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Abstract. Let k be an algebraically closed field of characteristic 0, let N ∈ N, let
g : P1−→P1 be a non-constant morphism, and let A : AN−→AN be a linear transfor-
mation defined over k(P1), i.e., for a Zariski open dense subset U ⊂ P1, we have that
for x ∈ U(k), the specialization A(x) is an N -by-N matrix with entries in k. We let
f : P1×AN99KP1×AN be the rational endomorphism given by (x, y) 7→ (g(x), A(x)y).
We prove that if g induces an automorphism of A1 ⊂ P1, then each irreducible curve
C ⊂ A1 × AN which intersects some orbit Of (z) in infinitely many points must be
periodic under the action of f . Furthermore, in the case g : P1−→P1 is an endo-
morphism of degree greater than 1, then we prove that each irreducible subvariety
Y ⊂ P1 × AN intersecting an orbit Of (z) in a Zariski dense set of points must be
periodic. Our results provide the desired conclusion in the Dynamical Mordell-Lang
Conjecture in a couple new instances. Also, our results have interesting consequences
towards a conjecture of Rubel and towards a generalized Skolem-Mahler-Lech prob-
lem proposed by Wibmer in the context of difference equations. In the appendix it
is shown that the results can also be used to construct Picard-Vessiot extensions in
the ring of sequences.

1. Introduction

1.1. Notation. We let N0 := N∪{0}. In our paper, we allow an arithmetic progression
to have common difference equal to 0, in which case, the arithmetic progression is just
a singleton.

Throughout our paper, we let k be an algebraically closed field of characteristic 0.
Also, unless otherwise noted, all our subvarieties are assumed to be closed. In general,
for a set S contained in an algebraic variety X, we denote by S its Zariski closure.

For a variety X defined over k and endowed with a rational self-map Φ, for any
subvariety V ⊆ X, we define Φ(V ) to be the Zariski closure of the set Φ (V \ I(Φ)),
where I(Φ) is the indeterminacy locus of Φ; in other words, Φ(V ) is the strict transform
of V under Φ. Also, we denote by OΦ(α) the orbit of any point α ∈ X(K) under Φ, i.e.,
the set of all Φn(α) for n ∈ N0 (as always in algebraic dynamics, we denote by Φn the
n-th compositional power of the map Φ, where Φ0 is the identity map, by convention).
We say that α is periodic if there exists n ∈ N such that Φn(α) = α; we say that α is
preperiodic if there exists m ∈ N0 such that Φm(α) is periodic. More generally, for an
irreducible subvariety V ⊂ X, we say that V is periodic if Φn(V ) = V for some n ∈ N;

if Φ(V ) = V (i.e., Φ (V \ I(Φ)) = V ), we say that V is invariant under the action of Φ
(or simpler, invariant by Φ).

We will also encounter the following setup in our paper. Given a variety X (which we
will call the base) defined over k and given N ∈ N, we consider some N -by-N matrix A
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whose entries are rational functions on X; when the determinant of A is nonzero, then
we write A ∈ GLN (k(X)). For each N -by-N matrix A ∈ MN,N (k(X)) there exists an
open, Zariski dense subset U ⊂ X such that for each x ∈ U , the matrix A(x) obtained
by evaluating each entry of A at x is well-defined. We call skew-linear self-map (over the
base X) a rational self-map f : X×AN 99K X×AN of the form f(x, y) = (g(x), A(x)y),
where g : X 99K X is a given rational self-map, while A ∈ MN,N (k(X)). For more
details regarding skew-linear self-maps and their application to arithmetic dynamics,
we refer the reader to [GX]. In our paper we will work with skew-linear self-maps over
the base X = A1 or X = P1.

1.2. The Dynamical Mordell Lang Conjecture. Motivated by the famous Mordell-
Lang conjecture (now a theorem, due to Faltings [Fal94]), the Dynamical Mordell-Lang
Conjecture (see [GT09]) predicts the following: given a quasiprojective variety X de-
fined over k, endowed with an endomorphism Φ, and also given a point α ∈ X(k) and
a subvariety Y ⊂ X, the set {n ∈ N0 : Φn(α) ∈ Y (k)} is a finite union of arithmetic
progressions. In the special case when Y is irreducible and of positive dimension (note
that the conjecture is trivial when dim(Y ) = 0), the Dynamical Mordell-Lang Conjec-
ture is equivalent with asking that if Y ∩OΦ(α) is Zariski dense in Y , then Y must be
periodic (under the action of Φ); for more details, see [BGT16, Chapter 3].

There are several partial results supporting this conjecture and no counterexamples
known (see [BGT16] for a survey of known results prior to 2016). Almost all known
results towards the Dynamical Mordell-Lang Conjecture (with only a few outstand-
ing exceptions, such as the results from [BGT10] for all étale endomorphisms of any
quasiprojective variety and the results from [Xie] for all endomorphisms of A2, which
in turn, extend the results from [Xie14]) are valid for split endomorphisms only; more
precisely, X = (P1)N and the endomorphism Φ is given by the coordinatewise action
of N rational functions ϕi, i.e.

(x1, . . . , xN ) 7→ (ϕ1(x1), . . . , ϕN (xN )) .

1.3. Our results. In this paper, we study the Dynamical Mordell-Lang Conjecture for
skew-linear self-maps whose base is a rational curve. When the action on the base is
linear, we have the following result (proven in Section 2).

Theorem 1.1. Let f : A1
k × ANk → A1

k × ANk be an endomorphism defined by (x, y) 7→
(g(x), A(x)y) where g is an automorphism of A1

k, while A(x) is a matrix in MN×N (k[x]).

Let C be an irreducible curve in A1
k × ANk and α be a point in A1

k × ANk . If Of (α) ∩ C
is infinite, then C is periodic under f .

When the action on the base is non-linear, we get a stronger result (proven in Sec-
tion 3).

