Configurable multifunctional integrated circuits based on carbon nanotube dual-material gate devices

Citation:

Xiang L, Wang Y, Zhang P, Fong X, Wei X, Hu Y. Configurable multifunctional integrated circuits based on carbon nanotube dual-material gate devices. Nanoscale [Internet]. 2018;10:21857-21864.

摘要:

Nanoelectronic devices with specifically designed structures for performance promotion or function expansion are of great interest, aiming for diversified advanced nanoelectronic systems. In this work, we report a dual-material gate (DMG) carbon nanotube (CNT) device with multiple functions, which can be configured either as a high-performance p-type field-effect transistor (FET) or a diode by changing the input manners of the device. When operating as a FET, the device exhibits a large current on/off ratio of more than 108 and a drain-induced barrier lowering of 97.3 mV V−1. When configured as a diode, the rectification ratio of the device can be greater than 105. We then demonstrate configurable analog and digital integrated circuits that are enabled by utilizing these devices. The configurability enables the realization of transformable functions in a single device or circuits, which gives future electronic systems the flexibility to adapt to the diverse requirements of their applications and/or ever-changing operating environments.

Website

SCI被引用次数:5.