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Abstract

We prove that the dynamical Mordell–Lang conjecture in positive characteristic holds
for bounded-degree self-maps of projective varieties. The key ingredient of the proof is a
Mordell–Lang-type result for arbitrary algebraic groups over algebraically closed fields of
positive characteristic, which is also interesting on its own. Moreover, we propose a geometric
version of dynamical Mordell–Lang conjecture in positive characteristic.

1 Introduction
In this paper, as a matter of convention, every variety is assumed to be integral but the closed
subvarieties can be reducible. For a rational map f : X 99K Y between two varieties, we denote
Dom(f) ⊆ X as the domain of definition of f . Let X be a variety over an algebraically closed
field K and let f be a rational self-map of X. For a point x ∈ X(K), we say the orbit Of (x) :=

{fn(x)| n ∈ N} is well-defined if every iterate fn(x) lies in Dom(f). We denote N = Z+ ∪{0}. An
arithmetic progression is a set of the form {mk + l| k ∈ Z} for some m, l ∈ Z and an arithmetic
progression in N is a set of the form {mk + l| k ∈ N} for some m, l ∈ N.

The dynamical Mordell–Lang conjecture, which is one of the core problems in the field of
arithmetic dynamics, asserts that for any rational self-map f of a variety X over C, the return set
{n ∈ N| fn(x) ∈ V (C)} is a finite union of arithmetic progressions in N where x ∈ X(C) is a point
such that the orbit Of (x) is well-defined and V ⊆ X is a closed subvariety. There is an extensive
literature on various cases of this 0-DML conjecture (“0” stands for the characteristic of the base
field). Two significant cases are as follows:

(i) If X is a quasi-projective variety over C and f is an étale endomorphism of X, then the
0-DML conjecture holds for (X, f). See [BGT10,Theorem 1.3].

(ii) If X = A2
C and f is an endomorphism of X, then the 0-DML conjecture holds for (X, f).

See [Xie17] and [Xie,Theorem 3.2].
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One can consult [BGT16, Xie] and the references therein for more known results. However, we
remark that not much is known about the 0-DML conjecture when f is just a rational self-map
of the variety X. The following problem might reflect the issue in some sense. It seems that the
dynamical Mordell–Lang problem is not quite compatible with birational transformations. More
precisely, let X,Y be varieties over C, f, g be dominant rational self-maps of X,Y respectively and
π : Y 99K X be a birational map such that f ◦ π = π ◦ g. Even if the 0-DML conjecture holds for
(Y, g), generally we do not know how to deduce that the 0-DML conjecture holds for (X, f).

The statement of the 0-DML conjecture fails when the base field has positive characteristic.
See [BGT16,Example 3.4.5.1] for an example. Consequently, Ghioca and Scanlon proposed a
dynamical Mordell–Lang conjecture in positive characteristic. See [BGT16,Conjecture 13.2.0.1].
Here, we will introduce a slightly modified version of this conjecture. Firstly, we review the concept
of “p-normal set” introduced in [Der07,Definition 1.7].

Definition 1.1. Let p be a prime number and let q = pe for some positive integer e. Suppose
that d ∈ Z+, c0, c1, . . . , cd ∈ Q with (q − 1)ci ∈ Z for all i, c0 + c1 + · · · + cd ∈ Z and ci 6= 0 for
i = 1, 2, . . . , d. Then we define

Sq(c0; c1, . . . , cd) = {c0 + c1q
k1 + · · ·+ cdq

kd| k1, . . . , kd ∈ N} ⊆ Z.

We define a p-normal set in Z as a union of finitely many arithmetic progressions (possibly sin-
gleton) and finitely many sets of form Sq(c0; c1, . . . , cd) described as above. A p-normal set in N is
a subset of N which is, up to a finite set, equal to the intersection of a p-normal set in Z and N.

Here, we say two sets S, T are equal up to a finite set if the symmetric difference (S\T )∪(T\S)
is finite, as in [Der07].

In the rest of this article, “p-normal set” will be the abbreviation of “p-normal set in Z”.

Remark 1.2. A p-normal set intersects N is a p-normal set in N. A finite union of p-normal sets
(resp. p-normal sets in N) is still a p-normal set (resp. p-normal set in N). Moreover, aS + b

is a p-normal set (resp. p-normal set in N) if S is a p-normal set (resp. p-normal set in N) and
a, b ∈ Z (resp. N).

Now we can state the dynamical Mordell–Lang conjecture in positive characteristic.

Conjecture 1.3. (pDML, arithmetic version) Let X be a variety over an algebraically closed field
K of characteristic p > 0 and let f be a rational self-map of X. Let x ∈ X(K) be a closed
point such that the orbit Of (x) is well-defined and let V ⊆ X be a closed subvariety. Then
{n ∈ N| fn(x) ∈ V (K)} is a p-normal set in N.

This pDML conjecture is expected to be very difficult. As an evidence, the argument in
[Der07, p.189–p.190] shows that in the positive characteristic case, the return set can be arbitrarily

2



complicated even for the linear recurrence sequences (or in other words, automorphisms of the
projective space). Moreover, combining this argument with the statements in [Der07, Section 9],
one can construct examples which show that even for surjective endomorphisms of projective
varieties,

(i) one need to allow ci < 0 for some 1 ≤ i ≤ d in the definition of the p-set Sq(c0; c1, . . . , cd),
and

(ii) the phrase “up to a finite set” in the definition of “p-normal set in N” cannot be dropped.

But we believe that the return set should be a p-normal set in Z for automorphisms, i.e. there
is no need to delete finitely many elements in such case. For the latest progress on this pDML
conjecture, one may refer to [CGSZ21], [Xie23,Theorem 1.4,Theorem 1.5] and [Yan23].

People (for instance, [Xie23] and also Ghioca and Scanlon) guessed that the p-part in p-normal
sets appears in the return set only when the endomorphism f involves or “comes from” some group
actions. Otherwise, it is conjectured that the initial statement of the 0-DML conjecture should
still valid for f . We will form a rigorous conjecture towards this perspective in this paper (see
Conjecture 5.2). We think that p-sets come from bounded-degree self-maps, which is a synonym of
“come from group actions” in some sense but has a more dynamical flavor.

We shall briefly introduce how to measure the complexity of a dominant rational self-map
f : X 99K X in which X is a projective variety over an algebraically closed field. We use the
concept of the degree sequence of f . Since there are many references of this concept in the literature
(see for example [Dan20], [Tru20], [Xie23, Section 2.1] and [Yan, Section 5]), we will just state the
definition and some basic properties here.

