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Abstract

We disprove the original version of the dynamical Mordell-Lang conjecture in positive
characteristic and propose a improved version of this pDML conjecture. We prove that this
new version holds for bounded-degree self-maps of projective varieties. Moreover, we propose

a geometric version of this pDML conjecture.

1 Introduction

In this paper, as a matter of convention, every variety is assumed to be integral but the closed
subvarieties can be reducible. For a rational map f : X --» Y between two varieties, we denote
Dom(f) C X as the domain of definition of f. Let X be a variety over an algebraically closed
field K and let f be a rational self-map of X. For a point z € X (K), we say the orbit O(z) :=
{f™(z)| n € N} is well-defined if every iterate f"(x) lies in Dom(f). We denote N =7, U{0}. An
arithmetic progression is a set of the form {mk + (| k € Z} for some m,l € Z and an arithmetic
progression in N is a set of the form {mk + (| k € N} for some m,[l € N.

The dynamical Mordell-Lang conjecture, which is one of the core problems in the field of
arithmetic dynamics, asserts that for any rational self-map f of a variety X over C, the return set
{n € N| f*(z) € V(C)} is a finite union of arithmetic progressions in N where z € X (C) is a point
such that the orbit Of(x) is well-defined and V' C X is a closed subvariety. There is an extensive
literature on various cases of this 0-DML conjecture (“0” stands for the characteristic of the base

field). Two significant cases are as follows:

(i) If X is a quasi-projective variety over C and f is an étale endomorphism of X, then the
0-DML conjecture holds for (X, f). See [BGT10, Theorem 1.3].

(ii) If X = AZ and f is an endomorphism of X, then the 0-DML conjecture holds for (X, f).
See [Xiel7]| and [Xie, Theorem 3.2].
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One can consult [BGT16, Xie] and the references therein for more known results. However, we
remark that not much is known about the 0-DML conjecture when f is just a rational self-map
of the variety X. The following problem might reflect the issue in some sense. It seems that the
dynamical Mordell-Lang problem is not quite compatible with birational transformations. More
precisely, let X, Y be varieties over C, f, g be dominant rational self-maps of X, Y respectively and
m:Y --+ X be a birational map such that f om = 7o g. Even if the 0-DML conjecture holds for
(Y, g), generally we do not know how to deduce that the 0-DML conjecture holds for (X, f).

The statement of the O-DML conjecture fails when the base field has positive characteristic.
See [BGT16, Example 3.4.5.1] for an example. Consequently, Ghioca and Scanlon proposed a
dynamical Mordell-Lang conjecture in positive characteristic. See [BGT16, Conjecture 13.2.0.1].
It was conjectured that the return set would be a “p-normal set” (see Definition 6.1), which
was firstly introduced in [Der07, Definition 1.7] for the Skolem—Mahler—Lech problem in positive
characteristic. However, the Skolem—Mahler—Lech problem is a very special case of the dynamical
Mordell-Lang problem (more precisely, the case of linear recurrence sequences) and it turns out
that some sets of a more complicated form are needed for the general case. See Section 6 for a
disproof of this old version of the pDML conjecture. As a result, now we introduce a modified

version of this conjecture.

Definition 1.1. Let p be a prime number and let ¢ = p° for some positive integer e. Suppose that
d€Zy,r €N and cy,c;j € Q where (i,7) € {1,...,d} x{0,...,r}. Then we define

r

Sqdr(co; cij) = {co + Z Cz’qui

i=1 j=0

ni,...,ng € N}

We define a widely p-normal set in Z as a union of finitely many arithmetic progressions (possibly
singleton) along with finitely many subsets of Z of the form Sy q.(co;cij) as above. A widely p-
normal set in N is a subset of N which is, up to a finite set, equal to the intersection of a widely

p-normal set in 7. and N.

Here, we say two sets S, T are equal up to a finite set if the symmetric difference (S\T)U(T\S)
is finite, as in [Der07].
In the rest of this article, we will abbreviate “widely p-normal set in Z” as “widely p-normal

set”.

