%0 Journal Article %J Atmospheric Environment %D 2016 %T Carbonyl compounds over urban Beijing: Concentrations on haze and non-haze days and effects on radical chemistry %A Z.H. Rao %A Chen, Z. M. %A H. Liang %A H.L. Huang %A D. Huang %X

Carbonyl compounds play an important role in the formation of secondary aerosols and the cycling of free radicals in the atmosphere. We measured carbonyl compounds over urban Beijing, a megacity in the North China Plain, in summer and winter to investigate the relation of carbonyl compounds with haze and the interaction between carbonyl compounds and atmospheric radical cycling. We also determined carbonyl compounds in summer rainwater. Data of carbonyl compounds were analyzed in four cases, i.e., summer haze days (SHD), summer non-haze days (SND), winter haze days (WHD), and winter non-haze days (WND). Interestingly, the level of carbonyl compounds during WHD approached that of summer days. The results of the principal component analysis showed that there was no obvious source difference between SHD and SND. On WHD, however, more carbonyl compounds originated from the “diesel engine exhaust emission” than those on WND. We evaluated the effect of carbonyl compounds on the free radical cycling and the NO consumption potential for OH formation in the photochemical reactions using a novel ratio method. It was found that the production rate of ROx (the sum of OH, HO2 and RO2 radicals) was highest on SND, while the yield of ROx radicals from the reactions of carbonyl compounds was highest on WHD. Further, carbonyl compounds consumed more NO to produce OH radicals on WHD compared to the other three cases.

%B Atmospheric Environment %V 124 %P 207-216 %G eng