Let L ∈ Pic(X) be a big and nef line bundle. We consider the graph Γf ⊆ X × X which
is an irreducible closed subvariety. Let π1, π2 : Γf → X be the two projections. Then π1 is a
birational proper morphism and π2 is surjective proper. We define the first degree deg1,L(f) of f
with respect to L as the intersection number (π∗

2(L) ·π∗
1(L)

dim(X)−1) on Γf . Then we get a sequence
{deg1,L(f

n)| n ∈ N} of positive integers.
For two sequences {an}, {bn} ∈ (R≥1)

N, we say that they have the same speed of growth if
{an
bn
| n ∈ N} has an upper bound and a positive lower bound. Let deg1(f) be the class of the

speed of growth of the sequence {deg1,L(fn)| n ∈ N}, which by [Dan20,Theorem 1(ii)] is irrelevant
with the choice of the big and nef line bundle L. Notice that although [Dan20,Theorem 1(ii)] was
stated for normal projective variety X, the result also holds for arbitrary irreducible projective
variety X because one can pass to the normalization of X. Then we can abuse notation and say
that deg1(f) is the degree sequence of f . We also remark that in fact deg1(f) remains the same on
different birational models. See [Dan20, top of p. 1269].

Definition 1.4. Let X be a projective variety over an algebraically closed field. We say a dominant
rational self-map f : X 99K X is of bounded-degree if deg1(f) is a bounded sequence.
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Notice that according to our definition, a bounded-degree self-map is a priori dominant.

Remark 1.5. If f is a surjective endomorphism of a projective variety X in the definition above,
then f is of bounded-degree if and only if the sequence {(fn)∗(L) ·Ldim(X)−1| n ∈ N} is bounded for
some (and hence every) ample line bundle L ∈ Pic(X).

Now we can state the main theorem of this paper.

Theorem 1.6. Let X be a projective variety over an algebraically closed field K of characteristic
p > 0 and let f be a bounded-degree self-map of X. Let x ∈ X(K) be a closed point such that the
orbit Of (x) is well-defined and let V ⊆ X be a closed subvariety. Then {n ∈ N| fn(x) ∈ V (K)}
is a p-normal set in N.

Remark 1.7. (i) We only consider bounded-degree self-maps of projective varieties in this arti-
cle, but one can also define this notion on quasi-projective varieties since the degree sequence
is independent of the choice of birational models as we have mentioned before. Then our
result automatically extends to bounded-degree self-maps of quasi-projective varieties over an
algebraically closed field of positive characteristic. Using [CGSZ21,Proposition 4.3] and imi-
tating the reduction steps in [LN], one can realize sets of the form “a finite union of arithmetic
progressions in Z along with finitely many sets of the form ‘Sq(c0; c1, . . . , cd) where c1, . . . , cd

have the same sign’” as the return sets of bounded-degree automorphisms of tori over Fp(t).

(ii) We focus on the positive characteristic case in this article, but our method is also valid for the
0-characteristic case. Notice [CS93,Theorem 7] implies that {n ∈ Z| gn ∈ X(K)} is a finite
union of arithmetic progressions in which G is an algebraic group over an algebraically closed
field K of characteristic 0, g ∈ G(K) is a closed point and X ⊆ G is a closed subvariety. By
using this result instead of Proposition 3.1 in the proof of Theorem 1.6, one can show that
the set {n ∈ N| fn(x) ∈ V (K)} is a finite union of arithmetic progressions in N if K is an
algebraically closed field of characteristic 0 (and the other conditions remain the same).

At the end of the Introduction, we describe the structure of this paper. In Section 2, we will
propose a Mordell–Lang-type result for arbitrary algebraic groups over algebraically closed fields
of positive characteristic. This result is a preliminary of our work on the dynamical Mordell–Lang
conjecture in positive characteristic and it also has its own interest. Then, in Section 3, we will
apply this result to prove Conjecture 1.3 in the case of translation of algebraic groups. After that,
we will finish the proof of Theorem 1.6 in Section 4, using the philosophy that bounded-degree self-
maps come from group actions. Finally, we will make further discussions and propose a geometric
version of the pDML conjecture in Section 5.

Acknowledgement. We thank Dragos Ghioca for comments on the first version of this article.
The second author would like to thank Chengyuan Yang for some useful discussions.
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2 Preparation: Mordell–Lang in positive characteristic
The Mordell–Lang conjecture for a semiabelian variety G over an algebraically closed field K of
characteristic 0 states that X(K) ∩ Γ is a finite union of cosets of subgroups of Γ where X ⊆ G

is a closed subvariety and Γ ⊆ G(K) is a finitely generated subgroup. This conjecture was proved
by Faltings [Fal94] in the case of abelian varieties and by Vojta [Voj96] in the general case of
semiabelian varieties. But this statement may not hold for other algebraic groups (see [GHSZ19]
for some further discussions). However, when the ground field K has positive characteristic, we are
able to describe the intersection set X(K)∩Γ where the ambient algebraic group is arbitrary. Our
argument is by combining the known results for semiabelian varieties in positive charcteristic and
certain facts for algebraic groups. This kind of observation firstly appeared in [BGM, Section 2].

We would like to name our result as the arithmetic version of the p-Mordell–Lang problem. On
the contrary, the groundbreaking work [Hru96,Theorem 1.1] is regarded as the geometric version
of the p-Mordell–Lang problem. We will make comparisons between the arithmetic version and
the geometric version, and between the p-Mordell–Lang problem and the dynamical p-Mordell–
Lang problem in Section 5. Our result is not quite concise because it is of full generality. One
may consult [MS04, Ghi] for results in the case that the ambient algebraic group is an isotrivial
semiabelian variety in positive characteristic.

Theorem 2.1. (pML, arithmetic version) Let G be an algebraic group over an algebraically closed
field K of characteristic p > 0. Let X ⊆ G be a closed subvariety and let Γ ⊆ G(K) be a finitely
generated commutative subgroup. Then X(K) ∩ Γ is a finite union of sets of the form

x0 + (π|Γ0)
−1(S)

where
• x0 ∈ Γ,
• G0 ⊆ G is an algebraic subgroup which is a semiabelian variety over K, and Γ0 = G0(K)∩Γ,
• H0 is a semiabelian variety over a finite subfield Fq ⊆ K, and F0 is the absolute Frobenius

endomorphism of H0 corresponding to Fq,
• H = H0 ×Fq K, and F = F0 ×Fq K is the Frobenius endomorphism of H,
• π : G0 → H is a surjective algebraic group homomorphism, and
• S is a subset of π(Γ0) of the form {α0 +

r∑
j=1

F nj(αj)| n1, . . . , nr ∈ N} where r ∈ N and

α0, α1, . . . , αr ∈ H(K).
Note that since Γ is assumed to be commutative, we use “ + ” for the multiply operation of

elements in Γ.

