科研成果

2018
VanderWerf K, Jin W, Shattuck MD, O'Hern CS. Hypostatic jammed packings of frictionless nonspherical particles. Physical Review E [Internet]. 2018;97:012909. 访问链接Abstract
We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, dumbbells, and others to determine which shapes form packings with fewer contacts than degrees of freedom (hypostatic packings) and which have equal numbers of contacts and degrees of freedom (isostatic packings), and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from naive constraint counting. To generate highly accurate force- and torque-balanced packings of circulo-lines and cir-polygons, we developed an interparticle potential that gives continuous forces and torques as a function of the particle coordinates. We show that the packing fraction and coordination number at jamming onset obey a masterlike form for all of the nonspherical particle packings we studied when plotted versus the particle asphericity A, which is proportional to the ratio of the squared perimeter to the area of the particle. Further, the eigenvalue spectra of the dynamical matrix for packings of different particle shapes collapse when plotted at the same A. For hypostatic packings of nonspherical particles, we verify that the number of “quartic” modes along which the potential energy increases as the fourth power of the perturbation amplitude matches the number of missing contacts relative to the isostatic value. We show that the fourth derivatives of the total potential energy in the directions of the quartic modes remain nonzero as the pressure of the packings is decreased to zero. In addition, we calculate the principal curvatures of the inequality constraints for each contact in circulo-line packings and identify specific types of contacts with inequality constraints that possess convex curvature. These contacts can constrain multiple degrees of freedom and allow hypostatic packings of nonspherical particles to be mechanically stable.
Tang MJ, Chen J, Wu Z. Ice nucleating particles in the troposphere: Progresses, challenges and opportunities. Atmospheric EnvironmentAtmospheric Environment. 2018;192:206-208.
Chen J, Wu ZJ, Augustin-Bauditz S, Grawe S, Hartmann M, Pei XY, Liu ZR, Ji DS, Wex HK. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmospheric Chemistry and Physics. 2018;18:3523-3539.Abstract
Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (N-INP) in the range from 6 to 25 degrees C in Beijing. No correlations between N-INP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between N-INP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.
Liu P, Wang H, Gao S, Yang T, Zou L, Uden L, Li X. ID Bloom Filter: Achieving Faster Multi-Set Membership Query in Network Applications, in IEEE ICC.; 2018:1–6.
Yu Y, Kalashnikova OV, Garay MJ, Lee H, Notaro M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophysical Research Letters. 2018;45:6690–6701.
Li X, Liu S, Chen Q. Identification of an Aerobic Denitrifier and Its Denitrification Characteristics. Acta Scientiarum Naturalium Universitatis PekinensisActa Scientiarum Naturalium Universitatis Pekinensis. 2018;54:1276-1282.Abstract
Strain HG-7 was identified as Pseudomonas sp.through 16s rRNA gene sequence analysis.The aerobic denitrification ability of strain HG-7 was further proved by the existence of the napA and nirK genes.Further studies showed that the optimal carbon resources for strain HG-7 were sodium acetate and sodium succinate,the optimal C/N ratio was 6-10,and the suitable temperature was 26-30℃.At this condition,with an initial nitrate nitrogen of 100 mg/L,98% of nitrate could be removed in 48 hours and the amount of nitrite accumulation was very small.Moreover,with nitrite as the sole nitrogen source,100% of nitrite could be removed at lower nitrite concentration.But the nitrite nitrogen removal rate was about 40% when the nitrite concentration increased to 91.4 mg/L,indicating that high nitrite concentration was harmful for aerobic denitrification by strain HG-7.The strain HG-7 has great potential to be used for biological nitrogen removal,which was particularly significant for actual wastewater treatment processes.以筛选分离得到的好氧反硝化菌HG-7为研究对象,经过16S rRNA同源性分析,初步鉴定该菌株为假单胞菌属(Pseudomonas sp.)。对菌株HG-7反硝化功能基因的扩增结果表明,菌体HG-7内存在好氧反硝化功能基因napA和nirK,证实该细菌为好氧反硝化细菌。对菌株 的脱氮特性和影响因素的研究表明,以硝酸盐氮为氮源时,菌株的最适碳源为乙酸钠和丁二酸钠,最佳C/N比为6~10,最适宜的温度范围为26~30℃。在 上述条件下,菌株HG-7的好氧反硝化活性较高,48小时内对100 mg/L硝酸盐氮的去除率可达98%,且在反应过程中亚硝酸盐氮积累量较低。以亚硝酸氮为唯一氮源时,低浓度条件下可实现100%的氮素去除率;高浓度条 件下,脱氮速率则受到明显的抑制,对91.4 mg/L的亚硝酸盐氮氮去除率约为40%。因此,将该菌株应用于废水的脱氮处理,可实现氮素的有效去除,具有潜在的应用价值。
Dong F, Liu Y, Wu Z, Chen Y, Guo H. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction. JOURNAL OF HYDROLOGY. 2018;562:577-588.Abstract
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.