Theorem 1.2. Let f : P1
k × ANk 99K P1

k × ANk be a rational self-map of the form
(x, y) 7→ (g(x), A(x)(y)) where g is an endomorphism of P1

k of degree strictly greater
then one, while A(x) is a matrix in MN×N (k(x)). Let Y be an irreducible subvariety
in P1

k ×ANk of positive dimension and let α be a point in P1
k ×ANk . If fn(α) 6∈ I(f) for

all n ≥ 0 and Of (α) ∩ Y is Zariski dense in Y , then Y is periodic under f .

By considering the isomorphism PNk = AN+1
k /Gm,k, Theorem 1.2 implies the follow-

ing result immediately.
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Corollary 1.3. Let f : P1
k × PNk 99K P1

k × PNk be a dominant rational self-map of the
form (x, y) 7→ (g(x), A(x)(y)), where g is an endomorphism of P1

k of degree strictly
greater then one, while A(x) is an element in PGLN+1(k(x)). Let Y be an irreducible
subvariety in P1

k × PNk of positive dimension and let α be a point in P1
k × PNk . If

fn(α) 6∈ I(f) for all n ≥ 0 and Of (α) ∩ Y is Zariski dense in Y , then Y is periodic
under f .

Our Theorems 1.1 and 1.2 are some of the very few known instances (besides the
case of étale endomorphisms proven in [BGT10] and the case of endomorphisms of A2

proven in [Xie]) when the Dynamical Mordell-Lang Conjecture is proven for a non-split
endomorphism.

Our proofs for Theorems 1.1 and 1.2 are quite different. While for Theorem 1.2 we
are able to show that there exists a suitable prime with respect to which one can use
the p-adic arc lemma (for more details on this construction, see [BGT16, Chapter 4]),
in order to prove Theorem 1.1, our main tool is Siegel’s theorem along with the classical
Quillen-Suslin theorem (see [Qui76]). On the other hand, we explain in Remark 3.5 that
our proof for Theorem 1.2 cannot be extended to the case g is an automorphism of the
base in order to treat intersections of orbits with subvarieties Y ⊂ A1×AN of dimension
larger than 1. Finally, we note that if the rational function g from Theorems 1.1 and 1.2
were constant, then the conclusion of the Dynamical Mordell-Lang Conjecture would
follow immediately in this special case, as a consequence of [BGT10].

1.4. Further applications. Theorem 1.2 has the following applications to linear dif-
ference equations.

Let g ∈ k(x) be any nonconstant rational function and let ` ∈ N. Then g defines a
difference field (k(x), σ) where σ is the endomomorphism of k(x) defined by σ(h(x)) =
h(g(x)) for h ∈ k(x). In [Wib15], Wibmer studied the following two problems in the
case that g(x) = x+ 1.

Problem Skolem-Mahler-Lech. Let {an}n≥0 be a recurrence sequence in k satisfying
the following recurrence equation

an+` =

`−1∑
i=0

hi(g
n(α))an+i

where the hi’s are rational functions in k(x), while α ∈ P1
k. Is it true that the set

{n ≥ 0: an = 0} is a finite union of arithmetic progressions?

Problem Picard-Vessiot. Does there exist a Picard-Vessiot extension of k(x) for the
linear difference equation σ`(y)−h`−1σ

`−1(y)−· · ·−h0y = 0 inside the ring of k-valued
sequences?

For more background on difference equations and the aforementioned two problems,
we refer the reader to [Wib15] and [vdPS03].

In [Wib15], Wibmer shows that when g(x) = x + 1, a certain special case of the
Dynamical Mordell-Lang Conjecture would imply an affirmative solution to problems
Skolem-Mahler-Lech and Picard-Vessiot and he also solved Problem Picard-Vessiot af-
firmatively under the restriction h1, . . . , h`−1 ∈ k[x] and h0 ∈ k \ {0}.

As a direct application of Theorem 1.2 we solve Problem Skolem-Mahler-Lech affir-
matively when deg g ≥ 2.
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Corollary 1.4. Let g ∈ k(x) be a rational function of degree at least 2, let α ∈ P1
k and

let ` ∈ N. Let {an}n≥0 be a recurrence sequence in k satisfying the following recurrence
equation

(1.1) an+` =
`−1∑
i=0

hi(g
n(α))an+i

where hi are rational functions in k(x). Then the set {n ≥ 0: an = 0} is a finite union
of arithmetic progressions.

Indeed, Corollary 1.4 follows as a consequence of our Theorem 1.2 in a similar way
as [BGT15, Theorem 1.7] followed from [BGT15, Corollary 1.5]. More precisely, we
consider the rational map Φ : P1 × A` 99K P1 × A` defined by Φ(x, y) = (g(x), A(x)y),
where the linear transformation A ∈M`,`(k(x)) is given by

A(x) :=


0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1

h0(x) h1(x) · · · · · · · · · h`−1(x)


Then letting v0 := (a0, a1, · · · , a`−1), we have that

Φn(α, v0) = (gn(α), an, an+1, · · · , an+`−1) .

So, letting Y1 := {0} × A`−1 ⊂ A` and then letting Y := P1 × Y1, allows us to apply
Theorem 1.2 to the subvariety Y ⊂ P1 × A` under the action of Φ in order to derive
the desired conclusion in Corollary 1.4.

We also observe that our Corollary 1.4 yields a positive answer to a variant of Rubel’s
[Rub83, Question 16] (see also [BGT15, Theorem 1.7, p. 3-4]). Indeed, [Rub83, Ques-
tion 16] asks to characterize the set of all n ∈ N0 such that an = 0, where

f(z) :=

∞∑
n=0

anz
n

is the solution of a linear differential equation with polynomial coefficients. For the
question raised by Rubel [Rub83], the sequence {an} satisfies a recurrence sequence of
the form (1.1) where g(x) = x+ 1.