Remark 2.2. When G is itself a semiabelian variety, Theorem 2.1 is just [GY24,Theorem 1.10].
According to the notions in [GY24,Definition 1.2,Definition 1.8], S is called a groupless F -set in
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π(Γ0) and the set x0 + (π|Γ0)
−1(S) is called a pseudo-generalized F -set in Γ. Notice that although

the set S in the original definition of “pseudo-generalized F -set in Γ” is allowed to have the slightly
broader form {α0 +

r∑
j=1

F knj(αj)| n1, . . . , nr ∈ N} in which k is some positive integer, we may

assume k = 1 by viewing H as a semiabelian variety defined over Fqk .

Remark 2.3. One may consider the case when G has no nontrivial subgroup which is a semiabelian
variety. In this case, Theorem 2.1 says that G(K) is a torsion group, which can also be deduced
by statements in [Bri17]. In fact, we will use those statements in [Bri17] to deduce Theorem 2.1
from [GY24,Theorem 1.10].

In order to prove Theorem 2.1, we fix an algebraically closed field K of characteristic p > 0 in
this Section. Every algebraic group is over K unless otherwise stated.

For convenience, we will say an algebraic group satisfies the pML property if it satisfies the
result of Theorem 2.1. Our goal is to prove that every algebraic group satisfies the pML property.
As we have mentioned in Remark 2.2, [GY24,Theorem 1.10] says that semiabelian varieties satisfy
the pML property. We will firstly extend this result to commutative algebraic groups. The next
lemma is an easy but important observation.

Lemma 2.4. Let 0 → N → G → Q be an exact sequence of algebraic groups in which G (and
hence N) is commutative. If N satisfies the pML property and Q(K) is a torsion group, then G

satisfies the pML property.

Proof. Let X ⊆ G be a closed subvariety and let Γ ⊆ G(K) be a finitely generated subgroup. Let
Γ′ = N(K)∩ Γ. Since Γ is finitely generated and Q(K) is torsion, there exists a positive integer n

such that nΓ ⊆ Γ′. Therefore, Γ′ is a finite index subgroup of Γ. Write Γ =
M⊔
i=1

(xi + Γ′) in which
x1, . . . , xM ∈ Γ.

Now since X(K) ∩ Γ =
M⊔
i=1

(X(K) ∩ (xi + Γ′)), we have to show that each X(K) ∩ (xi + Γ′)

is a finite union of pseudo-generalized F -sets in Γ (for the notion, see Remark 2.2). For each
i = 1, 2, . . . ,M , denote Xi = (−xi + X) ∩ N which is a closed subvariety of N . Then we have
X(K) ∩ (xi + Γ′) = xi + ((−xi +X)(K) ∩ Γ′) = xi + (Xi(K) ∩ Γ′) because Γ′ ⊆ N(K).

Since N satisfies the pML property, each Xi(K) ∩ Γ′ is a finite union of pseudo-generalized
F -sets in Γ′. Notice that for any algebraic subgroup G0 ⊆ N , Γ0 = G0(K)∩ Γ′ is just the same as
G0(K) ∩ Γ. Then we may conclude that xi + (Xi(K) ∩ Γ′) is a finite union of pseudo-generalized
F -sets in Γ for each i = 1, 2, . . . ,M . As a result, G satisfies the pML property.

Now we can prove Theorem 2.1 for commutative algebraic groups. We will use some statements
in [Bri17], as mentioned in Remark 2.3.

Proposition 2.5. Let G be a commutative algebraic group. Then G satisfies the pML property.
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Proof. The first sentence of [Bri17,Theorem 2.11(i)] states that G has a smallest algebraic sub-
group H such that G/H is unipotent. Moreover, the proof in there indicates that there exists an
algebraic subgroup S ⊆ H which is a semiabelian variety such that H/S is a finite group (see the
exact sequence at the bottom of [Bri17, p. 689]). Now taking charK > 0 into account, we know
that both (G/H)(K) and (H/S)(K) are torsion groups. So in view of Lemma 2.4, we finish the
proof by [GY24,Theorem 1.10] (see also Remark 2.2).

Now we prove Theorem 2.1.

Proof of Theorem 2.1. Firstly, one can see that there is a smooth commutative algebraic subgroup
H ⊆ G whose underlying set is Γ. In particular, H is a commutative algebraic subgroup of G

such that Γ ⊆ H(K). Denote X0 = X ∩H which is a closed subvariety of H. Then X(K) ∩ Γ =

X0(K) ∩ Γ. But Proposition 2.5 asserts that X0(K) ∩ Γ is a finite union of pseudo-generalized
F -sets in Γ, hence so does X(K) ∩ Γ. Thus we are done.

3 An application of p-Mordell–Lang
In this Section, we prove that Conjecture 1.3 holds for translation of algebraic groups. This case is
interesting as it connects the p-Mordell–Lang problem and the dynamical p-Mordell–Lang problem.

Proposition 3.1. Let G be an algebraic group over an algebraically closed field K of characteristic
p > 0. Let g ∈ G(K) be a closed point and let X ⊆ G be a closed subvariety. Then {n ∈ Z| gn ∈
X(K)} is a p-normal set.

We need the following lemma.

Lemma 3.2. Let K,H and F be as in the statement of Theorem 2.1. Let Γ ⊆ H(K) be an infinite
cyclic subgroup. Choose a generator g of Γ and identify Γ with Z. Let S be a subset of Γ of the
form {α0 +

r∑
j=1

F nj(αj)| n1, . . . , nr ∈ N} where r ∈ N and α0, α1, . . . , αr ∈ H(K). Then S is a

p-normal set.

Proof. Firstly, we know that F admits an equation P (x) = 0 in which P ∈ Z[x] is a polynomial
with leading coefficient 1 such that every integer root of P has the form ±pe for some positive
integer e. Let us analyze what the condition S = {α0 +

r∑
j=1

F nj(αj)| nj ∈ N} ⊆ Γ means. One can

see that α0+α1+· · ·+αr ∈ Γ and F (αj)−αj ∈ Γ for each j = 1, 2, . . . , r. Write α0+α1+· · ·+αr = cg

and F (αj)− αj = ljg for some c, l1, . . . , lr ∈ Z. We may assume lj 6= 0 for each j since otherwise
F nj(αj) = αj for all nj ∈ N and so that this term can be absorbed into the constant term α0. Now
the condition S ⊆ Γ can be read as ljF

n(g) ∈ Γ for any j ∈ {1, . . . , r} and n ∈ N.
Write ljF

n(g) = l
(n)
j g for some l

(n)
j ∈ Z (so l

(0)
j = lj). Then l

(n)
j g = ljF

n(g) = F (ljF
n−1(g)) =

F (l
(n−1)
j g) = l

(n−1)
j F (g) for any j ∈ {1, . . . , r} and n ∈ Z+. Since g is not a torsion point, we
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deduce (l
(n−1)
j )2 = l

(n−2)
j l

(n)
j for any n ≥ 2. Thus lj|l(1)j must hold because l

(0)
j = lj 6= 0 and each

l
(n)
j is an integer. So we can write l

(1)
j = ljtj for some integer tj and hence lj(F (g) − tjg) = 0 for

each j.
Since each F (g)− tjg is a torsion point but g is not torsion, we can see that t1 = · · · = tm :=

t ∈ Z. Write F (g) = tg + h for some torsion point h ∈ H(K). Then F n(g) = tng + tn−1h +

tn−2F (h) + · · · + F n−1(h) so that F n(g)− tng is a torsion point for each n ∈ Z+. But P (F ) = 0,
so P (t) · g is a torsion point and hence P (t) = 0 because g is non-torsion. As a result, t has the
form ±pe for some positive integer e.