Wang WX, Wei YW, Li SY, Li XQ, Wu XS, Feng J, He L. Imaging the dynamics of an individual hydrogen atom intercalated between two graphene sheets. Physical Review B [Internet]. 2018;97. 访问链接
Liu X, Du P, Pan W, Dang C, Qian T, Liu H, Liu W, Zhao D. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Applied Catalysis B: Environmental [Internet]. 2018;231:11 - 22. 访问链接Abstract
Abstract A niobate/titanate nanoflakes (Nb/TiNFs) composite was synthesized through a one-step hydrothermal method. Nb/TiNFs displayed a heterojunction structure owing to deposition of a small fraction of niobate onto tri-titanate nanoflakes. Tri-titanate (Na1.6H0.4Ti3O71.7H2O) was the primary crystal phase, and the molar ratio of niobate (Na2Nb2O6H2O) to titanate was determined to be 1:15.9. Nb/TiNFs showed rapid adsorption kinetics and high adsorption capacity for U(VI) (Langmuir Qmax = 298.5 mg/g). Ion-exchange and surface complexation were the key mechanisms for U(VI) uptake, and the adsorption was further enhanced by the unique tunnel lattice structure of the heterojunction. Moreover, Nb/TiNFs were able to convert U(VI) into its immobile form, UO2(s) under solar light through photocatalytic reduction. More than 89.3% of (VI) was transformed into U(IV) after 4 h of solar irradiation (initial U(VI) = 20 mg/L, pH = 5.0). Diffuse reflectance UV–vis absorption spectra and Mott-Schottky plots indicated a narrowed band gap energy of Nb/TiNFs compared to neat TNTs. Density functional theory (DFT) calculation on band structure and density of states further confirmed the heterojunction architecture of niobate and titanate, resulting in offset of the conduction bands for the two phases in the composite material. Therefore, transfer of photo-excited electrons from titanate to niobate leads to inhibition of recombination of the electron-hole pairs. In addition, the trapping of uranium in the tunnel lattice of titanate and niobate heterojunction prevents re-oxidation of U(IV) to U(VI), thus achieving long-term immobilization of uranium. Remobilization tests indicated that only 18.7% of U(VI) was re-oxidized to U(VI) and almost no U dissolved into the aqueous phase when exposed air for 90 days. The new material is promising for separation and safe disposal of high strength radionuclides in water.
Xie J, Dai* H, Hong L. The impact of carbon tax on the industrial competitiveness of Chongqing in China. Energy for Sustainable Development. 2018.
Logan BE, Zikmund E, Yang W, Rossi R, Kim K-Y, Saikaly PE, Zhang F. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Environmental science & technology. 2018;52(15):8977-8985.
Logan BE, Zikmund E, Yang W, Rossi R, Kim K-Y, Saikaly PE, Zhang F. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Environmental science & technology. 2018;52:8977–8985.