The role of Picard-Vessiot extensions in the Galois theory of linear difference equa-
tions is similar to the role of splitting fields in the usual Galois theory of polynomials.
Instead of requiring that a polynomial of degree ` has ` distinct roots in the splitting
field one requires that the k-space of all solutions to σ`(y)−h`−1σ

`−1(y)−· · ·−h0y = 0
in the Picard-Vessiot extension has dimension `. The recurrence formula (1.1) yields
` k-linearly independent solutions in the ring of k-valued sequences. It is therefore
natural to ask if there exists a Picard-Vessiot extension inside the ring of sequences. In
the appendix (Section 4) we will show how Corollary 1.4 can be used to solve problem
Picard-Vessiot affirmative if deg g ≥ 2.

Theorem 1.5. If deg g ≥ 2 and h`−1, . . . , h0 ∈ k(x), then there exists a Picard-Vessiot
extension of k(x) for σ`(y) − h`−1σ

`−1(y) − · · · − h0y = 0 inside the ring of k-valued
sequences.

Theorem 1.5 follows from Theorem 4.2 by choosing A as in the proof of Corollary 1.4.
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2. Proof of Theorem 1.1

We work under the hypothesis of Theorem 1.1. We prove our result by induction on
N , noting that the case N = 0 is trivial.

We also note that in our proof we may replace f by an iterate of itself. In addition,
we may always replace g by a conjugate of itself through a linear automorphism, and
therefore, replace f by a conjugate through an automorphism of A1 × AN ; for more
details regarding the various reductions in the Dynamical Mordell-Lang Conjecture,
see also [BGT16, Chapter 3].

We proceed by first dealing with the case when detA(x) is constant.

Lemma 2.1. Theorem 1.1 holds if detA(x) is constant.

Proof of Lemma 2.1. If detA(x) is a nonzero constant, then f is an automorphism and
so, the result follows from [BGT10].

So, assume now that detA(x) = 0. We let ` be the rank of A(x) as a matrix of
elements in k(x). We have ` ≤ N − 1. Let Y be the Zariski closure of the image of f .
Then Y is a subbundle of A1×ANk of rank ` and it is invariant under f . Since f(α) ∈ Y ,
after replacing α by f(α), we may suppose that α is contained in Y . Then fn(α) ∈ Y
for all n ≥ 0. If C is not contained in Y , then Of (α) ∩C ⊆ C ∩ Y is finite. Otherwise,
we have C ⊆ Y . Quillen-Suslin’s theorem (see [Qui76]) yields that all vector bundles

on A1
k are trivial. So, Y is isomorphic to A1

k × AN−1
k , which allows us to conclude our

proof of Theorem 1.1 by the induction hypothesis. �

Therefore, from now on, we assume that detA is a non-constant polyno-
mial in k[x].

Lemma 2.2. Theorem 1.1 holds when N = 1.

Proof of Lemma 2.2. Since detA(x) 6= 0, then f is a birational automorphism of A2;
hence, this case is covered by the result of [Xie14]. �

Therefore, from now on, we may assume that N ≥ 2.

Lemma 2.3. Theorem 1.1 holds if g(x) = x.

Proof of Lemma 2.3. Theorem 1.1 holds in this case, since it reduces to proving the
Dynamical Mordell-Lang Conjecture for a linear self-map on AN . Indeed, given a
linear map ψ : AN−→AN and a point β ∈ AN (k), at the expense of replacing ψ by an
iterate (and also replacing β by a suitable ψm(β)) we can find a subvariety β ∈W ⊂ AN
invariant under ψ and moreover, ψ|W : W−→W is an automorphism; then [BGT10,
Theorem 4.1] provides the desired conclusion. �

From now on, we let g(x) = ax+ b with a ∈ k∗ and b ∈ k.
If a is a root of unity, then at the expense of replacing f by an iterate, we may

assume a = 1. Since the case g(x) = x was proven in Lemma 2.3, we are left with the
possibility that g(x) = x+ 1 (again, at the expense of replacing g and therefore f by a
conjugate through a suitable automorphism).

If a is not a root of unity, then after a suitable conjugation by an automorphism, we
may assume g(x) = ax.

Therefore, from now on, we may assume that either g(x) = x + 1, or
g(x) = ax for some a ∈ k \ {0}, which is not a root of unity.

Denote by S the set of roots of detA = 0. Then S is a non-empty finite set of points
in A1(k). Let I be the set of fixed points of g. Then I = ∅ (if g(x) = x+ 1) or I = {0}
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(if g(x) = ax; note that a ∈ k∗ is not a root of unity). Moreover I is exactly the set of
(pre)periodic points of g.

Denote by π : A1
k ×ANk −→A1

k the projection onto the first coordinate. Then π−1(S)
is the critical set of f . If π(α) ∈ I then Theorem 1.1 holds (similar to the case when
g(x) = x from Lemma 2.3).

Thus from now on, we assume that π(α) 6∈ I. So, there exists M ≥ 0, such
that for all n ≥M , we have that π(fn(α)) 6∈ S.

Now, there exists a finitely generated Z-algebra R such that f , C, α and all points
of S are defined over R. Then fn(α) are defined over R for all n ≥ 0. Suppose that
Of (α) ∩ C is infinite. By Siegel’s Theorem [Lan83, Theorems 8.2.4 and 8.5.1], C has
at most two branches at the infinity.

Moreover, for all i ≥ 0, denote by C−i the strict transform of C under f ; then we
have

{n ≥M : fn(α) ∈ C} ⊆ {n : M ≤ n ≤M + i} ∪ {n ≥M + i+ 1: fn−i(α) ∈ C−i}.

Since Of (α)∩C is infinite, Of (α)∩C−i is infinite for all i ≥ 0. So, by Siegel’s Theorem,
C−i has at most two branches at the infinity for all i ≥ 0.

