
LOCAL RIGIDITY OF JULIA SETS

ZHUCHAO JI AND JUNYI XIE

Abstract. We find criteria ensuring that a local (holomorphic,
real analytic, C1) homeomorphism between the Julia sets of two
given rational functions comes from an algebraic correspondence.
For example, we show that if there is a local C1-symmetry be-
tween the maximal entropy measures of two rational functions,
then probably up to a complex conjugation, the two rational func-
tions are dynamically related by an algebraic correspondence. The
holomorphic case of our criterion will play an important role in the
authors’ upcoming proof of the Dynamical André-Oort conjecture
for curves.
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1. Introduction

A classical problem in complex dynamics is to determine when two
rational maps of degree at least two have the same Julia set. This prob-
lem has been studied by many authors [BE87] [Bea92] [Din00] [Ere89]
[Lev90] [LP97] [SS95]. In certain situations (e.g., if the Julia set is a
circle or P1(C)), the shape of the Julia set contains few information. So
it is also interesting to ask when two rational maps have the same max-
imal entropy measure. Note that a rational map of degree at least two
has a unique maximal entropy measure. A result of Levin-Przytycki
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[LP97] shows that in this case the two rational functions are dynami-
cally related by an algebraic correspondence. Such rigidity issues have
recently played important roles in arithmetic dynamics [BD11] [FG22]
[GNY19].

The first aim of this paper is to study the following more general
question:

Question 1.1. Can we classify the local (holomorphic, real analytic,
C1) homeomorphisms between the Julia sets (or maximal entropy mea-
sures) of two given rational functions of degree at least two?

This question is inspired by [DFG22, Problem in page 3] proposed
by Dujardin-Favre-Gauthier. We expect that under reasonable condi-
tions, probably up to a complex conjugation, such two endomorphisms
are dynamically related i.e. for endomorphisms f, g on P1(C) of degree
at least 2, they are called dynamically related if there exist positive
integers a and b and an irreducible algebraic curve Z in P1(C)×P1(C)
such that Z is periodic under (fa, gb). By [Xie22, Proposition 3.14.],

we may take (a, b) = ( lcm{deg f,deg g}
deg f

, lcm{deg f,deg g}
deg g

). Moreover, we ex-

pect that h itself comes from the algebraic correspondence Z. This lo-
cal rigidity question was recently studied by Dujardin-Favre-Gauthier
[DFG22]and by Luo [Luo21] in the holomorphic case.

Remark 1.2. We could not expect a rigidity result for local C0-
homeomorphisms. Indeed for two rational maps in the same stable
component, by λ-Lemma [McM16, Theorem 4.1], their maximal en-
tropy measures (hence Julia sets) are homeomorphic via a quasiconfor-
mal homeomorphism.

To state our main results, we first introduce some notations. Let
g be an endomorphisms on P1(C) of degree at least 2. Let µg be the
maximal entropy measure for g and Jg be the Julia set of g.

Denote by σcon : P1(C)→ P1(C) the anti-holomorphic bijection z 7→
z. For every endomorphism g on P1(C) denote by g : P1(C) → P1(C)

the endomorphism z 7→ g(z). It is clear that Jg = σcon(Jg) and we
have σcon ◦ g = g ◦ σcon.

Julia sets of special types. Recall the following result of Eremenko
[EVS11, Theorem 1 and the first paragraph in page 2].

Theorem 1.3. There is an open subset V of P1(C) such that Jg ∩ V
is not empty and contained in a C1-smooth curve if and only if Jg is
contained in a circle.
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Definition 1.4. Let Cg be the smallest real analytic subset of P1(C)
containing Jf .

By Theorem 1.3, Cg is P1(C) if Jg is not contained in a circle, oth-
erwise, Cg is the unique circle containing Jg.

Definition 1.5. We say that Jg is smooth if it equals to P1(C), a circle,
or a segment.

By Theorem 1.3 and [Mil11, Corollary 4.11], Jg is smooth if and if
it is C1-smooth at some point in Jg.

Definition 1.6. As in [JX22, Section 1.1], we call g exceptional if it is
a Lattès map or semiconjugates to a monomial map.

It is clear that when g is exceptional, Jg is smooth and µg is equiv-
alent to the Lebesgue measure on Jg.

1.1. Main results. In our first result, we answer Question 1.1 under
a measure theoretic assumption. The holomorphic case of Theorem
3.1 will play an important role in the authors’ upcoming proof of the
Dynamical André-Oort conjecture for curves [JX23].

Theorem 1.7 (Theorem 3.1, 6.1 and 7.1). Let f, g be two endomor-
phisms on P1(C) of degree at least 2. Assume that one of them is
non-exceptional. Let µ (resp. ν) be a non-atomic invariant ergodic
probability measure with positive Lyapunov exponent of f (resp. g). Let
U ⊂ P1(C) be a connected open subset such that U ∩ Cg is connected
and U ∩Jg 6= ∅. Let h : U → h(U) ⊆ P1(C) be a homeomorphism such
that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U) 1;

(ii) h∗(ν) is equivalent to µ on h(U).

Then the following statements holds:

Holomorphic case: If h is holomorphic, then there exist pos-
itive integers a and b and an irreducible algebraic curve Z in
P1(C) × P1(C) such that Z is preperiodic under (fa, gb) and
contains the graph {(h(x), x), x ∈ U} of h.

Real analytic case: If h is real analytic and orientation pre-
serving, then there exist positive integers a and b and an ir-
reducible algebraic curve Z in P1(C) × P1(C) such that Z is

1For two measures µ1, µ2, we write µ1 ∝ µ2 if they are proportional, i.e. there
exists c > 0 such that µ1 = cµ2.



4 ZHUCHAO JI AND JUNYI XIE

preperiodic under (fa, gb) and contains the graph {(h(z), z), z ∈
U ∩ Cf} of h. Moreover, if Jf or Jg is not contained in any
circle, then h is holomorphic.

C1 case: If h is C1, then up to change f to its complex conju-
gation f , there exist positive integers a and b and an irreducible
algebraic curve Z in P1(C)×P1(C) such that Z is periodic under
(fa, gb). Moreover, if Jf or Jg is P1(C), then h is conformal.

Here a homeomorphism h : U → h(U) on a open subset U is called
conformal if h is holomorphic or antiholomorphic on every connected
component of U .

Remark 1.8. One may take µ, ν to be µf and µg respectively. Then
Theorem 1.7 completely answers the measure version of Question 1.1
in the holomorphic and real analytic cases. Our answer in the C1 case
is less precise (c.f. Remark 1.14).

Remark 1.9. The holomorphic case of Theorem 3.1 was proved earlier
by Dujardin-Favre-Gauthier [DFG22] under the following additional
assumptions: (1) h maps a repelling periodic point of g to a preperiodic
point of f ; (2) µ = µf and ν = µg; (3) h∗(ν) is strongly equivalent to
µ on h(U), i.e. there exists C > 0 such that 1

C
µ ≤ h∗(ν) ≤ Cµ.

Our second result answers Question 1.1 under a non-uniform hyper-
bolic assumption (see condition (ii) in the below theorem) which is
satisfied by e.g. Topological Collet-Eckmann maps [PRL07, Section
1.1, Theorem E, Lemma 7.2] and Weakly Hyperbolic maps in the sense
of Rivera Letelier-Shen [RLS14, Definition 2.1 and 2.2, Corollary 6.3].
Examples of Weakly Hyperbolic maps in the sense of Rivera Letelier-
Shen can be found in [RLS14, Fact 2.4].

Theorem 1.10 (Theorem 3.2, 6.2 and 7.2). Let f, g be two endomor-
phisms on P1(C) of degree at least 2. Assume that one of them is
non-exceptional. Let U ⊂ P1(C) be a connected open subset such that
U ∩ Cg is connected and U ∩ Jg 6= ∅. Let h : U → h(U) ⊆ P1(C) be a
homeomorphism such that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) the Hausdorff dimension of non-conical points of g is 0 (c.f.
Definition 3.3).

Then the following statements holds:

Holomorphic case: If h is holomorphic, then there exist pos-
itive integers a and b and an irreducible algebraic curve Z in
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P1(C) × P1(C) such that Z is preperiodic under (fa, gb) and
contains the graph {(h(x), x), x ∈ U} of h.

Real analytic case: If h is real analytic and orientation pre-
serving, then there exist positive integers a and b and an ir-
reducible algebraic curve Z in P1(C) × P1(C) such that Z is
preperiodic under (fa, gb) and contains the graph {(h(z), z), z ∈
U ∩ Cf} of h. Moreover, if Jf or Jg is not contained in any
circle, then h is holomorphic.

C1 case: If h is C1, then up to change f to its complex conju-
gation f , there exist positive integers a and b and an irreducible
algebraic curve Z in P1(C)×P1(C) such that Z is periodic under
(fa, gb). Moreover, if Jf or Jg is P1(C), then h is conformal.

Remark 1.11. Since holomorphic maps are real analytic, the real an-
alytic case of Theorem 1.7 and 1.10 implies the holomorphic case. But
actually the proof of the real analytic case is based on the proof of the
holomorphic case. That is the reason we state the holomorphic case
separately.

Remark 1.12. In Theorem 1.7 and 1.10, the assumption of the non-
exceptionalness is necessary (see [DFG22, Remark 2.13]).

Remark 1.13. When Cg 6= P1(C), there are infinitely many local real
analytic homeomorphisms whose restrictions to Cg are the same as h.
So in the real analytic case of Theorem 1.7 and 1.10, it is necessary to
restrict h to Cg.

Remark 1.14. If h in the real analytic case of Theorem 1.7 (resp.
1.10), does not preserve the orientation, then σcon ◦ h preserves the
orientation. So we may apply Theorem 1.7 (resp. 1.10), for f, g and
σcon ◦ h.

Remark 1.15. The C1 case of Theorem 1.7 and 1.10 is less precise than
the holomorphic or the real analytic case. We showed that, probably up
to a complex conjugation, f and g are dynamically related. However,
we can not show that the graph of h has intersection with Z.

Combing the holomorphic case of Theorem 1.7 and [DFG22, Theo-
rem 4.1], we get the following consequence for polynomial maps.

