科研成果 by Type: 期刊论文

2020
Kalesan B, Zhao S, Poulson M, Neufeld M, Dechert T, Siracuse JJ, Zuo Y, Li F. Intersections of Firearm Suicide, Drug-Related Mortality, and Economic Dependency in Rural America. Journal of Surgical Research. 2020;256:96–102.
2019
Li F, He Z. Credit Risk Clustering in a Business Group: Which Matters More, Systematic or Idiosyncratic Risk? McMillan D. Cogent Economics & Finance [Internet]. 2019;7:1632528. 访问链接Abstract
Understanding how defaults correlate across firms is a persistent concern in risk management. In this paper, we apply covariate-dependent copula models to assess the dynamic nature of credit risk dependence, which we define as “credit risk clustering”. We also study the driving forces of the credit risk clustering in CEC business group in China. Our empirical analysis shows that the credit risk clustering varies over time and exhibits different patterns across firm pairs in a business group. We also investigate the impacts of systematic and idiosyncratic factors on credit risk clustering. We find that the impacts of the money supply and the short-term interest rates are positive, whereas the impacts of exchange rates are negative. The roles of the CPI on credit risk clustering are ambiguous. Idiosyncratic factors are vital for predicting credit risk clustering. From a policy perspective, our results not only strengthen the results of previous research but also provide a possible approach to model and predict the extreme co-movement of credit risk in business groups with financial indicators.
Bailey HM, Zuo Y, Li F, Min J, Vaddiparti K, Prosperi M, Fagan J, Galea S, Kalesan B. Changes in Patterns of Mortality Rates and Years of Life Lost Due to Firearms in the United States, 1999 to 2016: A Joinpoint Analysis. PLOS ONE. 2019;14:e0225223.Abstract
Background Firearm-related death rates and years of potential life lost (YPLL) vary widely between population subgroups and states. However, changes or inflections in temporal trends within subgroups and states are not fully documented. We assessed temporal patterns and inflections in the rates of firearm deaths and %YPLL due to firearms for overall and by sex, age, race/ethnicity, intent, and states in the United States between 1999 and 2016. Methods We extracted age-adjusted firearm mortality and YPLL rates per 100,000, and %YPLL from 1999 to 2016 by using the WONDER (Wide-ranging Online Data for Epidemiologic Research) database. We used Joinpoint Regression to assess temporal trends, the inflection points, and annual percentage change (APC) from 1999 to 2016. Results National firearm mortality rates were 10.3 and 11.8 per 100,000 in 1999 and 2016, with two distinct segments; a plateau until 2014 followed by an increase of APC = 7.2% (95% CI 3.1, 11.4). YPLL rates were from 304.7 and 338.2 in 1999 and 2016 with a steady APC increase in %YPLL of 0.65% (95% CI 0.43, 0.87) from 1999 to an inflection point in 2014, followed by a larger APC in %YPLL of 5.1% (95% CI 0.1, 10.4). The upward trend in firearm mortality and YPLL rates starting in 2014 was observed in subgroups of male, non-Hispanic blacks, Hispanic whites and for firearm assaults. The inflection points for firearm mortality and YPLL rates also varied across states. Conclusions Within the United States, firearm mortality rates and YPLL remained constant between 1999 and 2014 and has been increasing subsequently. There was, however, an increase in firearm mortality rates in several subgroups and individual states earlier than 2014.