Lemma 2.4. With the above notation, Theorem 1.1 holds if S ⊆ I.

Proof of Lemma 2.4. If S ⊆ I, then I = {0} and moreover, f |π−1(A1\{0}) is unramified.
Then we conclude our proof by using [BGT10, Theorem 1.3]. �

Hence, from now on, we assume that S 6⊆ I.
So, there exists a point s ∈ S \ I such that for all n ≥ 1, we have that gn(s) 6∈ S.

Denote by Fn := fn(π−1(s)) for each n ≥ 0; then Fn is a linear subspace of

π−1(gn(s)) ' AN

of dimension d ≤ N − 1. If there exist three integers 1 ≤ n1 < n2 < n3 such that
C∩π−1(gni(s)) 6⊆ Fni (for i = 1, 2, 3), then C−n3 has at least three branches at infinity,
which is a contradiction. So there exists B ≥ 1, such that for all integers n ≥ B, we
have that

C ∩ π−1(gn(s)) ⊆ Fn.
Let Grk(d,N) be the Grassmannian parametrizing all linear subvarieties of dimension

d contained in Ank and let F : A1
k ×Grk(d,N)−→A1

k ×Grk(d,N) be the birational map
defined by (x, V ) 7→ (g(x), A(x)(V )), where for each x ∈ k, we denote by A(x)(V ) the
image of V under the linear map A(x) : ANk −→ANk . We see that F is well defined when
x 6∈ S. Let

Z := {(x, V ) : C ∩ π−1(x) ⊆ V }.
Then Z is a proper subvariety of A1

k×Grk(d,N). For all n ≥ B, we have (gn(s), Fn) ∈ Z.
Let W be the Zariski closure of {(gn(s), Fn) : n ≥ B} in A1

k × Grk(d,N). We have
dimW ≥ 1 and W ⊆ Z. At the expense of replacing B by a larger integer, we may
suppose that all irreducible components of W have positive dimension. Then we have
F (W ) = W. Moreover we have π(W ) = A1. For any x ∈ A1, denote by Wx the fiber of
W over x. Let

U ′ :=

{
(x, y) ∈ A1

k × ANk : y ∈
⋂

V ∈Wx

V

}
.

There exists a finite set D of A1(k), such that U ′ ∩ π−1(A1 \D) is a vector bundle on
A1 \ D. Denote by U the Zariski closure of U ′ ∩ π−1(A1 \ D). We have C ⊆ U and
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f(U) ⊆ U. Since Of (α) ∩ U is not empty, after replacing α by some fm(α), we may
suppose that α ∈ U.

There exists an integer B′ ≥ B such that for all n ≥ B′, we have that gn(s) 6∈ D.
Then for all n ≥ B′,

U ∩ π−1(gn(s)) = U ′ ∩ π−1(gn(s)) ⊆ Fn.
So, U is an irreducible proper subvariety of A1 × ANk .

Lemma 2.5. Let D be a finite set of A1(k), let U be an irreducible proper subvariety
of A1×ANk . If U ∩π−1(A1 \D) is a vector bundle on A1 \D, then U is a vector bundle
over A1.

Proof of Lemma 2.5. We prove this lemma by induction on N. If N = 1, then U =
{y = 0}.

Now we suppose that N ≥ 2. Denote by η the generic point of A1; so, the generic fiber
Uη is a linear subspace of the generic fiber ANk(x). There exists a hyperplane H ′ ⊆ ANk(x)

containing Uη and defined by
∑N

i=1 ai(x)yi = 0. We may suppose that ai(x) ∈ k[x] for
all i = 1, . . . , N and also that the polynomials a1(x), . . . , aN (x) are coprime. Denote by

H the subvariety of A1 × ANk defined by
∑N

i=1 ai(x)yi = 0. Then H is a vector bundle
on A1 and U ⊆ H. Quillen-Suslin’s theorem (see [Qui76]) yields that all vector bundles

on A1
k are trivial. So H is isomorphic to A1

k × AN−1
k , which allows us to conclude our

proof by the induction hypothesis. �

Thus Lemma 2.5 yields that U is a vector bundle on A1
k. Applying again Quillen-

Suslin’s theorem we obtain that U is trivial on A1
k. By using the induction hypothesis

on the restriction of f on U , we conclude our proof of Theorem 1.1.

3. Proof of Theorem 1.2

We work under the hypothesis of Theorem 1.2. Denote by π : P1
k × ANk → P1

k the
projection to the first factor.

Lemma 3.1. Theorem 1.2 holds if π(α) is preperiodic.

Proof of Lemma 3.1. After replacing α by fm(α) for a suitable m ≥ 0 and f by some
iterate of f , we may assume that π(α) is fixed by g. Since f |π(α) is a linear mor-
phism, then [BGT10, Theorem 4.1] provides the desired conclusion (see also our proof
of Lemma 2.3). �

So, from now on, we assume that π(α) is not preperiodic.
We split our proof into two cases (which will be proved in Subsections 3.1 respec-

tively 3.2) depending on whether f is dominant, or not.

3.1. The case where the map is dominant. We first treat the case when f is
dominant; we will see in Subsection 3.2 that the general case may be reduced to this
special case.

Denote by S the set of points x ∈ P1(k) that f is not locally étale along π−1(x). In
particular, π(I(f)) ⊆ S and S is finite.

There exists a subfield K1 of k which is finitely generated over Q̄ such that g, f, S
and α are all defined over K1. Now we may assume that k = K1.