Corollary 1.16. Let f, g be two polynomial endomorphisms on P1(C)
of degree at least 2. Assume that one of g is non-exceptional and

(1) either Jg is disconnected;
(2) or Jg is connected and locally connected.
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Let U ⊂ P1(C) be a connected open subset. Let h : U → h(U) ⊆ P1(C)
be a biholomorphic map such that h(U ∩ Jg) = h(U) ∩ Jf ; if Jf is
smooth, we assume further that h∗(µg) ∝ µf on h(U). Then there
exist positive integers a and b and an irreducible algebraic curve Z in
P1(C) × P1(C) such that Z is preperiodic under (fa, gb) and contains
the graph {(h(x), x), x ∈ U} of h.

Remark 1.17. Corollary 1.16 was proved by Luo [Luo21] in the case
where f and g are polynomials with the same degree and Jg is con-
nected and locally connected, and it was proved by Dujardin-Favre-
Gauthier [DFG22] in the case g is a Topological Collet-Eckmann poly-
nomial (Topological Collet-Eckmann maps automatically satisfy (1) or
(2)).

Our another aim is to improve local conjugacies to algebraic cor-
respondences. For instance, we prove the rigidity of marked length
spectrums of real rational maps. See Section 4 for details.

Theorem 1.18. Let f, g be two endomorphisms on P1(C) of degree at
least 2 defined over R such that f is non-exceptional. Let Nf (resp. Ng)
be R ∪ {∞} or be a compact interval contained in R ∪ {∞}. Assume

(i) there exists a homeomorphism h : Nf → Ng such that h ◦ f =
g ◦ h on Nf ;

(ii) f |Nf
has positive topological entropy and for every periodic point

x ∈ Nf we have |dfn(x)| = |dgn(h(x))|, where n is the period of
x.

Then there exists an irreducible algebraic curve Γ ⊂ P1(C) × P1(C)
which is periodic under (f, g), movrover the intersection of V and the
graph of h contains a Cantor set.

We also get rigidity results for conformal expanding repeller (CER)
(c.f. Theorem 4.3) and horseshoe (c.f. Theorem 6.4).

1.2. Sketch of the proof. An important idea in our proofs of The-
orem 1.7 and 1.10 is to study the dynamics at a point x which is
“general” in a certain sense. This idea has been already used by Levin-
Przytycki in their classification of rational maps with identical maximal
entropy measures [LP97], and this idea is also crucial in the authors’
upcoming proof of the Dynamical André-Oort conjecture for curves
[JX23]. On the other hand, the strategy in [DFG22] is rather different.
They worked on preperiodic points and the proof involves entire curves
and positive currents.

Let f, g be two endomorphisms on P1(C) of degree at least 2. Assume
that one of them is non-exceptional. Let U ⊂ P1(C) be a connected
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open subset such that U∩ Cg is connected and U∩Jg 6= ∅. Let h : U →
h(U) ⊆ P1(C) be a (holomorphic, real analytic, C1) homeomorphism
such that h(U ∩ Jg) = h(U) ∩ Jf ; if Jf is smooth, we assume further
that h∗(µg) ∝ µf on h(U).

If one of f, g is exceptional, then Jf and Jg are smooth. Then
by [Zdu90], both of them are exceptional. So both f and g are non-
exceptional.

We define a point in U ∩ Jg to be bi-conical for (g, h, f) if it is
not g−preperiodic, and there are positive constants r, R,K and two
sequences of positive integers nj → +∞, mj → +∞, j ≥ 1 such that

(i) gnj : Wj → B(gnj(x), r) is injective and Wj ⊂ U , where Wj is
the connected component of g−nj(B(gnj(x), r)) containing x;

(ii) the map hj := fmj ◦ h ◦ gnj
: B(gnj(x), r) → P1(C) is injective

and satisfies

B(fmj(h(x)), R/K) ⊂ hj(B(gnj(x), r)) ⊂ B(fmj(h(x)), R),

where gnj
is the inverse map of gnj : Wj → B(gnj(x), r).

Our first step is to show the existence of bi-conical points for (g, h, f).
Under condition (ii) of Theorem 1.10, this is easy to show via the
constructions of CERs. Under condition (ii) of Theorem 1.7, the proof
is more delicate. In Lemma 3.14, we show that ν-a.e. point in U is
bi-conical for (g, h, f) via ergodic theory. Moreover, the set of times
G = {ni, i ≥ 0} can be asked to have positive lower density. This was
done in Section 3.

We first prove the holomorphic case in Section 3, which is the foun-
dation of the real analytic and the C1 case. Assume the existence of
a bi-conical point x for (g, h, f). By Montel’s theorem, we can con-
struct a normal family {hi : D → P1(C)} of injective holomorphic
maps on some disk D with D ∩ Jg 6= ∅ and satisfy condition (i) of
Theorem 1.7 (and Theorem 1.10). Moreover, every limit of this family
is non-constant. Applying Levin’s result [Lev90, Theorem 1] (see also
Theorem 5.1), we construct two horseshoes in Jg and Jf respectively
and a holomorphic conjugacy between them. Applying a generalized
form (c.f. Theorem 2.2) of a theorem of Inou [Ino11, Theorem 2] based
on Eremenko’s theorem [Ere89, Theorem 2] (c.f. Theorem 2.3), we
show that the conjugacy can be improved to an algebraic correspon-
dence. This implies the holomorphic case of Theorem 1.7 and 1.10.
Generalized Inou’s theorem was discussed in Section 2.

There are three ingredients in the above argument which not apply
to the real analytic case directly. The first one is Montel’s theorem.



8 ZHUCHAO JI AND JUNYI XIE

We replace it by Lemma 6.3. The second one is Levin’s result [Lev90,
Theorem 1]. For this, we replace it by Theorem 5.3, which general-
izes [Lev90, Theorem 1] to the real analytic setting. The third one is
Theorem 2.2. We replace it by our rigidity result for horseshoes (c.f.
Theorem 6.4). This was done in Section 5 and 6.

To prove the C1 case, our idea is to reduce it to the real analytic
case. From a bi-conical point x for (g, h, f), we construct a sequence
{hi : D → P1(C)} of injective C1-maps on some disk D with D ∩
Jg 6= ∅ converging to a real analytic map H which satisfyies condition
(i) of Theorem 1.7 (and Theorem 1.10). This reduces the C1 case
of Theorem 1.10 to the real analytic case. The C1 case of Theorem
1.7 is more delicate, since condition (ii) of Theorem 1.7 may not be
satisfied by H. To solve this problem, we need the fact that the times
set G = {ni, i ≥ 0} has positive lower density. We construct the
sequence {hi : D → P1(C)} based on a chosen subsequence nij , j ≥ 0
of G. One show that, under this choice, gni,j(x) converges to a point
p ∈ D which is bi-conical for (g,H, f) (c.f. Lemma 7.5). Then the
argument in the real analytic case can be applied to (p, g,H, f), which
concludes the proof. This was done in Section 7.

Acknowledgement. We would like to thank Donyi Wei for his proof
of Lemma 6.3.

The first-named author would like to thank Beijing International
Center for Mathematical Research in Peking University for the invita-
tion. The second-named author Junyi Xie is supported by NSFC Grant
(No.12271007).

2. A generalized Inou’s theorem

The aim of this section is to prove the following theorem, which will
be used in the proof of Theorem 3.1.

Theorem 2.1. Let f, g be two non-Lattès endomorphisms on P1(C) of
degree at least 2. Assume that

(i) there exists a connected open set U ⊂ P1(C) and an open subset
U ′ ⊂ U such that f(U ′) ⊂ U , f : U ′ → U is non-injective, and
f : U ′ → U has a repelling fixed point;

(ii) there exists a non-constant holomorphic map h : U → P1(C)
such that h ◦ f = g ◦ h on U ′.

Then there exists an irreducible algebraic curve Γ ⊂ P1(C) × P1(C)
which is invariant under (f, g) and contains the graph of h.
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In [Ino11], Inou proved the above result when f : U ′ → U is polynomial-
like. His proof indeed works in the general case. We give a proof of
Theorem 2.1 for the convenience of the readers. The main ingredients
of the proof are Inou’s construction [Ino11, Theorem 2] and Eremenko’s
theorem [Ere89, Theorem 2] as follows:

Theorem 2.2 (Inou). Let f, g be two endomorphisms on P1(C). Let
U ⊂ P1(C) be an open set. Let h : U → P1(C) be a non-constant
holomorphic map. Let Γ0 := {(z, h(z)) : z ∈ U} ⊂ P1(C) × P1(C) be
the graph of h. Consider the forward invariant set

Γ :=
⋃
n≥0

F n(Γ0)

of the product map F := (f, g). Then there exists a Riemann surface X
and holomorphic maps G : X → X and π : X → P1(C) × P1(C) such
that π(X) = Γ, π ◦G = F ◦ π on X and has the following properties:

(i) Let φi := pi ◦ π, where pi : P1(C) × P1(C) → P1(C) is the pro-
jection to the i-th coordinate. Then there exists an open subset
V ⊂ X such that π(V ) = Γ0 and φ1 : V → U is biholomorphic.

(ii) The cardinality of the preimages of a point in X by G is not
greater than deg f · deg g.

(iii) If U is connected and there exists U ′ ⊂ U such that f(U ′) ⊂ U ,
and h ◦ f = g ◦ h on U ′, then X is connected, φ1 ◦ G = f ◦ φ1

on X and φ2 ◦G = g ◦ φ2 on X.

Theorem 2.3 (Eremenko). Let R,G be two endomorphisms on P1(C)
such that degG ≥ 2. Let φ be a meromorphic function in C or in C∗
with an essential singularity at ∞. If φ satisfies φ ◦G = R ◦ φ, then R
is a Lattès map and G is exceptional of monomial type.

Proof of Theorem 2.1. We first construct Γ0,Γ, X,G, πi, φ and V as in
Theorem 2.2. We only need to show that Γ = π(X) is an irreducible
algebraic curve in P1(C)×P1(C). Once this holds, since Γ contains the
graph of h, it is invariant under (f, g).

By the assumptions (i) and (ii) of Theorem 2.1 and by Theorem
2.2, X is connected, and G : X → X is non-injective and has a re-
pelling fixed point. Hence X can not be a hyperbolic Riemann surface.
Therefore X is biholomorphic to P1(C), a torus C/Λ, C or C∗.

In the first two cases X is projective, hence φ1 and φ2 are finite
morphisms, Then Γ = π(X) is an irreducible algebraic curve in P1(C)×
P1(C). In the case X = C or C∗, by Theorem 2.2 (ii), G is a polynomial
map in the case X = C, and G(z) = zm for some m ∈ Z in a suitable
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coordinate in the case X = C∗. By assumption (ii) in Theorem 2.1,
since f and G are conjugated by φ1 on U ′, G is non-injective, i.e. G
has degree at least 2. By Theorem 2.2 (iii), we have φ1 ◦ G = f ◦ φ1

on X and φ2 ◦ G = g ◦ φ2 on X. Since f and g are not Lattès, by
Theorem 2.3, φ1 and φ2 must be finite morphisms. Hence Γ = π(X)
is an irreducible algebraic curve in P1(C) × P1(C). This finishes the
proof. �

3. Holomorphic local rigidity of Julia sets

The aim of this section is to prove the following two theorems.

