Electrical synapses provide rapid, bidirectional communication in nervous systems, accomplishing tasks distinct from and complementary to chemical synapses. Here, we demonstrate an artificial electrical synapse based on second-order conductance transition (SOCT) in an Ag-based memristor for the first time. High-resolution transmission electron microscopy indicates that SOCT is mediated by the virtual silver electrode. Besides the conventional chemical synaptic behaviors, the biphasic plasticity of electrical synapses is well emulated by integrating the device with a photosensitive element to form an optical pre-processing unit (OPU), which contributes to the retinal neural circuitry and is adaptive to ambient illumination. By synergizing the OPU and spiking neural network (SNN), adaptive pattern recognition tasks are accomplished under different light and noise settings. This work not only contributes to the further completion of synaptic behaviour for hardware-level neuromorphic computing, but also potentially enables image pre-processing with light adaptation and noise suppression for adaptive visual recognition.
Abstract Recent studies indicate that synaptic scaling is a vital mechanism to solve instability risks brought by the positive feedback of synaptic weight change related with standalone Hebbian plasticity. There are two kinds of synaptic scaling in the neural network, including local scaling and global scaling, both important for stabilizing the neural function. In this paper, for the first time, local synaptic scaling is emulated based on the MoS2 neuristor. The first-principle calculation reveals that synaptic scaling achieved by the neuristor is associated with an internal residual Li+-related weak dynamical process. Experimental results show the potential of achieving global synaptic scaling by the same device. Moreover, inspired by the synaptic scaling in the human brain, a new method of weight mapping called weight scaling mapping (WSM) is proposed to improve the stability of an artificial neural network (ANN). The simulation results indicate that WSM can improve the accuracy and anti-noise ability of the network compared with the traditional mapping method. These findings provide new insight into bionic research and help advance the construction of stable neuromorphic systems.
This article presents an adaptive zoom-capacitance-to-digital converter (CDC)-based CMOS humidity sensor. The humidity sensor is realized by means of two differential capacitors whose dielectrics are sensitive to humidity. The sensing capacitors are interfaced with a zoom CDC, which consists of a successive-approximation-register (SAR) analog-to-digital converter (ADC) and a 3rd-order delta–sigma modulator ( $Δ Σ \textM$ ). The SAR ADC eliminates the influence of the baseline capacitance to reduce the input range of the $Δ Σ \textM$ . To improve the energy efficiency of the CDC across the full input range, a power-aware floating inverter amplifier (FIA) array is proposed, which is configured based on the conversion results of the SAR logic. In addition, an adaptive range-shift (ARS) zoom CDC is proposed to: 1) resist off-chip parasitics and interference and 2) allow low redundancy and a more energy-efficient FIA-based comparator, thus reducing power consumption. The proposed CMOS humidity sensor is implemented in a 0.11- $μ \textm$ CMOS process. Measurement results show a capacitance resolution of 17.9 aF and an effective number of bits (ENOB) of 14.0 within a conversion time of 1.01 ms. The proposed humidity sensor consumes 1.5 $μ \textW$ of power and exhibits a 0.0094 % relative humidity (RH) resolution and a ±1.5 %RH peak-to-peak accuracy (3 $\sigma $ error of 5.5 %RH) among 12 chips from 20 to 85 %RH, and it achieves a figure of merit (FoM) of 0.135 pJ $\cdot $ %RH2, which is more than six times better than the state of the art.
Potassium periodate (PI, KIO4) was readily activated by Fe(II) under acidic conditions, resulting in the enhanced abatement of organic contaminants in 2 min, with the decay ratios of the selected pollutants even outnumbered those in the Fe(II)/peroxymonosulfate and Fe(II)/peroxydisulfate processes under identical conditions. Both 18O isotope labeling techniques using methyl phenyl sulfoxide (PMSO) as the substrate and X-ray absorption near-edge structure spectroscopy provided conclusive evidences for the generation of high-valent iron–oxo species (Fe(IV)) in the Fe(II)/PI process. Density functional theory calculations determined that the reaction of Fe(II) with PI followed the formation of a hydrogen bonding complex between Fe(H2O)62+ and IO4(H2O)−, ligand exchange, and oxygen atom transfer, consequently generating Fe(IV) species. More interestingly, the unexpected detection of 18O-labeled hydroxylated PMSO not only favored the simultaneous generation of ·OH but also demonstrated that ·OH was indirectly produced through the self-decay of Fe(IV) to form H2O2 and the subsequent Fenton reaction. In addition, IO4– was not transformed into the undesired iodine species (i.e., HOI, I2, and I3–) but was converted to nontoxic iodate (IO3–). This study proposed an efficient and environmental friendly process for the rapid removal of emerging contaminants and enriched the understandings on the evolution mechanism of ·OH in Fe(IV)-mediated processes.