There exists a finitely generated Q̄-subalgebra A of K1 such that K1 = FracA. Let

A := Q̄[x1, . . . , xm0 ]/(F1, . . . , F`0)
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for some m0, `0 ∈ N and some suitable polynomials Fi; we may assume that SpecA is
smooth. There exists a finite extensionM/Q such that all coefficients of the polynomials
F1, . . . , F`0 are contained in M . Furthermore, we let OM be a finitely generated subring
of M , whose fraction field equals M , such that each coefficient of Fi is contained in
OM . Let

R := OM [x1, . . . , xm0 ]/(F1, . . . , F`0);

then R is a subring of A, which is finitely generated over Z. Also, we let K := Frac (R).
At the expense of replacing M by another finitely generated extension, we may assume
that g, f, S and α are all defined over K. We may identify f as fK ⊗K k where fK is a
rational self-map on P1

K × ANK .
The next proposition is the key technical ingredient for our proof. Proposition 3.2

yields the existence of a nonarchimedean place v which meets several good hypotheses
regarding the reduction modulo v for our dynamical system; in particular, this allows
us to find a suitable p-adic analytic parametrization of our orbit (using the p-adic arc
lemma, as constructed in [BGT16, Chapter 4]).

Proposition 3.2. There exists a finite extension L over Q, a nonarchimedean place v
of L, and an embedding K ↪→ Lv where Lv is the v-adic completion of L (with ring of
v-adic integers denoted by Ov), a rational self-map fOv : P1

Ov
× ANOv

99K P1
Ov
× ANOv

of
the form (x, y) 7→ (gOv , AOv(x)(y)) such that

(i) fLv = fK ⊗K Lv where fLv is the restriction of fOv on the generic fiber;
(ii) the restriction fv of fOv on the special fiber is a dominant rational self-map on

P1
Fv
× ANFv

where Fv is the residue field of Lv;

(iii) the restriction gv of gOv on the special fiber is an endomorphism of P1
Fv

of degree
deg g;

(iv) the set Sv of points x ∈ P1(Fv) with the property that fOv is not locally étale
along π−1

p (x) is the specialization of S on the special fiber;
(v) there exists r ≥ 0, such that for n ≥ r, the specialization of gnK(π(α)) on the

special fiber is not contained in Sv.

Proof of Proposition 3.2. Observe that fK induces a rational self-map fR : P1
R×ANR 99K

P1
R × ANR of the form (x, y) 7→ (gR, AR(x)(y)) such that the restriction of fR on the

generic fiber is fK .
By shrinking SpecR, we may assume that R is regular and moreover, assume the

following properties hold:

• at every point t ∈ SpecR, the restriction ft of fR on the special fiber at t is a
dominant rational self-map on P1

κ(t) × ANκ(t) where κ(t) is the residue field at t;

• the restriction gt of gR on the special fiber is an endomorphism of P1
κ(t) of degree

deg g; and
• the set St of points x ∈ P1(κ(t)) such that fR is not locally étale along π−1

t (x)
is the specialization of S on the special fiber at t.

In particular, we have that gR : P1
R → P1

R is a regular endomorphism.
Let q := π(α); note that q is not preperiodic under fK , according to our earlier

assumption. Let qR be the Zariski closure of q in P1
R. For any point t ∈ SpecR, denote

by P1
t the fiber of P1

R at t and also, let qt be the unique point in qR ∩P1
t . Indeed, t 7→ qt

is a section from SpecR to P1
R.

The next Lemma is employed in our proof of Proposition 3.2.
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Lemma 3.3. Let A be a finitely generated integral Q̄-algebra with Frac (A) = B. Let
gA : P1

A → P1
A be a regular and dominant endomorphism of degree greater than 1. Let

q ∈ P1(B) be a point on the generic fiber which is not preperiodic under gB. Then there
exists a Q̄-point c ∈ SpecA such that the specialization qc of q on the fiber at c is not
preperiodic.

Proof of Lemma 3.3. We let a tower of field extensions Q̄ =: B0 ⊂ B1 ⊂ · · · ⊂ Bm := B
such that for each i = 0, . . . ,m − 1, we have that Bi+1/Bi has transcendence degree
equal to 1. Without loss of generality, we may even assume that each Bi+1 is the
function field of some smooth, projective curve defined over Bi. Therefore, it suffices
to prove the following statement.

Claim 3.4. Let L0 be a field of characteristic 0 and let L1 be the function field L0(C) for
some smooth, projective curve C defined over L0. Let g be a rational function defined
over L1 of degree larger than 1 and let x ∈ P1(L1) be a non-preperiodic point under the
action of g. Then there exists a place p of of the function field L1/L0 such that g has
good reduction at the place p and moreover, the specialization of x at p (denoted xp) is
not preperiodic under the action of the corresponding specialization gp of g.

Proof of Claim 3.4. The proof is similar to the one employed for [GTZ08, Proposi-
tion 6.2]; the only change is replacing the reference [Ben05] by [Bak09]. Indeed, gen-

eralizing the results of [Ben05], Baker [Bak09] showed that the canonical height ĥg(x)
is strictly positive if g is not isotrivial for the function field L1/L0 (note that x is not
preperiodic). For more details regarding isotrivial rational functions, see [GTZ08, Sec-

tion 6], while for more details about the canonical height ĥg(·) associated to a rational
function of degree larger than one, see [CS93]. We note that Chatzidakis-Hrushovski
[CZ08a, CZ08b] proved a further generalization of Baker’s result [Bak09] to polarized
algebraic dynamical systems.

Now, there are two cases: either ĥg(x) = 0, or not. We recall (see [CS93]) that ĥg(·)
is the canonical height (on the generic fiber) constructed with respect to the places of
the function field L1/L0.

Case 1. ĥg(x) = 0.
In this case, because x is not preperiodic, [Bak09] yields that g is isotrivial and

moreover, if µ : P1
L̄1
−→P1

L̄1
is an automorphism such that µ−1 ◦ g ◦ µ is defined over

L̄0, then also µ(x) ∈ P1
L̄0

. Therefore, all but finitely many places p of the function field

L1/L0 satisfy the conclusion of our hypothesis.

Case 2. ĥg(x) > 0.