Now, we calculate F nj(αj). We have F nj(αj) = αj+(F (αj)−αj)+· · ·+(F nj(αj)−F nj−1(αj)) =

αj+ljg+· · ·+ljF
nj−1(g) = αj+l

(0)
j g+· · ·+l

(nj−1)
j g. Since l(0)j = lj, l

(1)
j = ljt and (l

(n−1)
j )2 = l

(n−2)
j l

(n)
j

for any n ≥ 2, we deduce l
(n)
j = ljt

n for each n ∈ N by ljt 6= 0. Thus F nj(αj) = αj + lj(1 + t +

· · ·+ tnj−1)g = αj + lj
tnj−1
t−1

· g.

So we know α0 +
r∑

j=1

F nj(αj) = (α0 + α1 + · · · + αr) +
r∑

j=1

lj
tnj−1
t−1

· g = (c +
r∑

j=1

lj
tnj−1
t−1

) · g for

nonnegative integers n1, . . . , nr in which c, l1, . . . , lr ∈ Z and t = ±pe with a positive integer e. If
t is positive, we immediately see that S = {α0 +

r∑
j=1

F nj(αj)| nj ∈ N} ⊆ Γ is a p-normal set. If t

is negative, we write S =
∪

ϵ1,··· ,ϵr∈{0,1}
{(c+

r∑
j=1

lj
(t+1)(tϵj (t2)nj−1)

t2−1
) · g| nj ∈ N} and then also conclude

that S is a p-normal set. Thus we are done.

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Without loss of generality, we may assume g is non-torsion. Let Γ =

{gn| n ∈ Z} which is an infinite cyclic subgroup of G(K). Using Theorem 2.1, we only need
to show that every pseudo-generalized F -set in Γ is a p-normal set. But taking Lemma 3.2 into
account, the process of proving this statement is just routine.

At the end of this Section, we would like to give an example. It is well-known that the set
{n ∈ Z| gn ∈ X(K)} in Proposition 3.1 can be a “p-set” when the ambient algebraic group is
an algebraic torus. We shall give an explicit example to show that when the ambient algebraic
group is an abelian variety, this set can also be something beyond a finite union of arithmetic
progressions. This can also serve as an example of our main result Theorem 1.6, which is beyond
automorphisms of projective spaces and also involves “p-sets”.

Example 3.3. Let E be a supersingular elliptic curve over K = Fp(t) which is defined over Fp.
For simplicity, we just let p = 5 and let E be the elliptic curve x2

1x2 = x3
0 + x3

2 in P2
K with zero

point O = [0, 1, 0] ∈ E(K). Let A = E × E which is an abelian variety. We embed A into P8
K by

Segre embedding, i.e. [x0, x1, x2] × [y0, y1, y2] 7→ [x0y0, x0y1, x0y2, x1y0, x1y1, x1y2, x2y0, x2y1, x2y2].
Let zij be the coordinate of P8 corresponding to xiyj for any 0 ≤ i, j ≤ 2. Let X ⊆ A be the closed
subvariety {z02 = z20+z22}∩A. Let g = (Q1, Q2) ∈ A(K) in which Q1 = (t+1,

√
(t+ 1)3 + 1), Q2 =
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(t,
√
t3 + 1) are points lie in the affine chart of E(K). Denote S = {n ∈ N| n · g ∈ X(K)}. Then

we have

(i) {p2n| n ∈ N} ⊆ S

(ii) S ⊆ {0} ∪ {pkm| k ∈ N,m ∈ Z+,m ≡ ±1 (mod 2p)}.

Thus S cannot be a finite union of arithmetic progressions in N.

Proof. Let F be the Frobenius endomorphism Frobp of E. Since E is supersingular, we have
F 2 = [−p] ∈ End(E). As a result, p2n · P = F 4n(P ) for any n ∈ N and P ∈ E(K). Thus we can
see that (i) holds.

To prove (ii), we need the explicit formula of the multiplication-by-m map of an elliptic curve
described in [Sil09, (III,Ex. 3.7)]. We apply this result to our E.

For any positive integer m, there exist fm(x) = xm2
+ (lower order terms) and gm(x) =

m2xm2−1+ (lower order terms) which are coprime polynomials in Fp[x], such that

m · P =

{ (
fm(x)
gm(x)

, y′
)
, gm(x) 6= 0

O, gm(x) = 0

where P = (x, y) lies in the affine chart of E(K). In particular, the points Q1 and Q2 are non-
torsion.

Now S = {0} ∪ {m ∈ Z+| fm(t+1)
gm(t+1)

= fm(t)
gm(t)

+ 1}. But since fm(x) and gm(x) are coprime, this
condition on m yields gm(t+1) = gm(t). So gm(x) must be a polynomial of xp−x and as a result,
the number of different roots of gm(x) in K is a multiple of p.

Denote this number by pdm and write m = pkm′ in which p ∤ m′. Then by the supersingularity
of E, we deduce

m′2 = |E[m]| =

{
1 + 2pdm, 2 ∤ m

4 + 2(pdm − 3), 2|m

But p = 5 cannot be a factor of m′2 + 2, so we have 2 ∤ m and m′ ≡ ±1 (modp). Thus we are
done.

4 Bounded-degree self-maps
We will prove Theorem 1.6 in this Section. We shall use some knowledge in [Bri] as well as the
Weil’s regularization theorem (Theorem 4.5) to deduce Theorem 1.6 from Proposition 3.1. More
precisely, we will deal with the case of bounded-degree automorphisms in subsection 4.1, and prove
Theorem 1.6 in subsection 4.2 by reducing to the case of bounded-degree automorphisms.