Theorem 3.1. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Assume that one of them is non-exceptional. Let µ (resp.
ν) be a non-atomic invariant ergodic probability measure with positive
Lyapunov exponent of f (resp. g). Let U ⊂ P1(C) be a connected open
subset such that U ∩ Supp ν 6= ∅. Let h : U → h(U) ⊆ P1(C) be a
biholomorphic map such that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) h∗(ν) is equivalent to µ on h(U).

Then there exist positive integers a and b and an irreducible algebraic
curve Z in P1(C)×P1(C) such that Z is preperiodic under (fa, gb) and
contains the graph {(h(x), x), x ∈ U} of h.

Theorem 3.2. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Assume that one of them is non-exceptional . Let U ⊂ P1(C)
be a connected open subset and let h : U → h(U) ⊆ P1(C) be a biholo-
morphic map. Assume that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) the Hausdorff dimension of non-conical points of g is 0.

Then there exists positive integers a and b and an irreducible alge-
braic curve Z in P1(C)×P1(C) such that Z is preperiodic under (fa, gb)
and contains the graph {(h(x), x), x ∈ U} of h.

3.1. Bi-conical points.

Definition 3.3. Let g be an endomorphisms on P1(C) of degree at
least 2. A point x ∈ Jg is called conical if there exists r > 0 and a
sequence of positive integers nj → +∞ such that

gnj : Wj → B(gnj(x), r)
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is injective, where Wj is the connected component of g−nj(B(gnj(x), r))
containing x.

Lemma 3.4. In the setting of Definition 3.3 we have

|dgnj(x)| → +∞.
Proof. Assume by contradiction that by passing to a subsequence of
{nj} there exists M > 0 such that |dgnj(x)| < M . Shrink r if necessary
such that 2r < diam (Jg). By Koebe one-quarter theorem Wj contains
the disk D := B(x, r/(4M)). This implies gnj(D) ⊂ B(gnj(x), r) for
every j ≥ 1, contradicts to the fact Jg ⊂ gnj(D) when nj large enough.

�

Let f, g be two endomorphisms on P1(C) of degree at least 2. Let
U ⊂ P1(C) be an open subset and let h : U → h(U) ⊆ P1(C) be a
homeomorphism.

Definition 3.5. A point x ∈ U ∩ J (g) is called bi-conical for (g, h, f)
if it is not g-preperiodic, for which there are positive constants r, R,K
and two sequences of positive integers nj → +∞, mj → +∞, j ≥ 1
such that

(i) gnj : Wj → B(gnj(x), r) is injective and Wj ⊂ U , where Wj is
the connected component of g−nj(B(gnj(x), r)) containing x;

(ii) the map hj := fmj ◦ h ◦ gnj
: B(gnj(x), r) → P1(C) is injective

and satisfies

B(fmj(h(x)), R/K) ⊂ hj(B(gnj(x), r)) ⊂ B(fmj(h(x)), R),

where gnj
is the inverse map of gnj : Wj → B(gnj(x), r);

It is clear that, if x is bi-conical for (g, h, f), h(x) ∈ Jf .
Remark 3.6. For n,m ≥ 0, if gn : W → B(gn(x), r) is injective and
W ⊂ U , where W is the connected component of g−n(B(gn(x), r))
containing x and fm is injective on h(W ), then gn(x) is bi-conical for
fm ◦ h ◦ gn, where gn is the inverse map of gn : W → B(gn(x), r).

3.2. Holomorphic rigidity via bi-conical points.

Lemma 3.7. Let f, g be two non-exceptional endomorphisms on P1(C)
of degree at least 2. Let U ⊂ P1(C) be a connected open subset and let
h : U → h(U) ⊆ P1(C) be a biholomorphic map such that h(U ∩ Jg) =
h(U) ∩ Jf , if Jf is smooth, we assume further that h∗(µg) ∝ µf on
h(U). Assume that there is a point x ∈ U ∩ Jg which is bi-conical
for (g, h, f), then Then there exists positive integers a and b and an
irreducible algebraic curve Z in P1(C)×P1(C) such that Z is preperiodic
under (fa, gb) and contains the graph {(h(z), z), z ∈ U} of h.
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Proof. By Lemma 3.4 we have

(3.1) |dgnj(x)| → +∞.
Shrink r if necessary, we may further assume that there is C > 1

such that for every j ≥ 1 we have

C−1 < |dhj(x)/dhj(y)| < C

for every y ∈ B(gnj(x), r). By passing to a subsequence of {(nj,mj)},
we may assume that gnj(x) converges. Then there exists a disk D′

centered at the limit point and with radius r/4. We may assume that
gnj(x) ∈ D′ for every j ≥ 1. Let D be the disk of radius r/2 and has
the same center with D′. Then we have

B(gnj(x), r/4) ⊂ D ⊂ B(gnj(x), r)

for every j ≥ 1. By Montel’s theorem, {hj|D} is a normal family and ev-
ery limit map in this family is non-constant. Cover Jf by finitely many
disks of radius R/(8CK). By passing to a subsequence of {(nj,mj)},
there exists a disk V in this finite family such that fmj(h(x)) ∈ V for
every j ≥ 1. By (ii) for every j ≥ 1, we have

V ⊂ B(fmj(h(x)), R/(4CK)) ⊂ hj(B(gnj(x), r/4)) ⊂ hj(D).

For every j ≥ 1 the following maps are well defined

σj := hj ◦ h−11 |V : V → P1(C).

By our construction σj are injective holomorphic maps with bounded
distortion, moreover the diameter of σj(V ) are uniformly bounded form
above and from below. Then {σj} is a normal family and every limit
map in this family is non-constant. By our construction, we have σj(V ∩
Jf ) = σj(V ) ∩ Jf , i.e. σj are local symmetries of J (f). When Jf is
smooth, using the total invariance of maximal entropy measures, for
every j ≥ 1 we have (hj)∗(ν) ∝ µ on hj(D), where ν and µ are maximal
entropy measures of g and f . As a consequence we have (σj)∗(µ) ∝ µ
on σj(V ). Now by Levin’s result [Lev90, Theorem 1] (see also Theorem
5.1), since f is non-exceptional, {σj} is a finite set. By passing to a
subsequence we may assume that σj = σj0 on V for every j ≥ j0. This
implies hj = hj0 on D for every j ≥ j0. Without loss of generality we
may assume j0 = 1.

The definition of hj, j ≥ 1 shows that

fmj ◦ h ◦ gnj
= fm1 ◦ h ◦ gn1

on D. By (3.1), we have mj → +∞. By passing to a subsequence,
we may assume nj > max(n1, n2) and mj > max(m1,m2) for every
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j > 2. For j > 2 let Uj be the connected component of g−(nj−n1)(D)
containing gn1(x). Thus we have

fmj−m1 ◦ h1 = h1 ◦ gnj−n1

on Uj. Similarly for j > 2 let U ′j be the connected component of
gn2−nj(D) containing gn2(x). Thus we have

fmj−m2 ◦ h2 = h2 ◦ gnj−n2

on U ′j. Since h1 = h2 on D we have

fmj−m2 ◦ h1 = h1 ◦ gnj−n2

on U ′j.
Since x is not a preperiodic point, we have gn1(x) 6= gn2(x). By (3.1)

we know that the diameter of Uj and U ′j shrink to 0 when j → +∞.

Hence we may choose p > 2 such that Up ∩ U ′p = ∅ and Up ∪ U ′p ⊂
D. The two maps gnp−n1 : Up → D and gnq−n2 : U ′p → D are both
biholomorphic. Let

W1 := gnp−n1(U
′
p) ⊂ Up,

where gnp−n1 is the inverse map of gnp−n1 : Up → D, and let

W2 := gnp−n2(Up) ⊂ U ′p,

where gnq−n2 is the inverse map of gnp−n2 : U ′p → D.
LetW := W1∪W2 ⊂ D, set a := 2mp−m1−m2 and b := 2np−n1−n2,

then we have
fa ◦ h1 = h1 ◦ gb

on W . Moreover gb : W → D has two repelling fixed point, and is
non-injective.

By Lemma 2.1 there exists an irreducible algebraic curve Γ ⊂ P1(C)×
P1(C) which is invariant under (fa, gb) and contains the graph of h1,
i.e. the set {(h1(w), w) ∈ P1(C)× P1(C) : w ∈ D} .

It remains to show the there exists an irreducible algebraic curve Z
containing the graph of h that is preperiodic under (fa, gb). We need
the following lemma:

Lemma 3.8. Let Z ⊂ P1(C)×P1(C) be an irreducible algebraic curve.
Assume there exist m ≥ 0 and n ≥ 0 such that (fm, gn)(Z) = Γ. Then
Z is preperiodic under (fa, gb).

Proof. Passing to an iteration of (fa, gb), we can further assume that
min {a, b} > max {n,m}. For every l ≥ 1, since Γ is invariant under
(fa, gb), we have

(fal, gbl)(Z) = (fa(l−1)+a−m, gb(l−1)+b−n)(Γ) = (fa−m, gb−n)(Γ).
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This means that the (fa, gb)-forward images of Z are all contained
in the curve (fa−m, gb−n)(Γ), which implies that Z is preperiodic under
(fa, gb). �

Let Z ′ := {(h(w), w) ⊂ P1(C)× P1(C) : w ∈ U} be the graph of h.
Then we have

(fm1 , gn1)(Z ′) ⊂ Γ.

Let Z be the irreducible component of (fm1 , gn1)−1(Γ) containing Z ′.
Since Γ is irreducible we have

(fm1 , gn1)(Z) = Γ.

By the above lemma, Z is preperiodic under (fa, gb) and contains the
graph of h. This finishes the proof. �

3.3. Existence of bi-conical points via ergodic theory. We recall
the asymptotic density of subsets of Z>0.

Definition 3.9. Let A be a subset of positive integers. The asymptotic
lower/upper density of A is defined by

d(A) := lim inf
n→∞

|A ∩ [0, n− 1]|/n,

and
d(A) := lim sup

n→∞
|A ∩ [0, n− 1]|/n.