In this case, let hC(·) be a Weil height for the L0-points on C associated to an
ample divisor (of degree 1). Then using [CS93] (see also the proof of [GTZ08, Propo-
sition 6.2]), we obtain that each specialization at a place corresponding to a point p of
C of sufficiently large height (i.e., hC(p) � 0) guarantees the concluson of Claim 3.4.
Indeed, Call-Silverman [CS93] proved that

(3.1) lim
hC(p)→∞

ĥgp(xp)

hC(p)
= ĥg(x),

where ĥgp(·) is the canonical height associated to the specialization gp of g at the place

p of good reduction for g (here we construct ĥgp(·) with respect to the Weil height on

L̄0, since L0 is either Q̄ or a function field over Q̄). Our assumption that ĥg(x) > 0

coupled with equation (3.1) yields that ĥgp(xp) > 0 if hC(p)� 0, and therefore xp is not
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preperiodic under the action of gp (since each preperiodic point would have canonical
height equal to 0; see [CS93]). �

Applying Claim 3.4 repeatedly for each extension Bi+1/Bi for i < m yields the
desired conclusion of Lemma 3.3. �

We return to the proof of Proposition 3.2. Lemma 3.3 yields the existence of a point
c ∈ SpecA such that qc is not preperiodic. There exists a finite extension L over M
such that c is defined over L. By replacing R by R⊗OM

OL, we may assume that there
exists a point c ∈ SpecR such that κ(c) = L and qc ∈ P1

c(L) is not preperiodic.
By replacing L by a suitable finite extension of L, we may assume that there exists

a nonexceptional periodic point βc ∈ P1
c(L) whose orbit Ofc(βc) does not meet Sc.

Observe that c is a point on the generic fiber of SpecR → SpecOL. The Zariski
closure Zc of c in SpecR is isomorphic to a Zariski open set U of SpecOL. Denote by
δ : P1

R → SpecR the structure morphism. Then δ−1(Zc) → Zc is isomorphic to the
scheme P1

U → U. For any point t ∈ Zc, denote by βt the specialization of βc in P1
t . Then

βt is periodic and Oft(βt) is the specialization of Ofc(βc). By [BGKT12, Lemma 4.1],
there exists a point e ∈ Zc such that Ofe(βe)∩ Se = ∅ and there exists s > 0 such that
fse (qe) = βe. In particular for all n ≥ s, we have that fne (qe) /∈ Se.

The image of e in U is a prime of OL which defines a nonarchimedean place v of L. Let
AOv := R⊗OL

Ov. We may view e as a point on the special fiber of SpecAOv → SpecOv

and c as a point on the generic fiber of SpecAOv → SpecOv. Let d := dimA and denote
by ALv the generic fiber of SpecAOv → SpecOv. The set Ve of points in SpecALv(Lv)
whose specialization is e is a v-adic neighbourhood of c and it is isomorphic to the
polydisc Od

v. Denote by AL := R⊗OL
L. We have an inclusion τ : AL ↪→ ALv . For any

nonzero element F ∈ AL, denote by Z(F ) the zeros of F in SpecALv(Lv).
Since AL is countable, by Baire category theorem, ∪F∈AL\{0}Z(F ) is nowhere dense

in ALv(Lv) with respect to the v-adic topology. Then there exists a point

z ∈ Ve \ (∪F∈AL\{0}Z(F )).

The point z defines a morphism χz : ALv → Lv. The Zariski closure Zz of z in AOv is
isomorphic to SpecOv. Denote by

σ : P1
AOv
× ANAOv

→ SpecAOv

the structure morphism. Then σ−1(Zz)→ Zz is a scheme isomorphic to P1
Ov
×ANOv

→
SpecOv. The restriction of fR ⊗OL

Ov on σ−1(Zz) gives a rational self-map

fOv : P1
Ov
× ANOv

99K P1
Ov
× ANOv

,

of the form (x, y) 7→ (gOv , AOv(x)(y)).
We have a morphism ι := χz ◦ τ : AL → Lv. Since z 6∈ ∪F∈AL\{0}Z(F ), we have

ker ι = 0 and then ι is injective. Then ι extends to an embedding from K = FracR =
FracAL to Lv. It follows that fLv = fK ⊗K Lv; this yields (i) from the conclusion of
Proposition 3.2. The properties (ii),(iii),(iv) hold because such properties hold for all
points in SpecR. The property (v) holds because the specialization of z on the speical
fiber is e and for all n ≥ N , we have that fne (qe) 6∈ Se.

This concludes our proof of Proposition 3.2. �

Now, we are ready to finish the proof of Theorem 1.2.
We apply Proposition 3.2 and therefore, by replacing α with f r(α) (as in property (v)

from the conclusion of Proposition 3.2), we may assume that the specialization of
π(fn(α)) on the special fiber P1

Fv
is not contained in Sv (for each n).
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For each point q ∈ P1(Lv) × AN (Lv)(respectively q ∈ P1(Lv)), denote by q̄ its
specialization in P1(Fv)×AN (Fv) (respectively P1(Fv)). At the expense of replacing α

by f r(α), we may suppose that π(fn(α)) /∈ Sv for all n ≥ 0. It follows that fnv (ᾱ) =

fn(α) for all n ≥ 0.
Because P1(Fv) is finite, at the expense of replacing α by fm(α) for some m ≥ 0 and

also replacing f by a suitable iterate, we may assume that ᾱ is fixed by fv. Then the
set V of points q ∈ P1(Lv)×AN (Lv) satisfying q̄ = ᾱ is a v-adic open neighbourhood of
α. Moreover, V is isomorphic to ON+1

v and it is also invariant by f . Then f |V induces

an analytic self-map on ON+1
v . Since f is étale along the fiber at π(α), we have that

dfv(α) is invertible. Then f |V is an isomorphism of V .
Let p > 0 be the characteristic of Fv. Without loss of generality, we may identify V

with ON+1
v . At the expense of replacing f by a suitable iterate, we may further assume

that f |v = id mod p2. By [Poo14, Theorem 1] (which uses the ideas introduced in
[BGT10]), there exists a v-adic analytic map

h : Ov → V

such that for any n ∈ N, we have h(n) = fn(α). Then h−1(Y ) is an analytic subset of
Ov. Since Ov is compact, h−1(Y ) is either finite, or it is all of Ov. If there exists an
infinite sequence n1 < n2 < . . . such that fni(α) ∈ Y , then h−1(Y ) is infinite and so,
it must equal Ov. Hence fn(α) ∈ Y for all n ≥ 0. Since Y is irreducible and Of (α) is
Zariski dense in Y , we obtain that Y is periodic under f , which concludes our proof of
Theorem 1.2.