Through this Section, we fix an algebraically closed field K of characteristic p > 0 and let
everything be over this field. We require K to be of positive characteristic only because we use
Proposition 3.1 in the proof of Proposition 4.4.
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4.1 Bounded-degree automorphisms

In this subsection, let X be a projective variety and let f be a bounded-degree automorphism of
X. We denote N1(X) as the group of line bundles on X up to numerical equivalence, which is a
finite free Z-module. For L ∈ Pic(X), we denote by [L]num the class of L in N1(X). We will prove
that Conjecture 1.3 holds for the bounded-degree system (X, f) at the end of this subsection. Now
we start with the following proposition which says that bounded-degree automorphisms come from
group actions.

Proposition 4.1. Let X, f be as above. Then there exists a (not necessarily connected) group
variety G, a group action F : G×X → X and a point g0 ∈ G(K) such that f = Fg0 in which Fg0

is the automorphism of X induced by the group action.

Firstly, we shall show that the action of the bounded-degree automorphism f on N1(X) is
unipotent. We need the following lemma on intersection theory.

Lemma 4.2. Let X be as above and let C ⊆ X be an integral closed subcurve. Then there exists
an ample line bundle L0 ∈ Pic(X) such that for every ample line bundle L ∈ Pic(X), we have
L · LdimX−1

0 ≥ L · C.

Proof. We prove the assertion by induction on dimX. If dimX = 1, then there is nothing to
prove. So we may assume that dimX ≥ 2.

Denote IC ⊆ OX as the ideal sheaf of C ⊆ X. Pick an ample line bundle L1 ∈ Pic(X) such that
IC ⊗ L1 is globally generated. Pick a nonzero global section s ∈ Γ(X, IC ⊗ L1) ⊆ Γ(X,L1) (notice
that IC ⊗ L1 is a subsheaf of L1). Let D = (s)0 be the divisor of zeros of s, which is an effective
Cartier divisor on X such that L1

∼= L (D). Let Y ⊆ X be the closed subscheme associated with
D. Then C ⊆ Y and Y is of pure codimension 1 in X.

Let Y0 ⊆ Y be an irreducible component of Y containing C and equip Y0 with the reduced
induced closed subscheme structure. Then Y0 is a projective variety of dimension dimX − 1. Let
i : Y0 ↪→ X be the closed immersion. By induction hypothesis, there is an ample line bundle
L2 ∈ Pic(Y0) such that (L′ ·LdimY0−1

2 )Y0 ≥ (L′ ·C)Y0 for every ample line bundle L′ ∈ Pic(Y0). Now
we choose an ample line bundle L0 ∈ Pic(X) such that both L0−L1 and i∗L0−L2 are ample. We
claim that L0 has the desired property.

Indeed, for every ample line bundle L ∈ Pic(X), we have (L·LdimX−1
0 ) ≥ (L·LdimX−2

0 ·L1) = (L·
LdimX−2
0 ·Y ) ≥ (L·LdimX−2

0 ·Y0) = (i∗L·(i∗L0)
dimX−2)Y0 ≥ (i∗L·(L2)

dimX−2)Y0 ≥ (i∗L·C)Y0 = (L·C).
Thus we finish the proof by induction.

Lemma 4.3. Let X, f be as above. Then there exists a positive integer n0 such that (fn0)∗ :

N1(X) → N1(X) is the identity map.

Proof. Pick a Z-basis {[L1]num, . . . , [Ld]num} of N1(X). Then there exists {C1, . . . , Cd} which are
Q-coefficient 1-cycles in X, such that Li · Cj = δij for all 1 ≤ i, j ≤ d where δij is the Kronecker
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symbol. Let A ∈ GLd(Z) be the matrix corresponds to f ∗ : N1(X) → N1(X) under this basis. We
have to show that there is a poistive integer n0 such that An0 = Id which is the identity matrix.

For each nonnegative integer n, we have An = ((fn)∗(L1), . . . , (f
n)∗(Ld))

⊤ ·(C1, . . . , Cd). But by
Remark 1.5 and Lemma 4.2, we can see that each sequence {(fn)∗(Li) ·Cj| n ∈ N} is bounded. So
{An| n ∈ N} is a sequence in GLd(Z) in which each element is bounded. As a result, there are only
finitely many different matrices in that sequence. Thus we are done because A is invertible.

Next, we need to recall some knowledge of the automorphism groups of projective varieties.
For a reference, see [Bri, Section 2].

Let X be our projective variety. Let AutX be the contravariant functor from the category of
(locally noetherian) K-schemes to the category of groups, which sends the K-scheme S to the group
Aut(X×S/S) (the products will always be taken over K). This functor is represented by a locally
algebraic group AutX over K. Let Aut(X) = AutX,red be the reduced closed (locally algebraic)
subgroup of AutX , then there are canonical bijections Aut(X/K) = AutX(K) = Aut(X)(K). Let
Aut0(X) be the identity component of Aut(X), which is a connected group variety. Then Aut(X)

acts on N1(X) and in fact Aut0(X) acts trivially on it (see [Bri,Lemma 2.8] and the discussion
above it).

Let L ∈ Pic(X) be an ample line bundle and let Aut(X, [L]num) be the stabilizer of [L]num under
the action of Aut(X). Then [Bri,Theorem 2.10] says that Aut(X, [L]num) is a closed algebraic
subgroup of Aut(X). Notice that Aut(X, [L]num)(K) ⊆ Aut(X)(K) is canonically identified with
{f ∈ Aut(X/K)| f ∗(L) ≡ L} ⊆ Aut(X/K) where “≡” stands for numerically equivalent.

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. Let g0 ∈ AutX(K) = Aut(X)(K) be the closed point which corresponds
to the bounded-degree automorphism f . Combining Lemma 4.3 and the discussion above, we
can see that there is a positive integer n0 such that gn0

0 lies in a closed algebraic subgroup of
Aut(X) (as it lies in any Aut(X, [L]num) where L ∈ Pic(X) is an ample line bundle). As a result,
if we let G ⊆ AutX be the closed smooth (locally algebraic) subgroup whose underlying space is
{gn0 | n ∈ Z}, then G is in fact an (algebraic) group variety.

Now notice that there is a natural group action σ : AutX×X → X such that f = σg0 (in which
σg0 is the automorphism of X induced by the group action), we may just let F : G×X → X be
the group action induced by σ and then one can verify that the conclusion of Proposition 4.1 holds
for G,F and g0 ∈ G(K).

Now we can prove Theorem 1.6 for bounded-degree automorphisms of projective varieties.

Proposition 4.4. Let X, f be as in the beginning of this subsection. Then f satisfies the arithmetic
pDML property, i.e. the conclusion of Theorem 1.6 holds.
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Proof. Let x ∈ X(K) be a closed point and let V ⊆ X be a closed subvariety. We will prove that
{n ∈ Z| fn(x) ∈ V (K)} is a p-normal set.