If d(A) = d(A), we set d(A) := d(A) = d(A) and call it the asymptotic
density of A.

The proof of the following lemma was implicitly contained in [LP97,
Lemma 1]. For completeness we give a proof here.

Lemma 3.10 (Levin-Przytycki). Let g be an endomorphism on P1(C)
of degree at least 2. Let ν be a g-invariant ergodic probability measure
with positive Lyapunov exponent. Then for every ε > 0 there is r >
0 such that for ν-a.e. x ∈ P1(C), there exists a subset A = Ax of
positive integers such that d(A) > 1 − ε, and every n ∈ A satisfies
that if we denote by W the connected component of g−n(B(gn(x), r))
containing x, then the map gn : W → B(gn(x), r) is biholomorphic and
has bounded distortion,

1/2 < |dgn(x)/dgn(y)| < 2,

for all y ∈ W .

Proof. Let J := Supp ν. Consider the Rohlin’s natural extension
(J̃ , g̃, ν̃) of (J, g, ν). For n ∈ Z denote πn : J̃ → J the projection
to the n-th coordinate. Then for ν̃-a.e. x̃ ∈ J̃ there exists r(x̃) > 0
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such that for every positive integer n, if W is the connected component
of g−n(B(x, r(x̃))) containing π−n(x̃) where x := π0(x̃), then the map
gn : W → B(x, r(x̃)) is biholomorphic and has bounded distortion,

1/2 < |dgn(x)/dgn(y)| < 2,

for all y ∈ W . Moreover r(x̃) is a measurable function in x̃. See
Przytycki-Urbanski [PU10, Theorem 11.2.3].

For fixed ε > 0, there is r > 0 such that ν̃(F̃ ) > 1−ε where F̃ := {x̃ ∈
J̃ : r(x̃) > r}. By Birkhoff ergodic theorem, there is a subset G̃ with
ν̃(G̃) = 1 such that for every x̃ ∈ G̃, we have d(A(x̃)) = ν̃(F̃ ) > 1− ε,
where A(x̃) :=

{
n ≥ 1 : g̃n(x̃) ∈ F̃0

}
. Then ν(π0(G̃)) = 1. For x ∈

π0(G̃), pick x̃ ∈ π−10 (x)∩ G̃ and set Ax := Ax̃. Then d(Ax) > 1− ε and
(x,Ax, r) has the bounded distortion property we need. This concludes
our proof. �

Let g be an endomorphism on P1(C) of degree at least 2. We let L
be a constant strictly larger than the maximum of |dg| on P1(C) w.r.t.
the spherical metric. Let x ∈ P1(C) satisfying an ≥ n log λ−Q , where
an := log |dgn(x)|, λ > 1 and Q > 0. We define a function αg,x as
follows.

Definition 3.11. The function αg,x : Z≥0 → Z≥0 is defined as follows:
for each m ∈ Z≥0, αg,x(m) is the minimal n ∈ Z≥0 such that an ≥
m logL.

Lemma 3.12. The function αg,x has the following properties:

(i) it is strictly increasing, i.e. αg,x(m + 1) > αg,x(m) for every
m ∈ Z≥0;

(ii) m ≤ αg,x(m) ≤ d(m logL+Q)/ log λe.

Proof. We first prove (i). By the definition of αg,x, we clearly have
αg,x(m + 1) ≥ αg,x(m). Assume by contradiction that αg,x(m + 1) =
αg,x(m) = n for some n ∈ Z≥1. Then an ≥ (m+ 1) logL, hence

an−1 = an − log |dg(gn−1(x))| ≥ m logL,

contradicts to our assumption that αg,x(m) = n.
Next we prove (ii). Since an ≥ n log λ−Q holds for every n ∈ Z≥0,

we get ad(m logL+Q)/ log λe ≥ m logL. The definition of L implies that
am ≤ m logL. This concludes the proof. �

As a direct corollary of Lemma 3.12 we have:
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Corollary 3.13. Let A ⊂ Z≥0 be a subset such that d(A) = δ, where
0 ≤ δ ≤ 1. Then we have:

(log λ/ logL)δ ≤ d(αg,x(A)) ≤ d(αg,x(A)) ≤ δ.

Let U be a connected open subset of P1(C). Let K > 1, we say a
homeomorphism h : U → h(U) ⊆ P1(C) is K-biLipschitz if for every
distinct x, y ∈ U , K−1(x, y) ≤ d(h(x), h(y)) ≤ Kd(x, y), where d(·, ·)
is the distance function on P1(C). We say that h has biLipschitz if it
is K-biLipschitz for some K > 1. If h is K-biLipschitz, then for every
disk B(x, r) ⊂ U , we have B(h(x), r/K) ⊂ h(D) ⊂ B(h(x), Kr) for
some r > 0.

Lemma 3.14. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Let µ (resp. ν) be an invariant ergodic probability measure
with positive Lyapunov exponent of f (resp. g). Let χµ (resp. χν) be
the Lyapunov exponent of µ (resp. ν). Let U ⊂ P1(C) be a connected
open subset such that U ∩ Supp ν 6= ∅. Let L be a constant larger than
the maximum of |df | and |dg| on P1(C). Let h : U → h(U) ⊆ P1(C) be
a K-biLipschitz homeomorphism such that h∗(ν) is equivalent to µ on
h(U).

Then for ν-a.e. point x, it is not g−preperiodic and for sufficiently
small ε > 0, there exist positive constants r, R, C, a subset G ⊂ Z≥0
with

d(G) ≥ χµ
logL

(
1− logL

χν
ε

)
− ε > 0

and a function θ : G→ Z≥0 such that:

(i) lim
n→∞

1
n

log |dgn(x)| → χν;

(ii) for every n ∈ G, if W is the connected component of the set
g−n(B(gn(x), r)) containing x, then the map

gn : W → B(gn(x), r)

is biholomorphic and has bounded distortion,

1/2 < |dgn(x)/dgn(y)| < 2,

for all y ∈ W ;
(iii) for every n ∈ G, the map

hn := f θ(n) ◦ h ◦ gn : B(gn(x), r)→ P1(C)

is injective and satisfies

B

(
f θ(n)(h(x)),

R

16K2L2

)
⊂ f θ(n)(h(W )) ⊂ B(f θ(n)(h(x)), R)

where gn is the inverse map of gn : W → B(gn(x), r) in (ii);
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(iv) θ is strictly increasing and satisfies

(χν/ logL)n− C ≤ θ(n) ≤ (logL/χµ)n+ C

for every n ∈ G.

Proof. Let F be the subset Supp ν with ν(F ) = 1 constructed in
Lemma 3.10 for the map g, ε < χν/ logL and the radius r > 0. For
x ∈ F , the subset of Z≥0 associated with x is denoted by Ax. Let
H := F ∩ U , then ν(H) > 0. Since h∗(ν) is equivalent to µ on h(U),
µ(h(H)) > 0. Let E be the subset Supp µ with µ(E) = 1 constructed
in Lemma 3.10 for the map f , ε and radiusR > 0. The subset of Z≥0
associated with y is denoted by By. We have E∩h(H) 6= ∅. By Birkhoff
ergodic theorem We can choose a point x ∈ h−1(E ∩ h(H)) such that
x satisdies (i). Since ν is non-atomic, we can further choose x to not
be g−preperiodic. Set A := Ax and B := Bh(x).

Recall the definition of the function αg,x in Definition 3.11 w.r.t. the
constant L. We set α := αg,x and α′ := αf,h(x). We set

G := A ∩ (α ◦ α′−1(B)).

Then by limn→∞
1
n

log |dgn(x)| → χν and Corollary 3.13, we have

d(G) ≥ χµ
logL

(
1− logL

χν
ε

)
− ε > 0.

By our construction the condition (ii) automatically holds.

It remains to cunstruct the function θ, constant C and verify they
satisfy (iii) and (iv). For every n ≥ 1 we set an := log |dgn(x)| and
bn := log |dfn(h(x))|. By (ii), for every n ∈ A, we have

B(x, re−an/2) ⊂ W ⊂ B(x, 2re−an),

where W is the connected component of g−n(B(gn(x), r)) containing
x. Since h is K-biLipschitz we have

B(h(x), e−anr/2K) ⊂ h(W ) ⊂ B(h(x), 2Ke−anr).

Shrink the constants r and R if necessary we may assume that
2KrL < R < 4KrL. Then we have

(3.2) B

(
h(x),

Re−an

16K2L

)
⊂ h(W ) ⊂ B

(
h(x),

Re−an

2L

)
.

We define the function θ as θ(n) := α′ ◦α−1(n). Since α−1 and α′ are
strictly increasing, θ is strictly increasing. For every n ∈ G we have

α−1(n) logL ≤ an < (α−1(n) + 1) logL,
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hence
an/ logL− 1 < α−1(n) ≤ an/ logL.

Apply
α′−1(k) logL ≤ bk < (α′−1(k) + 1) logL

to k := θ(n) we have

α−1(n) logL ≤ bθ(n) < (α−1(n) + 1) logL.

Hence

(3.3) an − logL < bθ(n) < an + logL.

By Lemma 3.10, (3.2) and (3.3) we have

B(f θ(n)(h(x)), R/(16K2L2)) ⊂ f θ(n)(h(W )) ⊂ B(f θ(n)(h(x)), R),

hence (iii) holds.

Finally noticing L is larger than the maximum of |df | and |dg|, thus
the second part of (iv) holds by Lemma 3.12 (ii). The proof is finished.

�

3.4. Holomorphic rigidities.

Proof of Theorem 3.1. If one of f, g is exceptional, then Jf and Jg are
smooth. Then by [Zdu90], both of them are exceptional. So both of
them are non-exceptional. When Jg (hence Jf ) is smooth, we may ask
µ := µf and ν := µg.

After shrinking U , we may assume that h is biLipschitz. Then The-
orem 3.1 is a simple consequence of Lemma 3.7 and Lemma 3.14. �

Proof of Theorem 3.2. If one of f, g is exceptional, then Jf and Jg are
smooth. Then by [Zdu90], both of them are exceptional. So both of
them are non-exceptional.