Remark 1.2. (i) Notice that in the definition of widely p-normal set above, all of the sets

Sq,d,r(Co; ¢ij) involved are required to be contained in Z. We remark that this condition bounds

the denominators of co and c;;. More precisely, we have (¢ —1)- I (¢¥ —¢*) ¢, €Z
s=0,s#j
for every pair (i,7) € {1,...,d} x {0,...,r}.

(11) A widely p-normal set intersects N is a widely p-normal set in N; a finite union of widely
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p-normal sets (resp. widely p-normal sets in N) is still a widely p-normal set (resp. widely
p-normal set in N); aS + b is a widely p-normal set (resp. widely p-normal set in N) if S is
a widely p-normal set (resp. widely p-normal set in N) and a,b € Z (resp. N). Moreover,
although we will not use this statement in this article, we remark that one can show that
a finite intersection of widely p-normal sets (resp. widely p-normal sets in N) is still a
widely p-normal set (resp. widely p-normal set in N) inheriting the method of the proof of
[Der07, Lemma 9.5].

(iii) The definition above coincides with the definition of “p-normal sets” in Definition 6.1 if one

demands the r always be 0.

Now we can state our modified version of the dynamical Mordell-Lang conjecture in positive

characteristic.

Conjecture 1.3. (pDML, arithmetic version) Let X be a variety over an algebraically closed field
K of characteristic p > 0 and let f be a rational self-map of X. Let x € X(K) be a closed
point such that the orbit Of(z) is well-defined and let V. C X be a closed subvariety. Then
{neN| f(x) € V(K)} is a widely p-normal set in N.

It seems that the necessity for widely p-normal sets is firstly noticed in this article (see Section
6). The previous works towards the pDML problem are mainly as follows: [CGSZ21] shows that for
certain cases of endomorphisms of the algebraic torus, the return set is a “p-normal set in N” (see
Definition 6.1); and [Xie23, Theorem 1.4, Theorem 1.5], [Yan24] shows that the original statement
of the 0-DML conjecture still holds for certain cases of high complexity endomorphisms.

People (for instance, [Xie23] and also Ghioca and Scanlon) guessed that the p-part in the return
set occurs only when the self-map f involves or “comes from” some group actions. Otherwise, it is
conjectured that the initial statement of the 0-DML conjecture should still be valid for f. We will
form a rigorous conjecture towards this perspective in this paper (see Conjecture 5.1). We think
that p-sets come from bounded-degree self-maps, which is a synonym of “come from group actions”
in some sense but has a more dynamical flavor.

We shall briefly introduce how to measure the complexity of a dominant rational self-map
f X --» X in which X is a projective variety over an algebraically closed field. We use the
concept of the degree sequence of f. Since there are many references of this concept in the literature
(see for example [Dan20], [Tru20], [Xie23, Section 2.1] and [Yan, Section 5]), we will just state the
definition and some basic properties here.

Let L € Pic(X) be a big and nef line bundle. We consider the graph I'y C X x X which
is an irreducible closed subvariety. Let 7,7 : I'y — X be the two projections. Then 7 is a
birational proper morphism and 7 is surjective proper. We define the first degree deg, ;(f) of f
with respect to L as the intersection number (3 (L) - 75 (L)3™X)=1) on T';. Then we get a sequence

{deg, ;.(f™)| n € N} of positive integers.



For two sequences {a,},{b,} € (R>1)Y, we say that they have the same speed of growth if
{3#[ n € N} has an upper bound and a positive lower bound. Let deg,(f) be the class of the
speed of growth of the sequence {deg, ;(f")| n € N}, which by [Dan20, Theorem 1(ii)] is irrelevant
with the choice of the big and nef line bundle L. Notice that although [Dan20, Theorem 1(ii)] was
stated for normal projective variety X, the result also holds for arbitrary irreducible projective
variety X because one can pass to the normalization of X. Then we can abuse notation and say
that deg,(f) is the degree sequence of f. We also remark that in fact deg;(f) remains the same
on different birational models. See [Dan20, top of p. 1269].