Let G,F and g0 ∈ G(K) be as in Proposition 4.1. Since f = Fg0 , we know that fn = Fgn0
for

every integer n where Fgn0
is the automorphism of X induced by F and gn0 ∈ G(K). So for each

integer n, we have fn(x) = F (gn0 , x). Now let ix : G ↪→ G ×X be the closed immersion given by
g 7→ (g, x) and let j : G → X be the composition F ◦ ix. Then we have {n ∈ Z| fn(x) ∈ V (K)} =

{n ∈ Z| gn0 ∈ j−1(V )}. Thus the result follows from Proposition 3.1.

4.2 Proof of Theorem 1.6

We will finish the proof of Theorem 1.6 in this subsection. Firstly, we reduce to the case in which
the orbit Of (x) is dense in X.

Lemma 4.5. In order to prove Theorem 1.6, we may assume that the orbit Of (x) is dense in X

without loss of generality.

Proof. Assume that we have proved Theorem 1.6 with the additional assumption that Of (x) is
dense in X, we want to prove Theorem 1.6. We will do induction on dim(X). The case in which
dim(X) = 1 is easy.

Now assume f : X 99K X is a bounded-degree self-map of a projective variety X and x ∈ X(K)

is a point such that Of (x) is well-defined. Let V ⊆ X be a closed subvariety. We will prove that
{n ∈ N| fn(x) ∈ V (K)} is a p-normal set in N. Assume further without loss of generality that
Of (x) is not dense in X. By substituting x by a proper iterate, we may assume that the closed
subsets {fn(x)| n ≥ N} are all the same for any nonnegative integer N . Denote this closed subset
as a proper closed subvariety X0 ⊆ X.

Let X11, . . . , X1d1 , X21, . . . , X2d2 , . . . , Xr1, . . . , Xrdr be the irreducible components of X0 such
that dim(X11) = · · · = dim(X1d1) > dim(X21) = · · · = dim(X2d2) > · · · > dim(Xr1) = · · · =
dim(Xrdr). Notice that since Of (x) is dense in X0, we have Of (x)∩Xij is nonempty for each i, j.
So Uij := Dom(f) ∩Xij is a nonempty open subset of Xij for each i, j. We can see that

∪
i,j

f(Uij)

is a dense subset of X0.
As a result, one can choose a pair (σ1(i, j), σ2(i, j)) for each i, j such that f(Uij) ⊆ Xσ1(i,j)σ2(i,j).

Using the density of
∪
i,j

f(Uij) in X0, one can show that (by induction on i from 1 to r) σ1(i, j) = i for

each i, j and σ2(i, 1), . . . , σ2(i, di) is a permutation of 1, . . . , di for each i = 1, 2, . . . , r. Furthermore,
by the same reason, f(Uij) must be dense in Xiσ2(i,j) for each i, j. We abbreviate σ2(i, j) as σ(i, j).

By the discussion above, we see that f induces dominant rational maps fij : Xij 99K Xiσ(i,j)

for each i, j, and Uij ⊆ Dom(fij). Suppose x ∈ Ui0j1(K) and let j1, j2, . . . , jt, jt+1 = j1 be a circle
under the action of σ(i0, j). We abbreviate Xi0jk as Xk and fi0jk as fk, then we get a circle of
dominant rational maps fk : Xk 99K Xk+1 (k = 1, . . . , t, understood by modulo t for the indices),
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all induced by f . Denote gk : Xk 99K Xk as the composite fk+t−1 ◦ · · · ◦ fk for k = 1, . . . , t, which
is a dominant rational self-map of Xk.

One can verify that for each k = 1, . . . , t, Dom(f t)∩Xk is nonempty and f t|Xk
maps into Xk. In

fact, one can show that f t|Xk
: Xk 99K Xk is same as gk. So by (the proof of) [JSXZ,Proposition 3.2],

we know that gk are bounded-degree (dominant) self-maps for each k = 1, . . . , t. Moreover, since
x ∈ Ui0j1(K) ⊆ X1(K), we have fn(x) = fn ◦ · · · ◦ f1(x) ∈ Ui0jn+1(K) ⊆ Xn+1(K) for each
n ∈ N. As a result, we have Ogk(f

k−1(x)) is well-defined and gnk (f
k−1(x)) = fnt+k−1(x) for every

k = 1, . . . , t and every n ∈ N. Notice that dim(X1) = · · · = dim(Xt) < dim(X), we know each gk

satisfies the conclusion of Theorem 1.6 in view of the induction hypothesis. So using Remark 1.2,
we may conclude that {n ∈ N| fn(x) ∈ V (K)} is a p-normal set in N for any closed subvariety
V ⊆ X. Hence we finish the proof by induction.

Next, we introduce our main tool. This result was firstly proved in [HZ96, Section 5] for the
case that the base field is C. Inheriting the methods in [HZ96], the second author writes a note
[Yan] which deals with the arbitrary characteristic case and copes with the details carefully. One
can consult [HZ96, Section 5], [Can14,Theorem 2.5] or [Yan,Corollary 1.3] for references.

Theorem 4.6. (Weil’s regularization theorem) Let f : X 99K X be a bounded-degree self-map of
a projective variety. Then there exists a projective variety Y , a birational map π : Y 99K X and a
bounded-degree automorphism g of Y , such that f ◦ π = π ◦ g.

We need another lemma before proving Theorem 1.6.

Lemma 4.7. Let X,Y be varieties and let π : Y 99K X be a dominant rational map. Let f be
a dominant rational self-map of X and g be a flat endomorphism of Y such that f ◦ π = π ◦ g.
Let x ∈ X(K) be a point such that the orbit Of (x) is well-defined and dense in X. Suppose that
g satisfies the arithmetic pDML property, i.e. {n ∈ N| gn(y) ∈ W (K)} is a p-normal set in N
for every point g ∈ Y (K) and every closed subvariety W ⊆ Y . Then for every closed subvariety
V ⊆ X, we have {n ∈ N| fn(x) ∈ V (K)} is a p-normal set in N.

Proof. Firstly, notice that since the flat endomorphism g of Y must be dominant, no problem will
occur when compositing the maps. Let D = Dom(π) and let π0 : D → X be the morphism which
represents π. Then D is an open dense subset of Y and π0(D) is a constructible dense subset of X
since π is dominant. So π0(D) contains an open dense subset of X. By substituting x by a proper
iterate, we may assume x ∈ π0(D) without loss of generality because Of (x) is dense in X. Then
we can choose a point y ∈ D(K) such that π0(y) = x. We firstly prove that Og(y) ⊆ D.