A two-stage multi-soil-layering system with blended carbon sources (MSL-BCS) was constructed at pilot scale for treatment of rural non-point source wastewater. Results showed the MSL-BCS system had effective removal efficiencies with 64% of TN and 60% of TP, respectively. The addition of BCS could result in higher (1.6-3.1 fold) denitrification gene abundances (nirS and nosZ) for enhancing denitrification. High-throughput sequencing approach revealed that the higher abundance (>50%) of Epsilonbacteraeotra (Genus: Sulfuricurvum, Family: Thiovulaceae, Class: Campylobacteria, Phylum: Epsilonbacteraeota) enriched in the surface of BCS, which suggested that Epsilonbacteraeotra are the keystone species in achieving nitrogen removal through enhancing denitrification at oligotrophic level. KEGG analysis indicated that BCS might release some signaling molecules for enhancing the energy metabolism process, as well as stimulate the enzyme activities of histidine kinase, glycogen phosphorylase and ATPase, and thereby the denitrification processes were strengthened in MSL-BCS system. Consequently, this study could provide some valuable information on the removal performance and mechanism of engineering MSL systems packed with BCS to govern the rural wastewater treatment. (C) 2021 Elsevier Ltd. All rights reserved.
Excessive discharge of nitrate and phosphate to aquatic environment can induce bad eutrophication phenomenon. Simultaneous removal of nitrate and phosphate is challenging for that the low C/N ratios and trace phosphate in wastewater concentration limit advanced nitrate and phosphate removal, respectively. In this study, a novel iron based solid carbon source composite namely solid carbon source/ zero-valent iron was prepared by solid carbon sources and zero-valent iron for advanced simultaneous removal of nitrate and phosphate. The novel composite with 30% zero-valent iron weight ratio presented best simultaneous removal performance with 1.1 +/- 0.1 mg NO3-N/(L.h) and 0.21 +/- 0.07 mg (PO4-P)-P-3/(L.h). The initial pH effects on the removal performance of the novel composite showed that initial pH = 7 remarkably enhanced the nitrate removal (1.1 +/- 0.1 mg NO3 -N/(L.h)) and phosphate concentration declined fastest (0.14 +/- 0.07 mg PO43–P/(L.h)) at initial pH = 5.5. Physical and chemical characterization of the composite confirmed the zero-valent iron oxidation and hydroxidation process after used and phosphate adsorption and precipitation were involved in this process. Microbial communities at genus level on the surface of the composite were identified to be capable of complex carbon hydrolysis and decomposition and denitrification, demonstrating the dominant role of microbial denitrification in nitrate removal. Interestingly, the observation of nitrate reducing Fe(II)-oxidizing bacteria suggested the synergistic effect of autotrophic and heterotrophic denitrification. The novel composite exhibited simultaneous removal of nitrate and phosphate effectively and can be applied in nutrients control in wastewater such as secondary effluent. (C) 2020 Published by Elsevier Ltd.
The Chinese government accelerated the clean residential heating transition in northern China as part of a successful effort to improve regional air quality. Meanwhile, China has committed to carbon neutrality by 2060, making strategic choices for long-term decarbonization of the residential sector necessary. However, the synergies and trade-offs for health and carbon of alternative heating options and associated costs have not been systematically considered. Here we investigate air-quality– health–carbon interdependencies as well as household costs of using electricity (heat pumps or resistance heaters), gas or clean coal for residential heating for individual provinces across northern China. We find substantial air-quality and health benefits, varied carbon emissions and increased heating costs across clean heating options. With the 2015 power mix, gas heaters offer the largest health–carbon co-benefits, while resistance heaters lead to health–carbon trade-offs. As the power grid decarbonizes, by 2030 heat pumps achieve the largest health–carbon synergies of the options we analysed. Despite high capital costs, heat pumps generally have the lowest operating costs and thus are competitive for long-term use. With increased subsidies on the purchase of heat pumps, the government can facilitate further air-quality improvements and carbon mitigation in the clean heating transition.
Worldwide efforts to switch away from coal have increased the reliance on natural gas imports for countries with inadequate domestic production. In preparing for potential gas import disruptions, there have been limited attempts to quantify the environmental and human health impacts of different options and incorporate them into decision-making. Here, we analyze the air pollution, human health, carbon emissions, and water consumption impacts under a set of planning strategies to prepare for potentially fully disrupted natural gas imports in China. We find that, with China’s current natural gas storage capacity, compensating for natural gas import disruptions using domestic fossil fuels (with the current average combustion technology) could lead up to 23,300 (95% CI: 22,100–24,500) excess premature deaths from air pollution, along with increased carbon emissions and aggravated water stress. Improving energy efficiency, more progressive electrification and decarbonization, cleaner fossil combustion, and expanding natural gas storage capacity can significantly reduce the number of excess premature deaths and may offer opportunities to reduce negative carbon and water impacts simultaneously. Our results highlight the importance for China to increase the domestic storage capacity in the short term, and more importantly, to promote a clean energy transition to avoid potentially substantial environmental consequences under intensifying geopolitical uncertainties in China. Therefore, mitigating potential negative environmental impacts related to insecure natural gas supply provides additional incentives for China to facilitate a clean and efficient energy system transition.