since the words from different objects or different depth might be incorrectly bound into an identical pattern. On the other hand, designing compact descriptors from the mined patterns is left open. To address both issues, in this paper, we propose a novel compact bag-of-patterns (CBoPs) descriptor with an application to low bit rate mobile landmark search. First, to overcome the ill-posed 2D photographic configuration, we build up a 3D point cloud from the reference images of each landmark, therefore more accurate pattern candidates can be extracted from the 3D concurrences of visual words. A novel gravity distance metric is then proposed to mine discriminative visual patterns. Second, we come up with compact image description by introducing a CBoPs descriptor. CBoP is figured out by sparse coding over the mined visual patterns, which maximally reconstructs the original bag-of-words histogram with a minimum coding length. We developed a low bit rate mobile landmark search prototype, in which CBoP descriptor is directly extracted and sent from the mobile end to reduce the query delivery latency. The CBoP performance is quantized in several large-scale benchmarks with comparisons to the state-of-the-art compact descriptors, topic features, and hashing descriptors. We have reported comparable accuracy to the million-scale bag-of-words histogram over the million scale visual words, with high descriptor compression rate (approximately 100-bits) than the state-of-the-art bag-of-words compression scheme.
Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated.
Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated.
The carbon source materials are important influencing factors in the progress of biological removal of nitrogen as the electron donors in denitrification. External carbon source materials are essential for the treatment of wastewater with low C/N ratio. For estimating the proper dosage of external carbon source, back-propagation (BP) neural network and radial basis function (RBF) neural network were introduced to develop a non-linear model between the dosage of external carbon source and influent conditions, using the experiment data from the cyclic activated sludge technology (CAST) on laboratory scale. Results show that both two networks prove to be effective in estimating the dosage of external carbon source; RBF neural network model turns out to be better in training speed and approximation capability, while BP neural network model shows higher prediction accuracy.碳源作为反硝化过程的电子供体,是影响生物脱氮过程的重要因素,低碳氮比污水需外加碳源以保证反硝化反应的顺利进行。为了优化控制碳源投加量,对实验室搭 建的CAST工艺污水处理装置的进水条件和外加碳源量的非线性关系分别进行了基于BP和RBF神经网络的模型研究,并对外加碳源量进行了预测。结果表明, 两种网络模型均能有效预测外加碳源量,RBF神经网络模型在训练速度和逼近能力方面优于BP神经网络模型,但在预测性能方面BP神经网络模型则有更高的预 测精度。
HCHO and CHOCHO are important trace gases in the atmosphere, serving as tracers of VOC oxidations. In the past decade, high concentrations of HCHO and CHOCHO have been observed for the Pearl River Delta (PRD) region in southern China. In this study, we performed box model simulations of HCHO and CHOCHO at a semi-rural site in the PRD, focusing on understanding their sources and sinks and factors influencing the CHOCHO to HCHO ratio (R-GF). The model was constrained by the simultaneous measurements of trace gases and radicals. Isoprene oxidation by OH radicals is the major pathway forming HCHO, followed by degradations of alkenes, aromatics, and alkanes. The production of CHOCHO is dominated by isoprene and aromatic degradation; contributions from other NMHCs are of minor importance. Compared to the measurement results, the model predicts significant higher HCHO and CHOCHO concentrations. Sensitivity studies suggest that fresh emissions of precursor VOCs, uptake of HCHO and CHOCHO by aerosols, fast vertical transport, and uncertainties in the treatment of dry deposition all have the potential to contribute significantly to this discrepancy. Our study indicates that, in addition to chemical considerations (i.e., VOC composition, OH and NOx levels), atmospheric physical processes (e.g., transport, dilution, deposition) make it difficult to use the CHOCHO to HCHO ratio as an indicator for the origin of air mass composition.