Let n be a nonnegative integer. We want to prove that gn(y) ∈ D. By the assumption that
Of (x) is well-defined, we can see that x ∈ Dom(fn). As a result, we have y ∈ Dom(fn ◦ π).
So y ∈ Dom(π ◦ gn) because fn ◦ π = π ◦ gn. Now since gn is a flat morphism, we conclude
that gn(y) ∈ D by [BLR90, 2.5,Proposition 5] (although the statement of this reference contains
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a smoothness requirement, one can verify that the proof is still valid without that assumption).
Therefore, we deduce that gn(y) ∈ D for each nonnegative integer n and thus Og(y) ⊆ D.

Now for each nonnegative integer n, we have fn(x) = fn(π0(y)) = π0(g
n(y)) since x ∈ Dom(fn),

gn(y) ∈ D and fn ◦ π = π ◦ gn. Let W be the closure of π−1
0 (V ) in Y . Then W is a closed

subvariety of Y such that W ∩D = π−1
0 (V ). Now combining the fact Og(y) ⊆ D with the equality

fn(x) = π0(g
n(y)) above, we know that {n ∈ N| fn(x) ∈ V (K)} = {n ∈ N| gn(y) ∈ W (K)}.

Hence the result follows.

Remark 4.8. The analogue of the lemma above for the 0-DML property (i.e. the statement which
asserts that the return set is a finite union of arithmetic progressions in N) is also valid. No change
is needed to make in the proof.

Now we can finish the proof of Theorem 1.6.

Proof of Theorem 1.6. Combining Lemma 4.5, Theorem 4.6, Lemma 4.7 and Proposition 4.4 and
then we are done.

5 Geometric version of the pDML conjecture
For the dynamical Mordell–Lang conjecture in characteristic 0, we know that there is an arithmetic
version and a geometric version which are equivalent with each other. See [BGT16, Section 3.1.3].
Both of the two versions can be regarded as the dynamical analogue of the corresponding version
of the classical Mordell–Lang conjecture in characteristic 0. Since to our knowledge there is still
no geometric version of the dynamical p-Mordell–Lang conjecture, we would like to formulate a
reasonable one in this article.

We want our conjecture to be a dynamical analogue of the “geometric p-Mordell–Lang theo-
rem”, that is, [Hru96,Theorem 1.1]. So firstly we review Hrushovski’s result. We translate the
original statement from the language of varieties into the language of schemes.

Theorem 5.1. (pML, geometric version; [Hru96,Theorem 1.1]) Let G be a semiabelian variety
over an algebraically closed field K of characteristic p > 0. Let X ⊆ G be an integral closed
subvariety and let Γ ⊆ G(K) be a subgroup such that Γ⊗Z Z(p) is a finitely generated Z(p)-module.
If X(K) ∩ Γ is dense in X, then there exist

• a semiabelian subvariety G1 ⊆ G,
• a semiabelian variety G0 over a finite subfield Fq ⊆ K,
• a geometrically integral closed subvariety X0 ⊆ G0,
• a surjective algebraic group homomorphism f : G1 → G0 ×Fq K, and
• a point x0 ∈ G(K)

such that X = x0 + (f−1(X0 ×Fq K))red.
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It is a core philosophy in arithmetic dynamics that the algebraic dynamic systems are analogues
of semiabelian varieties in arithmetic geometry. So here we have to find a notion which serves as an
analogue of isotrivial semiabelian varieties in positive characteristic. We think that the bounded-
degree self-maps might be a right answer.

Now we propose our conjecture. We want to focus on the dominant rational self-maps of
(quasi-)projective varieties.

Conjecture 5.2. (pDML, geometric version) Let X be a projective variety over an algebraically
closed field K of characteristic p > 0 and let f : X 99K X be a dominant rational self-map. Let
Y ⊆ X be an integral closed subvariety of positive dimension and let x ∈ X(K) be a point whose
orbit Of (x) is well-defined. Suppose that Of (x) ∩ Y is dense in Y , then there exist

• a positive integer n0, an integral closed subvariety X1 ⊆ X, and a dominant self-map f1 :

X1 99K X1 such that Dom(fn0) ∩ X1 is nonempty and fn0|X1 = i ◦ f1 in which i is the closed
immersion X1 ↪→ X,

• a projective variety X0 over K and a bounded-degree self-map f0 : X0 99K X0,
• a dominant rational map F : X1 99K X0 such that F ◦ f1 = f0 ◦ F , and
• a closed subvariety Y0 ⊆ X0,
such that Y ⊆ F−1(Y0) and (F−1(Y0)\Y )∩Of (x) is a finite set. Here we interpret F−1(Y0) as

the closure of (F |Dom(F ))
−1(Y0) ⊆ Dom(F ) in X1.

Remark 5.3. (i) One can verify that the above description of the closed subvariety Y ⊆ X

includes the case in which Y is f -periodic. The point is that one can let the bounded-degree
system (X0, f0) be trivial, i.e. (Spec(K), id).

(ii) By changing every “projective” into “quasi-projective” and every rational map into morphism
in the statement of Conjecture 5.2, we get another version of the geometric pDML conjecture.
Taking Theorem 1.6 into account, this version of the conjecture implies the arithmetic pDML
Conjecture 1.3 for the case of endomorphisms of quasi-projective varieties. Although we also
believe that the statement of this version should be true, we deliberately remain the rational
maps as in Conjecture 5.2 because we think that the rational maps should naturally appear
in the picture.

(iii) A closed subvariety of X of the form F−1(Y0) as in Conjecture 5.2 above is of “f -bounded-
degree”. We think that “f -bounded-degree” should be a reasonable relaxed condition on subva-
rieties of “f -preperiodic” (as the relationship between bounded-degree and periodic self-maps).
One can also substitute the term F−1(Y0) in Conjecture 5.2 by “an f -bounded-degree closed
subvariety of X” and get a weaker version of Conjecture 5.2, which is more similar to the
geometric version of 0-DML.

The careful reader may have noticed that the statement of Conjecture 5.2 is a little bit more
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complicated than Theorem 5.1. The example below shows that the integral closed subvariety
Y ⊆ X may not be f -bounded-degree. So we cannot expect that Y itself is of the form F−1(Y0).

Example 5.4. Let the base field K be Fp(t). Let X = G4
m and let f be the automorphism of

X given by (x1, x2, x3, x4) 7→ (x1x2, (t + 1)x2, x3x4, tx4). Let x = (1, 1, 1, 1) ∈ X(K) and let
Y = {x2 = x4 + 1} ∩ {x2

1x2 = x2
3x4 + 1} be a 2-dimensional integral closed subvariety of X. Then

Of (x) ∩ Y (K) is dense in Y but Y is not of f -bounded-degree.

