We propose a new technology to advanced treat overflow wastewater from a combined sewer system using a storage tank-wastewater treatment plant (STP)-constructed wetland (CW) system. The engineering demonstration (a 7,500 m(3)storage tank and a 3,436 m(2)CW) has been built to treat the combined sewer overflows (CSOs) at the largest combined rainwater/wastewater overflow outlet in the middle reaches of the Xinbaoxiang River, which is the second largest river in the Dianchi Lake Basin. During the rainfall period, CSOs enter the storage tank. After sedimentation purification, the higher concentration CSOs at the bottom enter the STP, and the upper low-concentration CSOs enter CWs, thereby linking the multiple means of treating CSOs and minimizing the impact of CSOs on the STP. During the dry season, CWs can also assist in purification of polluted river water. The supernatant (COD <80 mg/L) and the bottom part water (COD >200 mg/L) of the storage tank were sent to CWs and STP, respectively, for treatment. The project was stably operated over 6 months. The final effluent qualities were 12, 1.79, and 0.18 mg/L for COD, TN, and TP, respectively, which achieved the surface water class V standard. Practitioner points A combined system of storage tank-wastewater treatment plant-wetland was proposed to advanced treat overflow wastewater of rainy season. The SWMM could calculate the water quality and volume of overflow under different rainfall conditions in the runoff area. The effluent of the engineering demonstration reached the standard of surface water class V.
Applying an absorbing coating to the surface of an aircraft is a widely used target
stealth method. For high-speed motion vehicles, the temperature of the stealth coating profile is
non-uniform due to the "aerodynamic effect", which affects the millimeter wave radiation of the
target. In this paper, we study the calculation method of millimeter wave radiation of stealth
coating for sports aircraft. Firs
tly, the temperature variation model of the coating under different
boundary conditions was analyzed. Then, the coating brightness temperature under non-uniform
temperature distribution was simulated and calcul
ated, and the brightness temperature difference
of the coating with or without
temperature gradient was analyzed. Finally, the millimeter wave
radiation measurement experiment of the coat
ing verified the accuracy of the simulation
calculation, and the millimeter-wave radiation ch
aracteristics of the non-uniform temperature
stealth coating are obtained.
In this work, a novel strategy for building single-atom silver-induced amorphous graphitic carbon nitride (g-C3N4) with a hollow tubular morphology is developed. By forming a tubular supramolecular gel, silver is successfully isolated by the nitrogen atoms in both melamine and nitrate anions, impeding agglomeration in the subsequent thermal polymerization. The high density of single-atom-dispersed silver (atomic ratio up to 11.6%) selectively breaks the hydrogen bonds in layered g-C3N4, leading to a fully amorphous structure. Silver-induced full amorphization not only enhances the visible light absorption of g-C3N4 but also accelerates charge transfer, endowing the as-prepared photocatalyst having the optimal silver content with 52 times higher surface area specific naproxen (NPX) removal activity than pure g-C3N4. Both density functional theory (DFT) calculations and steric effects are applied to explain the degradation pathway of NPX. The toxicity of NPX is reduced by sufficient irradiation. This work provides useful insights into the design and morphology control of single metal ion-dispersed g-C3N4 for environmental applications.
This study assesses the relationship between social capital and self-reported health (SRH) by comparing different genders and ages. It utilizes data from the 2016 China Family Panel Study data with a sample of 30,657 adult individuals from 25 provincial-level administrative regions in China. This was a cross-sectional study conducted with computer-assisted face-to-face interviews to assess social capital and self-rated health among Chinese adults. A multi-level Poisson regression model is employed to model social capital-related dependent variables using the independent variable of fair/poor health status. In terms of social relations, mobile phone use can improve men's health. However, this effect is insignificant for women. Moreover, gender and age interact with the relationship between social capital and individual health. The relationship between trust and self-rated health is not significantly different between men and women. The frequency of feeling lonely and the lack of feelings for the community in which they live have a negative impact on self-rated health, but there are no obvious differences in terms of gender. The number of meals per week with family members is negatively correlated with men's SRH, but there is no correlation with adult women 41 and above. Lack of help from neighbors is negatively correlated with men's health, but not with that of adult women 40 and below. Being a member of the Chinese Communist Party or a member of the Chinese Communist Youth League is positively correlated with SRH for women 60 and above.