2018
Pino EC, Zuo Y, Olivera CMD, Mahalingaiah S, Keiser O, Moore LL, Li F, Vasan RS, Corkey BE, Kalesan B. Cohort Profile: The MULTI sTUdy Diabetes rEsearch (MULTITUDE) Consortium. BMJ Open. 2018;8:e020640.Abstract
Purpose Globally, the age-standardised prevalence of type 2 diabetes mellitus (T2DM) has nearly doubled from 1980 to 2014, rising from 4.7% to 8.5% with an estimated 422 million adults living with the chronic disease. The MULTI sTUdy Diabetes rEsearch (MULTITUDE) consortium was recently established to harmonise data from 17 independent cohort studies and clinical trials and to facilitate a better understanding of the determinants, risk factors and outcomes associated with T2DM. Participants Participants range in age from 3 to 88 years at baseline, including both individuals with and without T2DM. MULTITUDE is an individual-level pooled database of demographics, comorbidities, relevant medications, clinical laboratory values, cardiac health measures, and T2DM-associated events and outcomes across 45 US states and the District of Columbia. Findings to date Among the 135 156 ongoing participants included in the consortium, almost 25% (33 421) were diagnosed with T2DM at baseline. The average age of the participants was 54.3, while the average age of participants with diabetes was 64.2. Men (55.3%) and women (44.6%) were almost equally represented across the consortium. Non-whites accounted for 31.6% of the total participants and 40% of those diagnosed with T2DM. Fewer individuals with diabetes reported being regular smokers than their non-diabetic counterparts (40.3% vs 47.4%). Over 85% of those with diabetes were reported as either overweight or obese at baseline, compared with 60.7% of those without T2DM. We observed differences in all-cause mortality, overall and by T2DM status, between cohorts. Future plans Given the wide variation in demographics and all-cause mortality in the cohorts, MULTITUDE consortium will be a unique resource for conducting research to determine: differences in the incidence and progression of T2DM; sequence of events or biomarkers prior to T2DM diagnosis; disease progression from T2DM to disease-related outcomes, complications and premature mortality; and to assess race/ethnicity differences in the above associations.
Li F, Kang Y. Improving Forecasting Performance Using Covariate-Dependent Copula Models. International Journal of Forecasting [Internet]. 2018;34:456–476. 访问链接Abstract
Copulas provide an attractive approach to the construction of multivariate distributions with flexible marginal distributions and different forms of dependences. Of particular importance in many areas is the possibility of forecasting the tail-dependences explicitly. Most of the available approaches are only able to estimate tail-dependences and correlations via nuisance parameters, and cannot be used for either interpretation or forecasting. We propose a general Bayesian approach for modeling and forecasting tail-dependences and correlations as explicit functions of covariates, with the aim of improving the copula forecasting performance. The proposed covariate-dependent copula model also allows for Bayesian variable selection from among the covariates of the marginal models, as well as the copula density. The copulas that we study include the Joe-Clayton copula, the Clayton copula, the Gumbel copula and the Student’s t-copula. Posterior inference is carried out using an efficient MCMC simulation method. Our approach is applied to both simulated data and the S&P 100 and S&P 600 stock indices. The forecasting performance of the proposed approach is compared with those of other modeling strategies based on log predictive scores. A value-at-risk evaluation is also performed for the model comparisons.
2013
Li F, Villani M. Efficient Bayesian Multivariate Surface Regression. Scandinavian Journal of Statistics [Internet]. 2013;40:706–723. 访问链接Abstract
Methods for choosing a fixed set of knot locations in additive spline models are fairly well established in the statistical literature. The curse of dimensionality makes it nontrivial to extend these methods to nonadditive surface models, especially when there are more than a couple of covariates. We propose a multivariate Gaussian surface regression model that combines both additive splines and interactive splines, and a highly efficient Markov chain Monte Carlo algorithm that updates all the knot locations jointly. We use shrinkage prior to avoid overfitting with different estimated shrinkage factors for the additive and surface part of the model, and also different shrinkage parameters for the different response variables. Simulated data and an application to firm leverage data show that the approach is computationally efficient, and that allowing for freely estimated knot locations can offer a substantial improvement in out-of-sample predictive performance.
2010
Li F, Villani M, Kohn R. Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student t Densities. Journal of Statistical Planning and Inference [Internet]. 2010;140:3638–3654. 访问链接Abstract
A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student t densities with covariate-dependent mixture weights. The four parameters of the components, the mean, degrees of freedom, scale and skewness, are all modeled as functions of the covariates. Inference is Bayesian and the computation is carried out using Markov chain Monte Carlo simulation. To enable model parsimony, a variable selection prior is used in each set of covariates and among the covariates in the mixing weights. The model is used to analyze the distribution of daily stock market returns, and shown to more accurately forecast the distribution of returns than other widely used models for financial data.

Pages