Proof. Firstly, we compute that fn(x1, x2, x3, x4) = ((t+1)
n(n−1)

2 x1x
n
2 , (t+1)nx2, t

n(n−1)
2 x3x

n
4 , t

nx4)

for all nonnegative integer n. So in particular we have fn(x) = ((t + 1)
n(n−1)

2 , (t + 1)n, t
n(n−1)

2 , tn).
As a result, the intersection Of (x) ∩ Y (K) = {fpn(x)| n ∈ N}. The assertion “{fpn(x)| n ∈ N} is
dense in Y ” is equivalent to that {((t + 1)

pn(pn−1)
2 , t

pn(pn−1)
2 )| n ∈ N} is dense in A2, which can be

easily verified by using [Ghi19,Theorem 1.3].
However, one can verify that fn(Y ) = {(t + 1)−nx2 = t−nx4 + 1} ∩ {(t + 1)n

2
x2
1x

−2n+1
2 =

tn
2
x2
3x

−2n+1
4 + 1} for each nonnegative n. Substituting x2 = (t + 1)n(t−nx4 + 1) into the second

equation, we get the equation tn(2n−1)x2
1x

2n−1
4 − (t + 1)n(n−1)(x4 + tn)2n−1(tn

2
x2
3 + x2n−1

4 ) = 0 in
which the left hand side is an irreducible polynomial of degree 4n− 2 for large n. As a result, Y
is not of f -bounded-degree.

In the example above, one can realize the hypersurface {x2 = x4 + 1} ⊆ X as F−1(Y0) in the
way of Conjecture 5.2. This explains why we modify the naive analogue of Theorem 5.1 into the
statement of Conjecture 5.2 in this way.

References
[BGM] J. P. Bell, D. Ghioca, and R. Moosa. Effective isotrivial Mordell–Lang in positive

characteristic. arXiv:2010.08579.

[BGT10] J. P. Bell, D. Ghioca, and T. J. Tucker. The dynamical Mordell–Lang problem for étale
maps. Amer. J. Math., 132(6):1655–1675, 2010.

[BGT16] J. P. Bell, D. Ghioca, and T. J. Tucker. The Dynamical Mordell–Lang Conjecture,
volume 210 of Mathematics Surveys and Monographs. American Mathematical Society,
Providence, R.I., 2016.

[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud. Néron Models, volume 21 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1990.

[Bri] M. Brion. Notes on automorphism groups of projective varieties. text available at
https://www-fourier.univ-grenoble-alpes.fr/~mbrion/autos_final.pdf.

16



[Bri17] M. Brion. Commutative algebraic groups up to isogeny. Documenta Math., 22:679–725,
2017.

[Can14] S. Cantat. Morphisms between Cremona groups, and characterization of rational vari-
eties. Compositio Math., 150(7):1107–1124, 2014.

[CGSZ21] P. Corvaja, D. Ghioca, T. Scanlon, and U. Zannier. The dynamical Mordell–Lang
conjecture for endomorphisms of semiabelian varieties defined over fields of positive
characteristic. J. Inst. Math. Jussieu, 20(2):669–698, 2021.

[CS93] S. D. Cutkosky and V. Srinivas. On a problem of Zariski on dimensions of linear systems.
Ann. of Math. (2), 137(3):531–559, 1993.

[Dan20] N.-B. Dang. Degrees of iterates of rational maps on normal projective varieties. Proc.
Lond. Math. Soc. (3), 121(5):1268–1310, 2020.

[Der07] H. Derksen. A Skolem–Mahler–Lech theorem in positive characteristic and finite au-
tomata. Invent. Math., 168(1):175–224, 2007.

[Fal94] G. Faltings. The general case of S. Lang’s conjecture. Barsotti Symposium in Algebraic
Geometry, 175–182, volume 15 of Perspect. Math. Academic Press, San Diego, CA,
1994.

[Ghi] D. Ghioca. The isotrivial case in the Mordell–Lang conjecture for semiabelian varieties
defined over fields of positive characteristic. arXiv:2401.07169.

[Ghi19] D. Ghioca. The dynamical Mordell–Lang conjecture in positive characteristic. Trans.
Amer. Math. Soc., 371(2):1151–1167, 2019.

[GHSZ19] D. Ghioca, F. Hu, T. Scanlon, and U. Zannier. A variant of the Mordell–Lang conjec-
ture. Math. Res. Lett., 26(5):1383–1392, 2019.

[GY24] D. Ghioca and S. Yang. The Mordell–Lang conjecture for semiabelian varieties defined
over fields of positive characteristic. Bull. Aust. Math. Soc., 109(2):254–264, 2024.

[Hru96] E. Hrushovski. The Mordell–Lang conjecture for function fields. J. Amer. Math. Soc.,
9(3):667–690, 1996.

[HZ96] A. Huckleberry and D. Zaitsev. Actions of groups of birationally extendible automor-
phisms. Geometric Complex Analysis (Hayama, 1995), 261–285. World Scientific, River
Edge, NJ, 1996.

[JSXZ] J. Jia, T. Shibata, J. Xie, and D.-Q. Zhang. Endomorphisms of quasi-projective varieties
— towards Zariski dense orbit and Kawaguchi–Silverman conjectures. arXiv:2104.05339.

17



[LN] J. Lee and G. Nam. A converse of dynamical Mordell–Lang conjecture in positive
characteristic. arXiv:2403.05107.

[MS04] R. Moosa and T. Scanlon. F-structures and integral points on semiabelian varieties
over finite fields. Amer. J. Math., 126(3):473–522, 2004.

[Sil09] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in
Mathematics. Springer-Verlag, 2009. 2nd ed.

[Tru20] T. T. Truong. Relative dynamical degrees of correspondences over a field of arbitrary
characteristic. J. Reine Angew. Math., 2020(758):139–182, 2020.

[Voj96] P. Vojta. Integral points on subvarieties of semiabelian varieties. I. Invent. Math.,
126(1):133–181, 1996.

[Xie] J. Xie. Around the dynamical Mordell–Lang conjecture. text available at
http://scholar.pku.edu.cn/sites/default/files/xiejunyi/files/arounddml20230701fu_ben_.pdf.

[Xie17] J. Xie. The dynamical Mordell–Lang conjecture for polynomial endomorphisms of the
affine plane. Astérisque, 394:vi+110, 2017.

[Xie23] J. Xie. Remarks on algebraic dynamics in positive characteristic. J. Reine Angew.
Math., 2023(797):117–153, 2023.

[Yan] S. Yang. A regularization theorem for bounded-degree self-maps. arXiv:2403.07394.

[Yan23] S. Yang. Dynamical Mordell–Lang conjecture for totally inseparable liftings of Frobe-
nius. Math. Ann., 2023. https://doi.org/10.1007/s00208-023-02682-y.

18