3.2. The general case. Since in Subsection 3.1 we proved Theorem 1.2 if f is domi-
nant, we are left now with the case f : P1 × AN99KP1 × AN is not dominant.

For any n ≥ 0, we let In := fn(P1
k × ANk ). Then In ⊇ In+1 for each n ≥ 0, and

moreover, each In is a subbundle of the trivial vector bundle

π : P1
k × ANk → P1

k.

Let Z := ∩n≥0In; then Z is a subbundle of π and furthermore, it is invariant under f .
So, there exists ` ≥ 0 such that

Z := ∩`n=0f
n(P1

k × ANk ).

Also, we have that f |Z : Z 99K Z is dominant. After replacing α by f `(α), we may
assume that α ∈ Z. Since dimY ≥ 1 and Of (α) ∩ Y is Zariski dense in Y , we have
that Y ⊆ Z.

We note that π|Z : Z → P1
k may be a nontrivial vector bundle on P1

k. So we may not
be able to apply directly the results of Subsection 3.1 in order to conclude our proof.
However, there exists a trivial line bundle π′ : Z ′ → P1

k, a skew-linear rational self-map
f ′ : Z ′ 99K Z ′ and a birational map φ : Z 99K Z ′ satisfying the following propertis:

• φ ◦ f = f ′ ◦ φ;
• π′ ◦ f ′ = g ◦ π′;
• π|Z = π′ ◦ φ; and
• on the generic fiber, φ is a linear isomorphism.

Note that I(φ) is contained in a union U0 of finite fibers of π|Z .
Since π(α) is not preperiodic, after replacing α by fm(α) for a suitable m ≥ 0, we

may assume that fn(α) 6∈ U0 for all n ≥ 0. It follows that Y 6⊆ U0 and f
′n(φ(α)) /∈ I(f ′)

for all n ≥ 0. Then Of ′(φ(α))∩φ(Y ) is Zarski dense in φ(Y ). Since f ′ is dominant, the
result proven in Subsection 3.1 implies that φ(Y ) is periodic under f ′, which in turn,
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implies that Y is periodic under f (because φ is a birational map). This concludes our
proof of Theorem 1.2.

Remark 3.5. We note that the proof of Theorem 1.2 does not work when g is an
automorprhism; we describe next the key point in the proof of Theorem 1.2. Assume
that f and α are defined over Q, f : P1 × AN−→P1 × AN is a skew-linear dominant,
self-map such that fn(α) /∈ I(f) for all n ≥ 0, and furthermore, assume π(α) is not
preperiodic. Then there exist a prime p, a p-adic polydisc V ⊂ P1(Qp)× AN (Qp) and
integers m, ` ≥ 1 such that:

(i) fm(α) ∈ V ; and
(ii) f ` is well defined on V and moreover, f `(V ) = V.

It is easy to show that if f : A1×A1−→A1×A1 is the morphism defined by (x, y) 7→
(x+ 1, xy) and the starting point is α = (0, 0), then such a polydisc V does not exist.

4. Picard-Vessiot extensions inside the ring of sequences
Appendix by Michael Wibmer

In this appendix we use Theorem 1.2 (more specifically Corollary 1.4) to show that
for certain linear difference equations there exists a Picard-Vessiot extension inside the
ring of sequences.

As in the previous sections we work over an algebraically closed field k of character-
istic zero. A difference ring (or field) is a commutative ring (or field) R together with a
distinguished ring endomorphism σ : R→ R. A morphism of difference rings is a mor-
phism of rings that commutes with the distinguished endomorphism. The constants of
a difference ring R are Rσ = {a ∈ R| σ(a) = a}. For more background on difference
algebra and linear difference equations the reader is referred to [Lev08] and [vdPS03].

As in [vdPS03, Example 1.3] we consider the ring Seqk of sequences in k: two
sequences (an)n∈N0 and (bn)n∈N0 are identified if an = bn for n � 0. Addition and
multiplication is componentwise and Seqk is considered as a difference ring by shifting
a sequence one step to the left, i.e., σ((an)n∈N0) = (an+1)n∈N0 .

Let k(x) be the field of rational functions over k. We fix a non-constant endomor-
phism g : P1

k → P1
k, i.e., g ∈ k(x)\k and an α ∈ P1

k(k) such that Og(α) is infinite. Then
h(gn(α)) ∈ k for h ∈ k(x) and n� 0. Thus we have a well-defined map

(4.1) k(x)→ Seqk, h 7→ (h(gn(α)))n∈N0 .

We consider k(x) as a difference field via σ(h(x)) = h(g(x)), so that (4.1) becomes a
morphism of difference rings. In the sequel we will always consider Seqk as a difference
ring extension of k(x) via this embedding.