Definition 1.4. Let X be a projective variety over an algebraically closed field. We say a dominant

rational self-map f: X --+ X is of bounded-degree if deg,(f) is a bounded sequence.
Notice that according to our definition, a bounded-degree self-map is a priori dominant.

Remark 1.5. If f is a surjective endomorphism of a projective variety X in the definition above,
then f is of bounded-degree if and only if the sequence {(f™)*(L) - LY™X) =1 n € N} is bounded for
some (and hence every) ample line bundle L € Pic(X).

Now we can state the main theorem of this paper.

Theorem 1.6. Let X be a projective variety over an algebraically closed field K of characteristic
p >0 and let f be a bounded-degree self-map of X. Let x € X(K) be a closed point such that the
orbit Of(x) is well-defined and let V- C X be a closed subvariety. Then {n € N| f*(x) € V(K)} is

a widely p-normal set in N.

Remark 1.7. (i) We only consider bounded-degree self-maps of projective varieties in this arti-
cle, but one can also define this notion on quasi-projective varieties since the degree sequence
15 wndependent of the choice of birational models as we have mentioned before. Then our
result automatically extends to bounded-degree self-maps of quasi-projective varieties over an

algebraically closed field of positive characteristic.

(i) We focus on the positive characteristic case in this article, but our method is also valid for the
O-characteristic case. Notice [CS93, Theorem 7| implies that {n € Z| ¢" € X(K)} is a finite
unton of arithmetic progressions in which G is an algebraic group over an algebraically closed
field K of characteristic 0, g € G(K) is a closed point and X C G is a closed subvariety.
By using this result instead of Theorem 3.1 in the proof of Theorem 1.6, one can show that
the set {n € N| f*"(x) € V(K)} is a finite union of arithmetic progressions in N if K is an

algebraically closed field of characteristic 0 (and the other conditions remain the same).

At the end of the Introduction, we describe the structure of this paper. In Section 2, we will
make some preparations about the Mordell-Lang problem in positive characteristic. Then, in Sec-

tion 3, we will use those preparations to prove Conjecture 1.3 in the case of translation of algebraic
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groups. After that, we will finish the proof of Theorem 1.6 in Section 4, using the philosophy that
bounded-degree self-maps come from group actions. We will make further discussions and propose
a geometric version of the pDML conjecture in Section 5. Our purpose of proposing this geomet-
ric pPDML conjecture is to give a reasonable and rigorous explanation about where the “p-sets”
in Conjecture 1.3 comes from by dividing Conjecture 1.3 into “Conjecture 5.1 + Theorem 1.6”.
Lastly, in Section 6, we will give some heuristic examples in which the widely p-normal sets may
appear in the return set and a rigorous disproof of the original version of the pDML conjecture.
This paper also includes an Appendix about the p-Mordell-Lang problem in which we fix an

error and generalize the results in [GY24].

2 Preparations

In this Section, we will make some preparations about the Mordell-Lang problem in positive
characteristic. These preparations will be used in Section 3 to prove that Conjecture 1.3 holds for

translations of algebraic groups.

2.1 Two theorems towards Mordell-Lang problem in positive charac-

teristic

In this subsection, we introduce the main theorems of [Hru96] and [MS04] towards the Mordell-
Lang problem in positive characteristic. The Mordell-Lang conjecture for a semiabelian variety
G over an algebraically closed field K of characteristic 0 states that X(K) N T is a finite union
of cosets of subgroups of I' where X C G is a closed subvariety and I' C G(K) is a finitely
generated subgroup. This conjecture was proved by Faltings [Fal94] in the case of abelian varieties
and by Vojta [Voj96] in the general case of semiabelian varieties. But this statement fails in
positive characteristic and it turns out that this problem is more subtle in positive characteristic.
The groundbreaking work [Hru96, Theorem 1.1] forms and proves a rigorous statement that the
counterexamples of the original 0-ML statement in positive characteristic come from isotrivial
semiabelian varieties. Then [MS04, Theorem B] describes the form of the intersection set of a
closed subvariety and an Frobenius invariant finitely generated subgroup in an isotrivial semiabelian
variety. Recently, [Ghi] gives a description of the intersection set of a closed subvariety and an
arbitrary finitely generated subgroup in an isotrivial semiabelian variety. We find that the situation
of the pML problem is somehow similar to the pDML problem, that both of them can be divided
to two parts: one has a more geometric flavor and another has a more arithmetic flavor. For more
discussions, please see Section 5.
We firstly state the main theorem of [Hru96.

