Chung Y-H, Sheng L, Xing X, Zheng L, Bian M, Chen Z, Xiao L, Gong Q.
A pure blue emitter (CIEy approximate to 0.08) of chrysene derivative with high thermal stability for OLED. JOURNAL OF MATERIALS CHEMISTRY C. 2015;3:1794-1798.
Lu Z, Pan X, Ma Y, Li Y, Zheng L, Zhang D, Xu Q, Chen Z, Wang S, Qu B, et al. Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC ADVANCES. 2015;5:11175-11179.
Yaohsien C, Mengying B, Mingxiao Z, Saisai C, Zhijian C, Qihuang G, Lixin X.
Mesoscopic Optical Structure to Enhance the Out-Coupling Efficiency of Blue Top OLED. ACTA PHYSICO-CHIMICA SINICA. 2015;31:1597-1601.
Wei M, Gui G, Chung Y-H, Xiao L, Qu B, Chen Z.
Micromechanism of electroplex formation. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS. 2015;252:1711-1716.
Ma Y, Chung Y-H, Zheng L, Zhang D, Yu X, Xiao L, Chen Z, Wang S, Qu B, Gong Q, et al. Improved Hole-Transporting Property via HAT-CN for Perovskite Solar Cells without Lithium Salts. ACS APPLIED MATERIALS & INTERFACES. 2015;7:6406-6411.
AbstractA nonadditive hole-transporting material (HTM) of a triphenylamine derivative of N,N'-di(3-methylphenyl)-N,N'-diphenyl-4,4'-diaminobiphenyl (TPD) is used for the organic-inorganic hybrid perovskite solar cells. The power conversion efficiency (PCE) can be significantly enhanced by inserting a thin layer of 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) without adding an ion additive because the hole-transporting properties improve. The short-circuit current density (J(sc)) increases from 8.5 to 13.1 mA/cm(2), the open-circuit voltage (V-oc) increases from 0.84 to 0.92 V, and the fill-factor (FF) increases from 0.45 to 0.59, which corresponds to the increase in PCE from 3.2% to 7.1%. Moreover, the PCE decreases by only 10% after approximately 1000 h without encapsulation, which suggests an alternative method to improve the stability of perovskite solar cells.