LetK be a CER (c.f. [JX22, Definition 7.1]) of f such thatK ⊂ h(U)
which is not a periodic orbit. Such K always exists, see for exam-
ple [JX22, Example 7.4]. It is well known that K has positive Haus-
dorff dimension, see Przytycki-Urbanski [PU10, Corollary 9.1.7]. Hence
h−1(K) also has positive Hausdorff dimension. By our assumption (ii),
there exists a point x ∈ U ∩ Jg such that h(x) ∈ K, x is g-conical
and is not g-preperiodic. Hence there exists r > 0 and a sequence of
positive integers nj → +∞ such that

gnj : Wj → B(gnj(x), r)

is injective and having bounded distortion, here Wj is the connected
component of g−nj(B(gnj(x), r)) containing x. Shrink U if necessary,
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we may assume that h is bi-Lipschitz. By Lemma 3.4, there exist
C1 > 1 and rj > 0, rj → 0 such that

B(h(x), rj/C1) ⊂ h(Wj) ⊂ B(h(x), rj).

After replacing f by a suitable iterate, we may assume that f(K) =
K. Since f |K is uniformly expanding, we know that |dfn(y)| ≥ Cλn for
every n ≥ 1 and y ∈ K, where C > 0, λ > 1 are constants. Moreover
d(K,C(f)) > 0. Pick 0 < R < d(K,C(f)). Let mj be the minimal
positivet integer such that |dfmj(h(x))|rj ≥ R/(2L), where L is the
supremum of |df | on P1(C). Hence we have

R/(2Lrj) ≤ |dfmj(h(x))| < R/(2rj).

Let Vj be the connected component of f−mj(B(fmj(h(x)), R)). Then

fmj : Vj → B(fmj(h(x)), R)

is biholomorphic for every j ≥ 1. Shrink R if necessary, by Koebe
distortion theorem, we have

1− 99−99 < |dfmj(h(x))/dfmj(y)| < 1 + 99−99,

for all y ∈ Vj.
Let V ′j be the connected component of f−mj(B(fmj(h(x)), R/(100C1L)).

Then we have
h(Wj) ⊂ B(h(x), rj) ⊂ Vj

and
V ′j ⊂ B(h(x), rj/L) ⊂ h(Wj).

Hence the map hj := fmj ◦h ◦ gnj
: B(gnj(x), r)→ P1(C) is injective

and satisfies

B(fmj(h(x)), R/(100C1L)) ⊂ hj(B(gnj(x), r)) ⊂ B(fmj(h(x)), R),

where gnj
is the inverse map of gnj : Wj → B(gnj(x), r). By Lemma

3.7, the conclusion follows. �

4. Improve local conjugacies to algebraic
correspondences

4.1. Extend a local conjugacy on a CER. The following definition
was introduced by Sullivan [Sul86].

Definition 4.1. Let f be an edomorphism on P1(C). An compact set
K ⊂ P1(C) is called a CER of f if

(i) There exists m ≥ 1 and a neighborhood V of K such that
fm(K) = K and K = ∩n≥0f−mn(V ).

(ii) fm : K → K is expanding.
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(iii) fm : K → K is topologically exact, i.e. for every open set
U ⊂ K there exists n ≥ 0 such that fmn(U) = K.

Theorem 4.2. Let f, g be two non-Lattès endomorphisms on P1(C) of
degree at least 2. Let Kf (resp. Kg) be an invariant CER of f (resp.
g) which is not a periodic orbit. Let U (resp. V ) be a neighborhood
of Kf (resp. Kg). Let h : U → V be a biholomorphic map such
that h ◦ f = g ◦ h on Kf . Then for every connected component U0 of
U such that U0 ∩ Kf 6= ∅, there exists an irreducible algebraic curve
Γ ⊂ P1(C) × P1(C) which is periodic under (f, g) and contains the
graph of h|U0.

Proof. Let D be a small disk intersecting Kf such that D ⊂ U0. Fix a
point x ∈ Kf ∩D. Topological exactness of f |Kf

implies the preimages
of x under f |Kf

are dense in Kf . Let xn ∈ Kf such that fn(xn) = x.
Let Dn be the connected component of f−n(D) containing xn. Expand-
ingness of f |Kf

implies that diamDn ≤ Cλ−n for some C > 0, λ > 1.
Since Kf is not a periodic orbit, for m large enough, we can choose
two points xm ∈ Kf , x

′
m ∈ Kf such that fm(xm) = x and fm(x′m) = x,

moreover Dm ⊂⊂ D,D′m ⊂⊂ D, and Dm ∩ D′m = ∅, where Dm (resp
D′m) is the connected component of f−m(D) containing xm (resp. x′m).
Set W := Dm ∪D′m. Then fm : W → D has two repelling fixed point
and is non-injective. Moreover h ◦ fm = gm ◦ h on Kf ∩W . Since h
is holomorphic and Kf ∩ D is non-isolated, we have h ◦ fm = gm ◦ h
on W . By Theorem 2.1, there exists an irreducible algebraic curve
Γ ⊂ P1(C)× P1(C) which is invariant under (fm, gm) and contains the
graph of h|D. Then Γ also contains the graph of h|U0 . The proof is
finished. �

The following theorem will be used in the proof of Theorem 1.18. It
can be deduced from Sullivan’s rigidity theorem for non-linear CERs
[Sul86] (see [JX22, Theorem 7.7] for the precise statement and see
[PU10, Section 10.2] for a proof), together with a characterization the-
orem of linear CERs [JX22, Theorem 1.1].

Theorem 4.3. Let f and g be two edomorphisms on P1(C) of degree at
least 2 such that f is non-exceptional. Let (f,Kf ), (g,Kg) be two CERs,
f(Kf ) = Kf , g(Kg) = Kg. Let h : Kf → Kg be a homeomorphism
such that h ◦ f = g ◦ h on Kf . Then the following two conditions are
equivalent

(i) for every periodic point x ∈ Kf we have |dfn(x)| = |dgn(h(x))|,
where n is the period of x;
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(ii) there exist a neighborhood U of Kf and a neighborhood V of Kg

such that h extends to a holomorphic or antiholomorphic map
h : U → V .

Moreover, in case that any (hence every) condition of (1), (2) holds,
then we have

(iii) there is an algebraic curve Γ ⊆ P1(C) × P1(C) whose ir-
reducible components are all periodic such that the graph of
h′ : Kf → Kg′ is contained in Γ, where (g′, h′) is either (g, h)
or (g, τcon ◦ h).

4.2. Improve a local conjugacy on an interval.

Definition 4.4. Let M be a smooth manifold and let X ⊂ M be a
compact subset. Let f be a continuous map defined on a neighborhood
U of X such that f(X) ⊂ X. Then X is called a repeller if there exists
an open set U ′ ⊂ U such that X = ∩n≥0f−n(U ′).

We need the following lemma. A proof can be found in Przytycki-
Urbanski [PU10, Lemma 6.1.2].

Lemma 4.5. Let M be a smooth manifold and let X ⊂M be a compact
subset. Let f be a continuous map defined on a neighborhood U of X
such that f(X) ⊂ X. Then we have:

(i) Assume f |U is an open map. If X is a repeller then f |X is an
open map.

(ii) Conversely if f : X → X is distance expanding and f |X is an
open map, then X is a repeller.

Remark 4.6. Let N be a smooth manifold, M ⊂ N be a submanifold,
and X ⊂ M be a compact subset. Let f : N → N be a continuous
map such that f(M) ⊂M . Then there are two definitions for X being
repellers, depending on the ambient space is M or N . In the following
we will emphasize that K is seen as a subset of which ambient space.

Proof of Theorem 1.18. By one-dimensional Katok’s theory [Gel10], pos-
itive topological entropy of f : Nf → Nf implies that there exists a
repeller K of f |Nf

(here the ambient space is Nf ), which is topologi-
cally exact and uniformly expanding. Passing to an iterate of f and g,
we assume K is f -invariant and there exists a repelling f -fixed point
x ∈ K ∩ N◦f . By assumption (ii), h(x) ∈ h(K) is a repelling fixed
point of g. Let I be a small open interval centered at h(x). Since
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g : h(K) → h(K) is topologically exact, one can construct the follow-
ing horseshoe map: there are two open intervals I1 ⊂⊂ I, I2 ⊂⊂ I,
such that gm : I1 → I and gm : I2 → I are bijective for some m ≥ 1,
moreover there exists L > 1 such that |dgm(y)| > L for every y ∈ I1∪I2.
We define

Kg := {y ∈ I1 ∪ I2 : fmn(y) ∈ I1 ∪ I2 for every n ≥ 0} .

Then Kg is a repeller of g|Ng (here the ambient space is Ng) which is
also topologically exact and unifromly expanding. Since h(K) is also
a repeller of g|Ng (here the ambient space is Ng), shrink the interval
I if necessary, we have Kg ⊂ h(K). We define Kf := h−1(Kg). Then
Kf is a repeller of f |Nf

(here the ambient space is Nf ) which is also
topologically exact and unifromly expanding.

By Lemma 4.5 (i), since fm (resp. gm) is an open map on a neigh-
borhood of Kf (resp. Kg), f

m : Kf → Kf and gm : Kg → Kg are
open maps. Again by Lemma 4.5 (ii), Kf (resp. Kg) is a repeller of
f (resp. g), where the ambient space is P1(C). Hence Kf and Kg are
CERs. By Theeorem 4.3, h|Kf

can be extended to a holomorphic or

antiholomorphic map h̃ on a neighbprhoof U of Kf . Since Kf ⊂ R∪∞,

we can actually let h̃ be holomorphic. Thus we have h̃ ◦ fm = gm ◦ h̃
on Kf . By Theorem 4.2, there exists an irreducible algebraic curve
Γ ⊂ P1(C) × P1(C) which is periodic under (f, g), and contains the
graph of h|Kf

. We conclude the result since by our construction, the
graph of h|Kf

is a Cantor set. �

5. Variants of Levin’s theorem

Let f be an endomorphism of P1(C) of degree at least 2. Let U be
a connected open subset of f with U ∩ Jf 6= ∅.

We reformulate Levin’s theorem [Lev90, Theorem 1] in the following
form.

Theorem 5.1. Let σn : U → P1(C), n ≥ 0 be a a family of injective
holomorphic maps satisfying σn → id as n→∞ and σ−1n (Jf ) = Jf∩U .
If in additional Jf is smooth, we assume further that (σn)∗(νf ) ∝ µf |U .
Then either f is exceptional or σn = id for n sufficiently large.

A small modification of Levin’s original proof implies the following
result for C1-maps.

Theorem 5.2. Let σn : U → P1(C), n ≥ 0 be a family of injective C1-
maps satisfying σn → id as n→∞ in C1-topology and σ−1n (Jf ) = Jf ∩
U . If in additional Jf is smooth, we assume further that (σn)∗(µf ) ∝
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µf |U . If there is a repelling fixed point o of f such that σn(o) 6= o for
every n ≥ 0, then f is exceptional.

