科研成果 by Year: 2011

2011
Wang ZB, Hu M, Yue DL, Zheng J, Zhang RY, Wiedensohler A, Wu ZJ, Nieminen T, Boy M. Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics. 2011;11:12663-12671.
Wu ZJ, Hu M, Yue DL, Wehner B, Wiedensohler A. Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation. Science China-Earth Sciences. 2011;54:1772-1778.Abstract
This study discusses the evolution of particle number size distribution during episodes of heavy pollution and new particle formation in the urban atmosphere of Beijing to quantify the effects of dynamic processes (coagulation and condensation) on the particle number size distribution. During a heavy-pollution event, an extremely low number concentration of 3-10 nm particles (on average 46 cm(-3)) was observed. This is because nucleation-mode particles were easily removed by strong coagulational scavenging of larger particles under this condition. In addition, a large condensation sink (on average 0.13 s(-1)) restrained nucleation, which is one of the major sources of nucleation-mode particles. Conversely, during a new-particle formation event, the small condensation sink (0.01 s(-1)) of precursor facilitated nucleation. At the same time, preexisting particles had little ability to scavenge newly formed particles (around 1 nm) and allowed them to grow to a detectable size (larger than 3 nm currently). We suggest that the effects of dynamic processes (coagulation and condensation) on particle size distribution should be stressed under some extreme conditions of the relatively polluted urban atmosphere in addition to traffic and meteorological factors.
Wu ZJ, Nowak A, Poulain L, Herrmann H, Wiedensohler A. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate. Atmospheric Chemistry and Physics. 2011;11:12617-12626.
Yue DL, Hu M, Zhang RY, Wu ZJ, Su H, Wang ZB, Peng JF, He LY, Huang XF, Gong YG, et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment. 2011;45:6070-6077.Abstract
New particle formation (NPF) events have been recognized as an important process contributing to the cloud condensation nuclei (CCN) formation. In this study, measurement of NPF and predicted number concentrations of CCN using kappa-Kohler theory were analyzed to assess the contribution of NPF to possible CCN. The particle growth rates of NPF events were categorized to two types: sulfur-rich (condensation and neutralization of sulfuric acid dominating net growth rate) and sulfur-poor cases. The growth rates for the sulfur-poor events were about 80% larger than those of the sulfur-rich cases on average. NPF events increased the CCN number concentrations by 0.4-6 times in the megacity area of Beijing. The enhancement ratios (the ratio of CCN number concentrations when obvious particle growth ended to that when it started during NPF events) were high for large supersaturation (S). For example, it was about 30-50% higher under S = 0.86% than under S = 0.07%. The enhancement ratios exhibited similar seasonal variation as the growth rates with a larger value in summer than other seasons, which suggested that growth rate was a key factor in the conversion of NPF to possible CCN. The enhancement ratios were higher during the sulfur-poor NPF events with larger growth rates mainly contributed by organic species, indicating that organic species were the dominant chemical contributor in facilitating the conversion of newly formed particles to possible CCN in the Beijing Megacity. (C) 2011 Elsevier Ltd. All rights reserved.
Leitte AM, Schlink U, Herbarth O, Wiedensohler A, Pan XC, Hu M, Richter M, Wehner B, Tuch T, Wu ZJ, et al. Size-Segregated Particle Number Concentrations and Respiratory Emergency Room Visits in Beijing, China. Environmental Health Perspectives. 2011;119:508-513.Abstract
BACKGROUND: The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. OBJECTIVES: The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. METHODS: Data on particle size distributions from 3 nm to 1 mu m; PM10 (PM <= 10 mu m), nitrogen dioxide (NO2), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single-and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. RESULTS: Associations of respiratory ERV with NO2 concentrations and 100-1,000 nm-particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles <50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO2. CONCLUSIONS: Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO2 concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM10 or particle number concentrations in Beijing.