A comprehensive measurement was conducted to investigate thecharacteristics of particulate matter (PM) pollution in winter and spring of Beijing. 24-hour particle samples were collected from December to May, 20092010, and the chemical compositions of PM2.5 were analyzed. The average PM2.5 massconcentrations were (84.97+or-68.98)mug/m3 and (65.25+or-45.76) mug/m3 in winter and spring, respectively. Secondary inorganic aerosols, i.e. sulfate, nitrate, andammonium (SNA), and secondary organic aerosols (SOA) were dominant theparticulate matter, with the total fraction (SNA+SOA) of 49% and 47% in winter and spring, respectively. Due to the largesource emissionand unfavorable meteorological conditions such as low temperature, low wind speed, and high relative humidity; the contributions of secondary inorganic aerosols (NH4+. NO3. SO42) were enhanced during thepolluted days, and the nitratewas more enhanced on polluted days. The SOA was always the most importantorganic aerosolcomponentcontributedto PM2.5 in winter and spring. The contribution ofprimary organicaerosolsalso increased due tothe stagnant meteorological condition on polluted days.
China's commitment to the UNFCCC to peak its emissions by 2030, or sooner, signaled a long anticipated shift in China's model of development with far reaching consequences. Cities in China, and particularly the residential sector in cities, will be charged with making significant reductions in emissions growth even as rates of urbanization continue to climb. Focusing on Beijing and Shanghai, this paper carries out a measures-based economic analysis of low carbon investment opportunities in the residential sector. Results find significant opportunity: between 2015 and 2030, BAU levels of CO2 emissions could be reduced by 10.2% in Beijing and 6.8% in Shanghai with the adoption of economically attractive low carbon measures. While these headline results underline the case for low carbon investment in the residential sectors of these megacities in China, a closer analysis provides insights for understanding the economics of decarbonisation in cities more generally. (C) 2016 The Authors. Published by Elsevier Ltd.