Proof. After shrinking U , we may ask U to be a linearization domain of
o. In a suitable coordinate z, we may let U = {|z| ≤ 1}, o be the origin
and f is z 7→ λz with |λ| > 1. Write σn = an + bn(z) + εn(z) where
bn ∈ M2×2(R), εn(0) = 0 and dεn(0) = 0. Our assumption shows that
an 6= 0 for every n ≥ 0, an → 0, bn → id and εn → 0 in C1-topology.
After shrinking U , we may assume that there are sequence cn, dn > 0
tending to 0 such that |εn(z)| ≤ cn and |dεn(z)| ≤ dn on U.

After taking subsequence, we may assume that there is a sequence
ln ≥ 0 tending to +∞ such that anλ

ln → a and |a| ∈ (0, 0.1). View λ
as a matrix in M2×2(R). Define

δn(z) := λlnσn(λ−lnz) = anλ
ln + λlnbnλ

−ln(z) + λlnε(λ−lnz).

We have anλ
ln → a, tr(λlnbnλ

−ln) = tr(bn) → 2, det(λlnbnλ
−ln) =

bn → 1 and the conformal index of λlnbnλ
−ln is the same as bn, which

tends to 1, we have λlnbnλ
−ln tends to id. We have |λlnε(λ−lnz)| ≤

|λlnλ−lndn| which tends to 0. So δn tends to the map Ta : z 7→ z + a
locally uniformly. Then we have T−1a (Jf ) = Jf ∩ U . If in additional
Jf is smooth, we have that T ∗a (µf ) ∝ µf |U . Then we may conclude the
proof by Levin’s original proof of [Lev90, Theorem 1]. �

In the rest of this section, we prove the following real analytic version
of Levin’s theorem.

Theorem 5.3. Assume that Jf is not contained in any circle. Let
σn : U → P1(C), n ≥ 0 be a family of injective real analytic maps
satisfying σn → id as n → ∞ in C1-topology and σ−1n (Jf ) = Jf ∩ U .
If in additional Jf is P1(C), we assume further that (σn)∗(µf ) ∝ µf |U .
Then f is exceptional or σn = id for n sufficiently large.

Proof. Assume σn 6= id for infinitly many n, we need to show f is
exceptional. After taking subsequence we assume σn 6= id for every
n ≥ 0. After shrinking U , we may ask U to be a linearization domain
of o. In a suitable coordinate z, we may let U = {|z| ≤ 1}, o be the
origin and f is z 7→ λz with |λ| > 1. By Theorem 5.2, we may assume
that σn(0) = 0 for all n ≥ 0.

We first treat the case where there is i ≥ 0 such that dσi(0) = id. Let
δn be the map z 7→ λnσi(λ

−nz). Then δn → id in C1-topology. Since
σi 6= id, we have δn 6= id. For every repelling periodic point p ∈ U ,
let Np ⊆ Z≥0 be the set of n ≥ 0 such that δn(p) = p. If there is a
repelling periodic point p ∈ U such that Z≥0 \ Np is infinite, then we
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conclude the proof by Theorem 5.2 for δn, n ∈ Z≥0 \Np and p. Now we
may assume that Z≥0 \ Np is finite for every repelling periodic point
p ∈ U . For every repelling periodic point p ∈ U and n ∈ Np, we have
λ−np ∈ Fix(δ0). We claim that δ0(p) = p. Since δ0 is real analytic and
δ0 6= id, the set Fix(δ0) is a proper and real analytic closed subset of
U , this implies λr ∈ R for some r ≥ 1. Then Fix(δ0) contains the line
pR. Hence δ0(p) = p. This implies the claim. Since repelling periodic
points are dense in Jf , Jf ∩U ⊆ Fix(δ0). Since Fix(δ0) is a proper and
real analytic closed subset of U , we conclude the proof by Theorem 1.3.

We now assume that dσi(0) 6= id for every i ≥ 0. Note that for every
i ≥ 0, there is a sequence nj →∞ such that the maps z 7→ λnjσi(λ

−njz)
tends to dσi(0). After replacing σi by dσi(0), we may assume that all
σi are R-linear. Since Jf is not contained in a circle, by Theorem 1.3,
there are repelling periodic points p, q ∈ U such that 0, p, q are not
collinear. Then {p, q} 6⊆ Fix(σn) for every n ≥ 0. We may assume that
for infinitely many n ≥ 0, p 6∈ Fix(σi). We then conclude the proof by
Theorem 5.2. �

6. Real analytic local rigidity of Julia sets

The aim of this section is to prove the following two theorems.

Theorem 6.1. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Assume that one of them is non-exceptional. Let µ (resp. ν) be
a non-atomic invariant ergodic probability measure with positive Lya-
punov exponent of f (resp. g). Let U ⊂ P1(C) be an open subset such
that U∩Cg is connected and U∩Supp ν 6= ∅. Let h : U → h(U) ⊆ P1(C)
be a real analytic homeomorphism preserving the orientation such that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) h∗(ν) is equivalent to µ on h(U).

Then there exist positive integers a and b and an irreducible algebraic
curve Z in P1(C)×P1(C) such that Z is preperiodic under (fa, gb) and
contains the graph {(h(z), z), z ∈ U ∩Cf} of h. Moreover, if Jf or Jg
is not contained in any circle, then h is holomorphic.

Theorem 6.2. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Assume that one of them is non-exceptional . Let U ⊂ P1(C)
be an open subset such that U ∩ Cf is connected. Let h : U → h(U) ⊆
P1(C) be a real analytic homeomorphism preserving the orientation.
Assume that
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(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) the Hausdorff dimension of non-conical points of g is 0.

Then there exist positive integers a and b and an irreducible algebraic
curve Z in P1(C)×P1(C) such that Z is preperiodic under (fa, gb) and
contains the graph {(h(z), z), z ∈ U ∩Cf} of h. Moreover, if Jf or Jg
is not contained in any circle, then h is holomorphic.

6.1. Replacement of Montel’s theorem. The proof of the following
lemma is given by Donyi Wei.

Lemma 6.3. Let gn : D → D, n ≥ 0 be a sequence of holomorphic
maps. Assume that there is a sequence rn ∈ (0, 1) tending to 0 such
that gn(D) ⊆ D(0, rn). Let h : D → D be a C1-homeomorphism with
|dh| ≤ C on D for some C > 0 Let fn : D(0, Crn) → D, n ≥ 0 be
a sequence of holomorphic maps. Set hn := fn ◦ h ◦ gn, n ≥ 0. Then
there is a subsequence nj, j ≥ 0 such that hnj

converges in C1-topology.
Moreover lim

j→∞
hnj

is real analytic.

Assume further that dh(0) is invertible and fn, gn are injective, then
any non-constant limit H ′ = lim

j→∞
hnj

is a homeomorphism to its image

and its conformal index is the same as dh(0) at every point in D.

Proof. For r ∈ (0,+∞), define [r] : C → C the map z 7→ rz. Then we
have

hn = (fn ◦ [rn]|D(0,C)) ◦ ([r−1n ] ◦ h ◦ [rn]|D) ◦ ([r−1n ] ◦ gn).

It is clear that {fn ◦ [rn]|D(0,C), n ≥ 0} and {[r−1n ] ◦ gn, n ≥ 0} are
normal families. Set H := dh(0). We view H as a R-linear map from
C to C. Then h(z) = H(z) + e(z) for some C1-map e with e(0) = 0
and de(0) = 0. There is a continuous function ε : [0, 1] → [0, C] with
ε(0) = 0 such that

|de(z)| ≤ ε(|z|).
Then

[r−1n ] ◦h ◦ [rn]|D = [r−1n ] ◦H ◦ [rn]|D + [r−1n ] ◦ e ◦ [rn] = H + [r−1n ] ◦ e ◦ [rn].

We claim that [r−1n ] ◦ e ◦ [rn]→ 0 in C1-topology as n→∞. For every
z ∈ D, we have

|[r−1n ] ◦ e ◦ [rn](z)| ≤ r−1n rnε(rn) = ε(rn)

and

|d([r−1n ] ◦ e ◦ [rn])(z)| = |de(rnz)| ≤ ε(rn),
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which concludes the claim. Then there is a subsequence nj, j ≥ 0 such
that fni

◦ [rni
]|D(0,C) and [r−1ni

] ◦ gni
converges to holomorphic maps F

and G respectively. Then lim
j→∞

hnj
= F ◦H ◦G is real analytic.

Assume further that dh(0) is invertible and fn, gn are injective. As-
sume that hnj

, j ≥ 0 converges to a non-constant map H ′. After taking
subsequence, we may assume that fni

◦ [rni
]|D(0,C) and [r−1ni

] ◦ gni
con-

verges to holomorphic maps F and G respectively. By Hurwitz’s theo-
rem, F (resp. G) is either constant or injective. Since H ′ = F ◦H ◦G
is non-constant, both F and G are injective. Since H is a homeomor-
phism, then H ′ = F ◦H ◦ G is a homeomorphism to its image. Since
F and G are holomorphic, the conformal index of H ′ is the same as
dh(0) at every point in D. �

6.2. Real analytic rigidity of horseshoe.

Theorem 6.4. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Assume that one of f and g is non-exceptional. Let D be a
simply connected open subset of P1(C) and W1,W2 be disjoint simply
connected open subsets of D compactly contained in D such that g :
Wi → D is biholomorphic, i = 1, 2. Let h : D → h(D) ⊆ P1(C) be
a real analytic homeomorphism to its image such that h ◦ g|W1∪W2 =
f ◦ h|W1∪W2 . Then h is conformal.

Moreover, there exists an irreducible algebraic curve Γ ⊂ P1(C) ×
P1(C) which is invariant under (f, g′) and contains the graph of h′

where (g′, h′) equals to (g, h) or (g, σcon ◦ h) depending on whether h is
holomorphic or anti-holomorphic.

Proof. If h is conformal, the last statement follows from Theorem 2.1.
We only need to we show that h is conformal.

We may assume that g is non-exceptional. Set W := W1 ∪ W2.
Set Kg := {x ∈ W | gn(x) ∈ D for every n ≥ 0} and Kf := h(Kg).
Then (Kg, g

b) and (Kf , f
a) are CERs. By (iii) of Theorem 4.3, f is

non-exceptional. If Kg is not contained in any proper real analytic
closed subset of D, by (iii) of Theorem 4.3, h is conformal. Then
we may assume that Kg is contained in a proper real analytic closed
subset of D. By (ii) of Theorem 4.3, there is a conform map h′ on
some neighborhood D′ of Kg such that h′|Kg = h|Kg . Then for every
connected component D′′ of g−1(D′) ∩ D′, if D′′ ∩ Kg 6= ∅, we have
h′|D′′ ◦ g = f ◦ h′|D′′ .

