The ozonolysis of alkenes is considered to be an important source of atmospheric peroxides, which serve as oxidants, reservoirs of HOx radicals, and components of secondary organic aerosols (SOAs). Recent laboratory investigations of this reaction identified hydrogen peroxide (H2O2) and hydroxymethyl hydroperoxide (HMHP) in ozonolysis of isoprene. Although larger hydroxyalkyl hydroperoxides (HAHPs) were also expected, their presence is not currently supported by experimental evidence. In the present study, we investigated the formation of peroxides in the gas phase ozonolysis of isoprene at various relative humidities on a time scale of tens of seconds, using a quartz flow tube reactor coupled with the online detection of peroxides. We detected a variety of conventional peroxides, including H2O2, HMHP, methyl hydroperoxide, bis-hydroxymethyl hydroperoxide, and ethyl hydroperoxide, and interestingly found three unknown peroxides. The molar yields of the conventional peroxides fell within the range of values provided in the literature. The three unknown peroxides had a combined molar yield of ~30% at 5% relative humidity (RH), which was comparable with that of the conventional peroxides. Unlike H2O2 and HMHP, the molar yields of these three unknown peroxides were inversely related to the RH. On the basis of experimental kinetic and box model analysis, we tentatively assigned these unknown peroxides to C2−C4 HAHPs, which are produced by the reactions of different Criegee intermediates with water. Our study provides experimental evidence for the formation of large HAHPs in the ozonolysis of isoprene (one of the alkenes). These large HAHPs have a sufficiently long lifetime, estimated as tens of minutes, which allows them to become involved in atmospheric chemical processes, e.g., SOA formation and radical recycling.
Li Z, Han M, Zhang H. A novel MEMS electromagnetic energy harvester with series coils. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on. 2013:2245-2248.
This paper presents a review of the current state-of-the-art of numerical methods for nonlinear Dirac (NLD) equation. Several methods are extendedly proposed for the (1+1)-dimensional NLD equation with the scalar and vector self-interaction and analyzed in the way of the accuracy and the time reversibility as well as the conservation of the discrete charge, energy and linear momentum. Those methods are the Crank-Nicolson (CN) schemes, the linearized CN schemes, the odd-even hopscotch scheme, the leapfrog scheme, a semi-implicit finite difference scheme, and the exponential operator splitting (OS) schemes. The nonlinear subproblems resulted from the OS schemes are analytically solved by fully exploiting the local conservation laws of the NLD equation. The effectiveness of the various numerical methods, with special focus on the error growth and the computational cost, is illustrated on two numerical experiments, compared to two high-order accurate Runge-Kutta discontinuous Galerkin methods. Theoretical and numerical comparisons show that the high-order accurate OS schemes may compete well with other numerical schemes discussed here in terms of the accuracy and the efficiency. A fourth-order accurate OS scheme is further applied to investigating the interaction dynamics of the NLD solitary waves under the scalar and vector self-interaction. The results show that the interaction dynamics of two NLD solitary waves depend on the exponent power of the self-interaction in the NLD equation; collapse happens after collision of two equal one-humped NLD solitary waves under the cubic vector self-interaction in contrast to no collapse scattering for corresponding quadric case.
A 2-D lateral heterogeneous model was constructed to simulate basin-edge effects using PSM/FDM method. Effects of basin-edge geometry and source depth were simulated. PGV of different models are given to illustrate the effects, and it suggests that the basin geometry and the depth of soft sediment play crucial roles in seismic ground motion study for sedimentary basin.