Qin MR, Chen ZM, Shen HQ, Li H, Wu HH, Wang Y. Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study. Atmospheric Environment [Internet]. 2018;183:144-153,. 访问链接Abstract
Atmospheric peroxides play important roles in atmospheric chemistry, acting as reactive oxidants and reservoirsof HOx and ROx radicals. Field measurements of atmospheric peroxides were conducted over urban Beijing from2015 to 2016, including dust storm days, haze days and different seasons. We employed a box model based onRACM2 mechanism to conduct concentration simulation and budget analysis of hydrogen peroxide (H2O2) andperoxyacetic acid (PAA). In this study, heterogeneous reaction is found to be a significant sink for atmosphericH2O2 and PAA in urban Beijing. Here, we recommend a suitable uptake coefficient formula considering thewater effect for model research of peroxides. It is found that H2O2 and PAA unexpectedly maintained considerableconcentrations on haze days, even higher than that on non-haze days. This phenomenon is mainlyascribed to relatively high levels of volatile organic compounds and ozone on haze days. In addition, high levelsof water vapor in pollution episode can promote not only the heterogeneous uptake to aerosol phase but also theproduction of H2O2. Atmospheric PAA formation is suggested to be sensitive to alkenes and NOx in urbanBeijing. In particular, with the help of peroxides, sulfate formation rate from heterogeneous uptake could increaseby ∼4 times on haze days, indicating the potential effect of peroxides on enhancement of aerosol oxidativeproperty and secondary sulfate formation.
Shen H, Chen Y, Russell AG, Hu Y, Shen G, Yu H, Henneman LRF, Ru M, Huang Y, Zhong Q, et al. Impacts of rural worker migration on ambient air quality and health in China: From the perspective of upgrading residential energy consumption. Environment International [Internet]. 2018;113:290-299. 访问链接
Xie Y, Dai* H, Dong H. Impacts of SO2 taxations and renewable energy development on CO2, NOx and SO2 emissions in Jing-Jin-Ji region. Journal of Cleaner Productions [Internet]. 2018;171:1386-1395. 访问链接
Wang Z, Wang Y, Li J, Henne S, Zhang B, Hu J, Zhang J. Impacts of the degradation of 2,3,3,3-tetrafluoropropene into trifluoroacetic acid from its application in automobile air conditioners in China, the United States and Europe. Environmental Science & Technology. 2018;52(5).Abstract
Abstract HFO-1234yf (2,3,3,3-tetrafluoropropene) was proposed as a mobile air conditioners (MACs) refrigerant worldwide. However, its atmospheric degradation product is the highly soluble and phytotoxic trifluoroacetic acid (TFA), which persists in aquatic environments. We used a global 3-D chemical transport model to assess the potential environmental effects resulting from complete future conversion of all MACs to HFO-1234yf in China, the United States and Europe. The annual mean atmospheric concentrations of HFO-1234yf were 2.62, 2.20 and 2.73 pptv, and the mean deposition rates of TFA were 0.96, 0.45 and 0.52 kg km-2 yr-1, in three regions. Regional TFA deposition sources mainly came from emissions within the same region. Annual TFA deposition in the North Pole region was lower than the global average and mainly originated from European emissions. A potential doubling in the future HFO-1234yf emissions in China mainly affected the local TFA depositions. The TFA concentrations in rainwater were strongly affected by the regional precipitation rates. North Africa and the Middle East, regions with scant rainfall had, extremely high TFA concentrations. The rainwater concentrations of TFA during individual rain events can exceed the level considered to be safe, indicating substantial potential regional risks from future HFO-1234yf use.
