Deterministic Line-Shape Programming of Silicon Nanowires for Extremely Stretchable Springs and Electronics

Citation:

Xue Z, Sun M, Dong T, Tang Z, Zhao Y, Wang J, Wei X, Yu L, Chen Q, Xu J, et al. Deterministic Line-Shape Programming of Silicon Nanowires for Extremely Stretchable Springs and Electronics. Nano Letters [Internet]. 2017;17:7638-7646.

摘要:

Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current–voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.

附注:

PMID: 29189013

Website