We are interested in linear difference equations σ`(y) + h`−1σ
l−1(y) + . . .+ h0y = 0

with h0, . . . , h`−1 ∈ k(x), or more generally in first order system σ(y) = Ay with
A ∈M`,`(k(x)). The Galois theory of linear difference equations (also known as Picad-
Vessiot theory) associates a linear algebraic group to such an equation. This Galois
group measures the algebraic relations among the solutions of the linear difference
equation. The Galois group can be defined as the automorphism group of a Picard-
Vessiot extension for the linear difference equation. The standard reference for the
Galois theory of linear difference equations is [vdPS03]. There it is always assumed that
σ is an automorphism. In our situation, this assumption is only satisfied if deg(g) = 1.
However, the assumption that σ is an automorphism is not necessary for developing
the Galois theory of linear difference equations. (See e.g., [Wib12] and [Mai14]).
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It is a characteristic of the Galois theory of difference equations that Picard-Vessiot
extensions may contain zero divisors. Instead of difference field extensions of k(x) one
considers certain difference rings that have field-like properties: a difference ring L is a
difference pseudo field if

(1) L is σ-simple, i.e., if I is an ideal of L with σ(L) ⊆ L, then L = {0} or L = R,
(2) every non-zero-divisor of L is a unit of L and
(3) L is Noetherian.

One can show ([Wib10, Prop. 1.3.2]) that every difference pseudo field L is of the
form L = e1L ⊕ . . . ⊕ erL, where e1, . . . , er are orthogonal idempotent elements of L
such that

(1) σ(e1) = e2, σ(e2) = e3, . . . , σ(en) = e1 and
(2) the eiL’s are fields.

Conversely, any difference ring of the form L = e1L ⊕ . . . ⊕ erL with (1) and (2)
satisfied, is a difference pseudo field.

If R is a k(x)-algebra and C ⊆ R we define

k(x)(C) = {ab−1| a, b ∈ k(x)[C], b is a unit in R} ⊆ R.

In particular, if R is a field extension of k(x), then k(x)(C) is the field extension of
k(x) generated by C.

Definition 4.1. Let A ∈ GL`(k(x)). A difference pseudo field extension L/k(x) is a
Picard-Vessiot extension for σ(y) = Ay if

(1) L is generated by the entries of a fundamental solution matrix, i.e., there exists
Y ∈ GL`(L) with σ(Y ) = AY such that L = k(x)(Yij) and

(2) Lσ = k(x)σ(= k).

Since for any A ∈ GL`(k(x)) the linear difference equation σ(y) = Ay has a fun-
damental solution matrix in Seqk (cf. proof of Theorem 4.2 below) and moreover
(Seqk)

σ = k, it is natural to ask if there exists a Picard-Vessiot extension for σ(y) = Ay
inside Seqk. In [Wib15] this question was considered for the special case g(x) = x+ 1
and α = 0. While the problem remains open in this important special case, the answer
is affirmative if deg(g) ≥ 2.

Theorem 4.2. If deg(g) ≥ 2, then for any A ∈ GL`(k(x)) there exists a Picard-Vessiot
extension for σ(y) = Ay in Seqk.

Proof. Let us first show that there exists a fundamental solution matrix Y ∈ GL`(Seqk).
We may choose n0 ∈ N such that no entry of A has a pole in {gn0(α), gn0+1(α), . . .}
and det(A) is non-zero on {gn0(a), gn0+1(a), . . .}. We set Y (n0) = I` and for n ≥ n0

we define recursively Y (n + 1) = A(gn(α))Y (n). Since det(Y (n)) 6= 0 for n ≥ n0 we
see that Y ∈ GL`(Seqk). Moreover, σ(Y ) = AY by construction.

Since (Seqk)
σ = k, it suffices to show that L = k(x)(Yij) ⊆ Seqk is a difference

pseudo field. For this, the crucial step is to show that a non-zero-divisor a of R =
k(x)[Yij , 1/ det(Y )] is a unit in Seqk.

A sequence a ∈ Seqk satisfies a linear difference equation over k(x) if and only if
it is contained in a finite dimensional σ-stable k(x)-subspace of Seqk. It follows that
sums and products of sequences that satisfy a linear difference equation also satisfy a
linear difference equation. The k(x)-subspace of Seqk generated by Yij , 1 ≤ i, j ≤ `
and 1/det(Y ) is stable under σ. Therefore, every element a ∈ R = k(x)[Yij , 1/ det(Y )]
satisfies a linear difference equation over k(x).
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Suppose a is a non-zero-divisor of R but not a unit in Seqk. Then {n ∈ N0| an = 0}
is an infinite set, since otherwise a would be a unit in Seqk. According to Corollary 1.4,
the set {n ∈ N0| an = 0} contains an arithmetic progression of the form c + dN0 with
c, d ∈ N0 and d ≥ 1. Therefore aσ(a) . . . σd(a) = 0. Since R is stable under σ, this
contradicts our assumption that a is a non-zero-divisor of R. Thus we have shown that
every non-zero-divisor of R = k(x)[Yij , 1/ det(Y )] ⊆ Seqk is a unit in Seqk.

It follows that L = k(x)(Yij , 1/det(Y )) = k(x)(Yij) agrees with the total ring of
fractions of R, i.e., L is the localization of R by all non-zero-divisors of R. Since R is
reduced, this implies that L is a finite direct sum of fields. Say L = e1L ⊕ . . . ⊕ erL
with e1, . . . , er orthogonal idempotent elements of L and the eiL’s are fields.

Note that L is stable under σ : Seqk → Seqk because σ maps units to units. Moreover,
σ is an automorphism of Seqk, so in particular it is injective on L and therefore induces
a permutation on the primitive idempotent elements e1, . . . , er of L. If (i1 . . . is) is a
cycle occurring in the cycle decomposition of this permutation, then ei1 + . . .+ eis is a
constant idempotent element. However, the only constant idempotent elements of Seqk
are 1 and 0. This shows that the permutation induced by σ on e1, . . . , er is an r-cycle.
So after renumbering the ei’s if necessary we have σ(e1) = e2, . . . , σ(er) = e1. Thus L
is a difference pseudo field. �
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