There is a connected open subset U in W ∩D′ such that Kg ∩U 6= ∅
and is contained in a closed smooth connected curve γ in U . Let p
be any periodic point in U ∩ Kg. Then there exists m ≥ 1 such that
dgm(p) ∈ (1,+∞). We fix this m.
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There is a connected open neighborhood U1 of p such that gi(U1) ⊆
W ∩D′ for every i = 0, . . . ,m and the map gm : U1 → gm(U1) conju-
gates to a linear map z ∈ λ−1D 7→ λz ∈ D where λ = dgm(p) has norm

> 1. We may take U1 sufficiently small such that ∪mi=1g
i(U1) 6= Kg.

We have h ◦ gm|U1 = fm ◦ h|U1 and h′ ◦ gm|U1 = fm ◦ h′|U1 . Af-
ter replacing f, h, h′ by f, σcon ◦ h, σcon ◦ h′, we may assume that h′

is holomorphic on gm|U1 . Since λ ∈ R, we get dfm(h(p)) = λ. Fix
the coordinate z on gm(U1) such that gm(U1) = {|z| < 1} = D and
gm|U1 : U1 → gm(U1) is z 7→ λz. Choose a suitable coordinate on
h1(U1), we may ask h′ = id. Then we have h ◦ (λz) = λ ◦ h(z) in this
coordinate. Since λ ∈ (1,+∞) and h is real analytic, h is R-linear
in this coordinate. Then Kg ∩ gm(U1) ⊆ Fix(h′). Then Fix(h′) is a
line or h′ = id. If h′ = id, then we are done, so we may assume that
Fix(h′) is a line. After replacing z by a rotation, we may assume that
Kg ∩ gm(U1) ⊆ Fix(h′) = gm(U1) ∩ R.

Pick a sequence pi, i ≥ 0 such that p0 = p, pi ∈ Kg, pi−1 =
gm(pi), i ≥ 1 and pi → p as i → ∞. There is l0 ≥ 1 such that
pi ∈ U1 for every i ≥ l0. For every r ∈ (0, 1), let Vi(r) be the con-
nected component of g−im(D(0, r)) containing pi. For r sufficiently
small, we have gi(Vl0(r)) ⊆ D′ ∩ W for every i = 0, . . . , l0m and
gl0m|Vl0 (r) : Vl0(r) → D(0, r) is an isomorphism. Then for l ≥ l0 suffi-

ciently large, we have Vl(r) ⊂⊂ D(0, r). Since glm|Vl(r) : Vl(r)→ D(0, r)
is an isomorphism, there is a unique glm-fixed point q ∈ Vl(r). Set
µ := dglm(q). We have µ ∈ (1,+∞). Since q ∈ Kg ∩ gm(U1), q ∈ R in
our coordinate. Let w be the coordinate w = z − q. Since q ∈ Fix(h)
and h is linear in the coordinate z, h is linear in the coordinate w. There
is a local holomorphic map φ at q, taking form φ(w) = w+O(w2) such
that φ ◦ glm = µφ. Since glm ◦ h = h ◦ glm locally at q, we get

µ(φ ◦ h ◦ φ−1)(w) = (φ ◦ h ◦ φ−1)(µw).

The same argument as in the above paragraph shows that φ ◦ h ◦ φ−1
is R−linear in w. Hence in coordinate w, we get φ ◦ h ◦ φ−1 = d(φ ◦ h ◦
φ−1)(0) = h. Then we get φ ◦ h = h ◦ φ. Then for w sufficiently closed
to 0, we have

dφ(h(w))× h = h× dφ(w)

as (2× 2)-matrix. We first assume that dφ(w) is not a constant. Since
dφ(w) ∈ R, there is w 6= 0 sufficiently closed to 0 such that α :=
arg dφ(w) 6∈ πZ. If h is not conformal, it maps a circle C centered at 0
to an ellipse E which is not a circle. Assume that the major axis of E
is contained in the line eiθR with θ ∈ [0, π). Since dφ(w) and dφ(h(w))
are conformal, the major axis of h×dφ(C) is contained in the line eiθR
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and the major axis of dφ(h(w))×h(C) is contained in the line ei(θ+α)R.
Since i(θ + α) − iθ 6∈ πZ, h × dφ(C) 6= dφ(h(w)) × h(C), which is a
contradiction. So dφ(w) is a constant. In other words, φ is R−linear
in w. Hence in the coordinate z, the map gml : Vl(r) → D(0, r) is
given be that affine map z 7→ µz + (µ − 1)q. Set W ′

2 := Vl(r) and
W ′

1 := λ−lD(0, r) and W ′ := W ′
1 ∪W ′

2. Set

K ′ := {x ∈ W ′| gnlm(x) ∈ D(0, r) for every n ≥ 0}.
Then (K ′, glm) is a CER. Moreover, since in the coordinate z, both
glm|W ′

1
and glm|W ′

2
are affine, it is a linear CER [JX22, Definition 7.6

(ii)]. By [JX22, Theorem 1.1], g is exceptional, which is a contradiction.
�

6.3. Real analytic rigidity. We first prove a real analytic version of
Lemma 3.7.

Lemma 6.5. Let f, g be two non-exceptional endomorphisms on P1(C)
of degree at least 2. Let U ⊂ P1(C) be an open subset such that U ∩Cf
is connected. Let h : U → h(U) ⊆ P1(C) be a real analytic homeomor-
phism preserving the orientation, such that h(U ∩ Jg) = h(U) ∩ Jf , if
Jf is smooth, we assume further that h∗(µg) ∝ µf on h(U). Assume
that there exist a point x ∈ U ∩ Jg which is bi-conical for (g, h, f).
Then there exist positive integers a and b and an irreducible algebraic
curve Z in P1(C)×P1(C) such that Z is preperiodic under (fa, gb) and
contains the graph {(h(z), z), z ∈ U ∩Cf} of h. Moreover, if Jf or Jg
is not contained in any circle, then h is holomorphic.

Proof of Lemma 6.5. If one of f, g is exceptional, then Jf and Jg are
smooth. By [Zdu90], both of them are exceptional, which contradicts
to our assumption. So both of them are non-exceptional.

If Jg is contained in a circle, by Theorem 1.3, Jf is contained in a
circle. We may assume that Cf = Cg = R ∪ {∞}. After shrinking U ,
we may assume that there is a holomorphic injective map h′ on U such
that h′ = h on U ∩ (R∪{∞}). After replacing h by h′, we may assume
that h is holomorphic. Then we concludes the proof by Lemma 3.7.

Now assume that Jg (hence Jf ) is not contained in any circle. We
claim that h is conformal. Once this claim holds, we may conclude the
proof by Lemma 3.7.

We now prove the claim. After shrinking U , we may assume that h
is biLipschitz. Since x is biconical for (g, h, f), it is not g-preperiodic
and there are positive constants r, R,K and two sequences of positive
integers nj → +∞, mj → +∞, j ≥ 1 satisfy the conditions (i), (ii)
in Definition 3.5. Same argument as in Lemma 3.7 except replacing
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Levin’s theorem [Lev90, Theorem 1] (c.f. Theorem 5.1), by Theorem
5.3 and Montel’s theorem by Lemma 6.3, after taking subsequence, we
get W := W1 ∪W2 ⊂ D and a, b ≥ 1 as the proof of Theorem 5.3, such
that

fa ◦ h1 = h1 ◦ gb

on W . Moreover gb : Wi → D, i = 1, 2 is are holomorphic homeo-
morphisms. By Theorem 6.4, h1 is conformal. Hence h is conformal.
Since h preserves the orientation, h is holomorphic, which concludes
the proof by Lemma 3.7. �

Proof of Theorem 6.1. The proof of Theorem 6.1 is the same as the
proof of Theorem 3.1 except replacing Lemma 3.7 by its real analytic
version Lemma 6.5. �

Proof of Theorem 6.2. The proof is the same as the proof of Theorem
3.2 except replacing Lemma 3.7 by its real analytic version Lemma
6.5. �

7. C1 local rigidity of Julia sets

The aim of this section is to prove the following two theorems.

Theorem 7.1. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Let µ (resp. ν) be a non-atomic invariant ergodic probability
measure with positive Lyapunov exponent of f (resp. g). Let U ⊂ P1(C)
be an open subset such that U ∩Supp ν 6= ∅. Let U ⊂ P1(C) be an open
subset such that U ∩ Supp ν 6= ∅. Let h : U → h(U) ⊆ P1(C) be a
C1-homeomorphism such that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) h∗(ν) is equivalent to µ on h(U).

Then up to change f to f , there exist positive integers a and b and an
irreducible algebraic curve Z in P1(C)× P1(C) such that Z is periodic
under (fa, gb). Moreover, if Jf or Jg is P1(C), then h is conformal.

Theorem 7.2. Let f, g be two endomorphisms on P1(C) of degree at
least 2. Assume that one of them is non-exceptional . Let U ⊂ P1(C)
be an open subset such that U ∩ Cf is connected. Let h : U → h(U) ⊆
P1(C) be a C1-homeomorphism. Assume that

(i) h(U ∩Jg) = h(U)∩Jf ; if Jf is smooth, we assume further that
h∗(µg) ∝ µf on h(U);

(ii) the Hausdorff dimension of non-conical points of g is 0.
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Then up to change f to f , there exist positive integers a and b and an
irreducible algebraic curve Z in P1(C)× P1(C) such that Z is periodic
under (fa, gb). Moreover, if Jf or Jg is P1(C), then h is conformal.

7.1. Distances in set of positive density. Let G ⊆ Z≥0 be a subset
and l1, . . . , ls ∈ Z≥0. Let G(l1, ..., ls) be the set n ∈ G such that
n+ l1, . . . , n+ ls ∈ G.

Lemma 7.3. Let G ⊆ Z≥0 be a subset with d(G) > 0. Then for every
l ≥ 0, there is l1 ≥ l such that d(G(l1)) > 0.

Proof. We may assume that l ≥ 2. For j = 0, . . . , l, let Gj/l be the set

of n ∈ G with n = j mod l. Then there is j such that d(Gj/l) > 0.
After replacing G by Gj/l, we may assume that for distinct n1, n2 ∈ G,

|n1− n2| ≥ l. Since d(G) > 0, there is q ∈ Z≥l and a strictly increasing
sequence Ni, i ≥ 0 such that

#(G ∩ {0, . . . , Ni − 1}) ≥ Ni/q.

