Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.
The effects of thermodenuder treatment on the cloud condensation nuclei (CCN) activity and elemental composition of organic particles grown by alpha-pinene ozonolysis were investigated. The secondary organic material (SOM) was produced in a continuous-flow chamber, with steady-state organic particle mass concentrations M(org) ranging from 1.4 to 37 mu g m(-3). Particles exiting in the outflow were heated to temperatures T of up to 100 degrees C in a thermodenuder. The oxygen-to-carbon (O:C) and hydrogen-to-carbon (H:C) ratios were measured by on-line mass spectrometry. The observed elemental ratios were fit by a linear function, given by (H:C) = -0.8 (O:C) + 1.8 for 0.38 < O:C < 0.50. This fit included the dependence on both M(org) and T, meaning that the single variable of post-thermodenuder M(org) was sufficient as an accurate predictor for O:C(M(org)(T)) and H:C(M(org)(T)). This result suggests that equilibrium partitioning theory largely governed the initial volatilization in the thermodenuder. By comparison, the CCN activity had a different dependence on thermodenuder treatment. At 25 degrees C, the CCN activity was independent of M(org), having an effective hygroscopicity parameter kappa(org) of 0.103 +/- 0.002. At 100 degrees C, however, kappa(org) varied from 0.105 for M(org) = 1.4 mu g m(-3) to 0.079 for M(org) = 37 mu g m(-3), indicating that for high mass concentration the CCN activity decreased with heat treatment. The interpretation is that the oligomer fraction of the SOM increased at elevated T, both because of particle-phase reactions that produced oligomers under those conditions and because of the relative enrichment of lower-volatility oligomers in the SOM accompanying the evaporation of higher-volatility monomers from the SOM. Oligomers have high effective molecular weights and thereby significantly influence CCN activity. The production rates of different types of oligomers depend on the types and concentrations of functional groups present in the SOM, which in turn are strongly influenced by M(org). We conclude with a hypothesis, which is supported by a detailed molecular kinetic model, that the changes in kappa(org) at high T were more significant at high compared to low M(org) because particle-phase SOM at high M(org) contained a mix of functional groups favorable to oligomerization, such as carbonyl groups.
Using strong couplings of different Fabry-Perot (FP) resonators in metal-insulator-metal waveguides, a compact plasmonic wavelength demultiplexer is numerically demonstrated with high wavelength resolution. In the demultiplexer, it is found that new right-angle resonators emerge with bandwidth narrower than that of the isolated FP resonators. These narrowband right-angle resonators interfere with the broadband FP resonators, resulting in Fano-line shapes in the transmission spectra. Consequently, these sharp and asymmetric Fano-line shapes considerably increase the resolution of wavelength demultiplexing, which is significantly narrower than the full width of the isolated FP resonator. (C) 2011 Optical Society of America