Kuang W, Sun H, Liu M, Lin X, Chen D. Improved Drain Current Density of E-Mode AlGaN/GaN HEMT with Double-Doped P-Gate, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Qingdao, China, China: IEEE; 2018:1-3. 访问链接Abstract
A novel E-mode AlGaN/GaN HEMT with double-doped p-gate (DDP) is proposed to improve output current and verified by TCAD simulation. The heavily p-doped region of the AlGaN gate layer ensures enhancement-mode (E-mode) operation and the lightly p-doped region of the AlGaN gate layer reduces the channel resistance. The simulated results have demonstrated that DDP HEMT delivers a much larger maximum drain current (IMAX = 334 mA/mm) than the conventional p-gate (CP) HEMT (IMAX = 144 mA/mm) while maintaining a high threshold voltage (VTH ~1.5 V). The simulated results also indicate that the DDP gate structure could decrease the peak electric field (EC) and thus improve the reliability of the device under off-state high-drain-bias (HDBT).
Wang R, Guo Y, Zhang D, Zhou H*, Zhao D*, Zhang Y*. Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant. Macromol. Rapid Commun. [Internet]. 2018;39(14):1700726. [Read Online]Abstract
Attaining control on charge injection properties is significant for meaningful applications of organic field-effect transistors (OFETs). Here, molecular electron-doping is applied with an air-stable dimer dopant for n-type OFETs based on (naphthalene diimide-diketopyrrolopyrrole) polymer hosts. Through investigating the doping effect on contact and transport properties, it is found that the electron transport increases in n-doped OFETs at low doping regime with remaining large on/off ratios. These favorable meliorations are reconciled by the mitigated impacts of contact resistance and interfacial traps, as well as the surface morphology exhibiting features of increased ordering. The occurrence of doping in the presence of dimer dopants is evidenced by the observed shift of Fermi level toward vacuum level coupled with compositional analysis. Without applying vacuum-deposition-based contact doping, charge injection efficiencies are gained without losing OFET characteristics using the solution-based methodology.
Zhang X, Zou L. IMPROVE-QA: An Interactive Mechanism for RDF Question/Answering Systems, in Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.; 2018:1753–1756. link
Wang T, Heianza Y, Sun D, Huang T, Ma W, Rimm EB, Manson JE, Hu FB, Willett WC, Qi L. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies. BMJBMJ. 2018;360:j5644.Abstract
OBJECTIVE: To investigate whether improving adherence to healthy dietary patterns interacts with the genetic predisposition to obesity in relation to long term changes in body mass index and body weight. DESIGN: Prospective cohort study. SETTING: Health professionals in the United States. PARTICIPANTS: 8828 women from the Nurses' Health Study and 5218 men from the Health Professionals Follow-up Study. EXPOSURE: Genetic predisposition score was calculated on the basis of 77 variants associated with body mass index. Dietary patterns were assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (AMED). MAIN OUTCOME MEASURES: Five repeated measurements of four year changes in body mass index and body weight over follow-up (1986 to 2006). RESULTS: During a 20 year follow-up, genetic association with change in body mass index was significantly attenuated with increasing adherence to the AHEI-2010 in the Nurses' Health Study (P=0.001 for interaction) and Health Professionals Follow-up Study (P=0.005 for interaction). In the combined cohorts, four year changes in body mass index per 10 risk allele increment were 0.07 (SE 0.02) among participants with decreased AHEI-2010 score and -0.01 (0.02) among those with increased AHEI-2010 score, corresponding to 0.16 (0.05) kg versus -0.02 (0.05) kg weight change every four years (P<0.001 for interaction). Viewed differently, changes in body mass index per 1 SD increment of AHEI-2010 score were -0.12 (0.01), -0.14 (0.01), and -0.18 (0.01) (weight change: -0.35 (0.03), -0.36 (0.04), and -0.50 (0.04) kg) among participants with low, intermediate, and high genetic risk, respectively. Similar interaction was also found for DASH but not for AMED. CONCLUSIONS: These data indicate that improving adherence to healthy dietary patterns could attenuate the genetic association with weight gain. Moreover, the beneficial effect of improved diet quality on weight management was particularly pronounced in people at high genetic risk for obesity.

Pages