We may assume that Ni/100q is an integer ri. Dividing {0, ..., Ni − 1}
by ri segments Is = {100qs, . . . , 100q(s + 1) − 1}, s = 0, . . . , ri − 1. It
is clear that at least (0.99Ni)/100q2 segments Is containing at least 2
elements of G. So

d(∪100qi=1 G(i)) > 1/(200q2).

Since G(i) = ∅ for i = 1, . . . , l − 1, there is i ∈ {l, . . . , 100q} such that
d(G(i)) > 0, which concludes the proof. �

Applying Lemma 7.3 inductively, we get the following consequence.

Corollary 7.4. Let G ⊆ Z≥0 be a subset with d(G) > 0. Then there is
a strictly increasing sequence li ≥ 1, i ≥ 0 such that for every s ≥ 0,
d(G(l1, . . . , ls)) > 0.

7.2. C1-rigidity.

Proof of Theorem 7.1. If one of f, g is exceptional, we conclude the
proof by [Zdu90]. We now assume that both of them are non-exceptional.
When Jg (hence Jf ) is smooth, we may ask µ := µf and ν := µg.

After shrinking U , we may assume that h is C-biLipschitz. By
Lemma 3.14, for ν|U -a.e. point x, it is not g-preperiodic and there
are positive constants r, R,K and two strictly increasing sequences of
positive integers n′j → +∞, m′j → +∞, j ≥ 1 satisfy the condi-

tions (i), (ii) in Definition 3.5 and d(G) > 0 where G = {n′j, j ≥ 0}.
By Corollary 7.4, there is a strictly increasing sequence li ≥ 1, i ≥ 1
such that for every s ≥ 0, d(G(l1, . . . , ls)) > 0. Define the function
θ : G → Z≥0 by θ(n′i) = m′i. Then θ is strictly increasing. Pick a
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sequence nj ∈ d(G(l1, . . . , lj)), j ≥ 1 and set mj := θ(nj). After taking
subsequence, we may assume that gnj(x) converges to a point p ∈ J (f).

Define hj := fmj ◦h◦gnj
as in Lemma 3.7 and D be the disc centered

at p of radius r/2 as in the proof of Lemma 3.7. After shrinking D and
taking subsequence, by Lemma 6.3, we may assume that hj|D converges
to an injective real analytic map H. Each hj satisfies the following
condition: hj(U ∩Jg) = hj(U)∩Jf , if Jf is smooth, we assume further
that (hj)∗(µg) ∝ µf on hj(D). Hence H satisfies the same condition.

Lemma 7.5. The point p is bi-conical for (f,H, g).

By Lemma 6.5, up to change f to f , there exist positive integers
a and b and an irreducible algebraic curve Z in P1(C) × P1(C) such
that Z is periodic under (fa, gb). If Jg is not contained in a circle, by
Theorem 6.1, H is conformal. Then dh(x) is conformal by Lemma 6.3.
We conclude the proof. �

Proof of Lemma 7.5. For an open subset Ω in P1(C) and y ∈ Ω, define

ρ∗(Ω, y) := inf{r ≥ 0,Ω ⊆ B(y, r)}
and

ρ∗(Ω, y) := sup{r ≥ 0, B(y, r) ⊆ Ω}.
For every s1 ∈ G and s2 ∈ {0, . . . , s1}, let Ws1/s2 be the con-

nected component of g−(s1−s2)(B(gs1(x), r)) containing gs2(x). Denote
by gs1/s2 : B(gs1(x), r) → Ws1/s2 the inverse of the map gs1−s2 :

Ws1/s2 → B(gs1(x), r). For every u ∈ G, define h′u := f θ(u) ◦ h ◦ gu.
Set P := {ni, i ≥ 1}. after shrinking r, we may assume that h′ni

tends
to H uniformly on D. By Koebe distortion theorem, after shrinking r,
we may assume that for every s1 ∈ G and s2 ∈ {0, . . . , s1}, the injec-
tions gs1/s2 ad h′s1 has good distortion in the following sense: For every
0 < t1 ≤ t2 ≤ 1,

ρ∗(gs1/s2(B(gs1(x), t2)), g
s2(x))

ρ∗(gs1/s2(B(gs1(x), t1)), gs2(x))
≤ (1 + 99−999)

t2
t1

ρ∗(gs1/s2(B(gs1(x), t2)), g
s2(x))

ρ∗(gs1/s2(B(gs1(x), t1)), gs2(x))
≥ (1− 99−999)

t2
t1

ρ∗(gs1(B(gs1(x), t2)), h
′
s1

(gs1(x)))

ρ∗(gs1(B(gs1(x), t1)), h′s1(g
s1(x)))

≤ (1 + 99−999)
t2
t1

and
ρ∗(gs1(B(gs1(x), t2)), h

′
s1

(gs1(x)))

ρ∗(gs1(B(gs1(x), t1)), h′s1(g
s1(x)))

≥ (1− 99−999)
t2
t1
.
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For every i ≥ 0, letWi be the connected component of g−li(B(gli(q), r/2))
containing q. Let L be a constant larger than the maximum of |df | and
|dg| on P1(C). Pick ui ∈ P sufficiently large, we have ui + li ∈ G,

d(q, gui(x)) ≤ 99−99i min{r, R/K}L−li

and for every z ∈ D,

(7.1) d(H(gui(z)), h′ui(g
uiz)) ≤ 99−99i min{r, R/K}L−li .

Since d(gli(q), gui+li(x)) ≤ 99−99i min{r, R/K}, we have

B(gli+ui(x), 0.49r) ⊆ B(gli(q), r/2) ⊆ B(gli+ui(x), 0.51r).

Then gli,q := g(ui+li)/ui |B(gli (q),r/2) is injective. By Lemma 3.4 and the
assumption that g(ui+li)/ui has good distortion,

diam (g(ui+li)/ui(B(gli(q), r)))→ 0.

We may assume that for every i ≥ 1, g(ui+li)/ui(B(gli(q), r)) ⊆ B(q, 0.1r).
Set

vi := θ(ui + li)− θ(ui).

Observe that

ρ∗(g(ui+li)/ui(B(gli+ui(x), 0.49r)), gui(x)) ≥ 0.49rL−li .

Then we have

ρ∗(h
′
ui

(g(ui+li)/ui(B(gli+ui(x), 0.49r))), gui(x))

ρ∗(hui(B(gui(x), r), 0.49r))), gui(x))
≥ 0.48L−li

So

(7.2) ρ∗(h
′
ui

(g(ui+li)/ui(B(gli+ui(x), 0.49r))), gui(x)) ≥ 0.48L−liR/K.

By (7.1), we have

ρ∗(H(g(ui+li)/ui(B(gli+ui(x), 0.49r))), h′ui(g
ui(x)))

≥ρ∗(h′ui(g(ui+li)/ui(B(gli+ui(x), 0.49r))), h′ui(g
ui(x)))

− 2× 99−99i min{r, R/K}L−li
(7.3)

and

ρ∗(H(g(ui+li)/ui(B(gli+ui(x), 0.51r))), h′ui(g
ui(x)))

≥ρ∗(h′ui(g(ui+li)/ui(B(gli+ui(x), 0.51r))), h′ui(g
ui(x)))

+ 2× 99−99i min{r, R/K}L−li .
(7.4)
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By (7.2) and (7.3), we get

ρ∗(H(g(ui+li)/ui(B(gli+ui(x), 0.49r))), h′ui(g
ui(x)))

≥0.99ρ∗(h
′
ui

(g(ui+li)/ui(B(gli+ui(x), 0.49r))), h′ui(g
ui(x)))

≥0.48ρ∗(h
′
ui

(g(ui+li)/ui(B(gli+ui(x), r))), h′ui(g
ui(x))).

(7.5)

By (7.2) and (7.4), we get

ρ∗(H(g(ui+li)/ui(B(gli+ui(x), 0.51r))), h′ui(g
ui(x)))

≤1.01ρ∗(h′ui(g(ui+li)/ui(B(gli+ui(x), 0.51r))), h′ui(g
ui(x)))

≤0.52ρ∗(h′ui(g(ui+li)/ui(B(gli+ui(x), r))), h′ui(g
ui(x))).

(7.6)

So we get

ρ∗(f
vi(H(g(ui+li)/ui(B(gli(q), r/2)))), f vi(h′ui(g

ui(x))))

≥ρ∗(f vi(H(g(ui+li)/ui(B(gli+ui(x), 0.49r)))), f vi(h′ui(g
ui(x))))

≥0.47ρ∗(f
vi(h′ui(g(ui+li)/ui(B(gli+ui(x), r)))), f vi(h′ui(g

ui(x))))

≥0.47R/K.

(7.7)

and

ρ∗(f vi(H(g(ui+li)/ui(B(gli(q), r/2)))), f vi(h′ui(g
ui(x))))

≤ρ∗(f vi(H(g(ui+li)/ui(B(gli+ui(x), 0.51r)))), f vi(h′ui(g
ui(x))))

≤0.53ρ∗(f vi(h′ui(g(ui+li)/ui(B(gli+ui(x), r)))), f vi(h′ui(g
ui(x))))

≤0.53R.

(7.8)

This concludes the proof. �

Proof of Theorem 7.2. We note that if Jf or Jg is P1(C), then both
of them are P1(C). The proof of Theorem 3.2 show that there is a
bi-conical point x for (g, h, f). Moreover, if Jf = P1(C), the CER
K in the proof of Theorem 3.2 con be constructed in any given open
subset. So the bi-conical points for (g, h, f) are dense in U. As in
the proof of Theorem 7.1, one can construct a real analytic morphism
H : D → P1(C) such that H(D∩Jg) = H(D)∩Jf ; if Jf is smooth, we
assume further that H∗(µg) ∝ µf on H(U). Moreover, H is conformal
if and only if dh(x) is conformal.

Apply the argument in the proof of Theorem 3.2 again, we show that
there is a bi-conical point y for (g,H, f). By Lemma 6.5, Then up to
change f to f , there exist positive integers a and b and an irreducible
algebraic curve Z in P1(C) × P1(C) such that Z is preperiodic under
(fa, gb). Moreover, if Jf = P1(C), then H is conformal. Then dh(x) is
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conformal. Since such x can be chosen in a dense set in U and h is C1,
h is conformal. This concludes the proof. �
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