Marine oil spill often causes contamination of drinking water sources in coastal areas. As the use of oil dispersants has become one of the main practices in remediation of oil spill, the effect of oil dispersants on the treatment effectiveness remains unexplored. Specifically, little is known on the removal of dispersed oil from contaminated water using conventional adsorbents. This study investigated sorption behavior of three prototype activated charcoals (ACs) of different particle sizes (4–12, 12–20 and 100 mesh) for removal of dispersed oil hydrocarbons, and effects of two model oil dispersants (Corexit EC9500A and Corexit EC9527A). The oil content was measured as n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPHs). Characterization results showed that the smallest AC (PAC100) offered the highest BET surface area of 889 m2/g and pore volume of 0.95 cm3/g (pHPZC = 6.1). Sorption kinetic data revealed that all three ACs can efficiently adsorb Corexit EC9500A and oil dispersed by the two dispersants (DWAO-I and DWAO-II), and the adsorption capacity followed the trend: PAC100 > GAC12 × 20 > GAC4 × 12. Sorption isotherms confirmed PAC100 showed the highest adsorption capacity for dispersed oil in DWAO-I with a Freundlich KF value of 10.90 mg/g∙(L/mg)1/n (n = 1.38). Furthermore, the presence of Corexit EC9500A showed two contrasting effects on the oil sorption, i.e., adsolubilization and solubilization depending on the dispersant concentration. Increasing solution pH from 6.0 to 9.0 and salinity from 2 to 8 wt% showed only modest effect on the sorption. The results are useful for effective treatment of dispersed oil in contaminated water and for understanding roles of oil dispersants.
To study the condition of urban green space soils in the central parts of a city in North China, the spatial distribution, sources, and pollution levels of heavy metals (Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni) within green space soils in the central urban districts of the city were investigated. The results showed that the soil quality was high overall. The mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were 0.172, 0.202, 9.02, 34.7, 57.0, 31.2, 85.7, and 26.3 mg·kg-1, respectively. The mean concentrations of Cd, Hg, Pb, and Zn in urban soils exceeded the background value of the Beijing-Tianjin-Tangshan region. All of the samples' heavy metal concentrations were lower than the risk screening values for soil contamination of development land in the national soil environment quality standards. With respect to the spatial distribution, the concentrations of As, Cr, and Ni were higher in the northwest of the study area, the concentrations of Cd and Zn were higher in the northeast, and the concentrations of Hg, Pb, and Cu were higher in the urban core area. As for the different land use types of the soils, the concentrations of Cd, Zn, and Ni were higher in the enterprise soils, while the concentrations of Hg, Pb, and Cu were higher in park and residential soils. Assessments of soil quality showed that 97.2% of soil samples' Nemerow integrated indices were less than 1, indicating that the soils were clean. Indices of potential ecological risk for all soil samples were less than 80, indicating that they posed a slight ecological risk. Multivariate statistical analysis (correlation and principle component analyses) showed that Cu, Pb, and Hg may originate from an anthropogenic source via the painting of ancient buildings and pesticides used to protect ancient trees. Chromium may originate from natural sources via geochemical activity and soil parent material; Cr, Zn, Ni, and As were derived from mixed sources through human and geochemical activities. The receptor model was used for identification and apportionment of pollution sources of elements over the standard. The contribution rates of sources were as follows:source 2(46.1%), source 3(33.1%), source 1(17.7%), and others (3.1%) for Cd, source 1(93.0%) for Cu, source 1(52.4%), source 3(24.2%), source 2(20.0%), and others (3.4%) for Zn, source 1(56.3%), source 2(37.8%), and source 3(5.8%) for Ni. Sources 1 and 3 were anthropogenic, while source 2 was natural.
Plant sexual systems play an important role in the evolution of angiosperm diversity. However, large-scale patterns in the frequencies of sexual systems (i.e. dioecy, monoecy, and hermaphroditism) and their drivers for species with different growth forms remain poorly known. Here, using a newly compiled database on the sexual systems and distributions of 19780 angiosperm species in China, we map the large-scale geographical patterns in frequencies of the sexual systems of woody and herbaceous species separately. We use these data to test the following two hypotheses: (1) the prevalence of sexual systems differs between woody and herbaceous assemblies because woody plants have taller canopies and are found in warm and humid climates; (2) the relative contributions of different drivers (specifically climate, evolutionary age, and mature plant height) to these patterns differ between woody and herbaceous species. We show that geographical patterns in proportions of different sexual systems (especially dioecy) differ between woody and herbaceous species. Geographical variations in sexual systems of woody species were influenced by climate, evolutionary age and plant height. In contrast, these have only weakly significant effects on the patterns of sexual systems of herbaceous species. We suggest that differences between species with woody and herbaceous growth forms in terms of biogeographic patterns of sexual systems, and their drivers, may reflect their differences in physiological and ecological adaptions, as well as the coevolution of sexual system with vegetative traits in response to environmental changes.