Theorem 2.1. (pML, geometric version; [Hru96, Theorem 1.1]) Let G be a semiabelian variety



over an algebraically closed field K of characteristic p > 0. Let X C G be an irreducible closed
subvariety and let T' C G(K) be a finitely generated subgroup. If X(K)NT is dense in X, then
there exist

e o semiabelian subvariety G, C G,

a semiabelian variety Gy over a finite subfield F, C K,

e a geometrically integral closed subvariety Xy C Gy,

a surjective algebraic group homomorphism f : G1 — Go Xg, K, and
a point g € G(K)
such that X = o+ (f71(Xo X, K))red-

Now we state [MS04, Theorem B| concerning the form of the intersection set of a closed sub-
variety and an Frobenius invariant finitely generated subgroup in an isotrivial semiabelian variety.

Firstly, we introduce the definition of “F-sets”.

Definition 2.2. Let G be a semiabelian variety over an algebraically closed field K of characteristic
p > 0 which is defined over a finite field F,. Let F' = Frob, be the Frobenius endomorphism of G
and let T' C G(K) be a finitely generated subgroup.

d
(i) An F-set is a subset of G(K) of the form {ag+ > F*"i(cy)| ny,...,ng € N} where k,d € Z,
i=1
and ag, g, .. .,aq € G(K). An F-set in ' is an F-set which is contained in T.
(ii) An F-normal set in I' is a finite union of sets of the form S + A where S is an F-set in T’
and A C T is a subgroup.

Remark 2.3. In literature, the “F-set” above may be called as “groupless F'-set” and the “F-
normal set” above may be called as “F-set”. We use this slightly modified terminology here in
order to be similar as in Definition 1.1. Moreover, we would like to shorten the name of those

F-sets in Definition 2.2(i) because we will mainly play with them later.

Theorem 2.4. ([MS04, Theorem B|) Let G be a semiabelian variety over an algebraically closed
field K of characteristic p > 0 which is defined over a finite field F,. Let F' = Frob, be the
Frobenius endomorphism of G. Let T' C G(K) be a finitely generated F-invariant subgroup and let
X C G be a closed subvariety. Then X (K)NT is an F-normal set in T.

Notice that the F-invariant requirement on the finitely generated subgroup I" (i.e. F(I') C T)

in the theorem above cannot be dropped.

2.2 Intersection of I'-sets and cyclic subgroups

As we have mentioned above, Theorem 2.4 is only available for the intersection of closed subvarieties

with F-invariant finitely generated subgroups. But for our application towards the pDML problem,



we mainly concern about the intersection set of a closed subvariety with a cyclic group. So we will
discuss the form of the intersection set of an F-set with an infinite cyclic group in this subsection.
We start with the definition of “widely F-sets”. Their form is similar to the form of “widely

p-sets” in Definition 1.1.

Definition 2.5. Let G be a semiabelian variety over an algebraically closed field K of characteristic

p > 0 which is defined over a finite field F,. Let F' = Frob, be the Frobenius endomorphism of G.
d r .

A widely F-set is a subset of G(K) of the form {ao + > > FF?"i(ay;)| ni,...,nq € N} where

i=14=0

k,d e Zi,r €N and ap, o;; € G(K) where (i,7) € {1,...,d} x{0,...,r}.
The main result of this subsection is the following Proposition.

Proposition 2.6. Let G be a semiabelian variety over an algebraically closed field K of character-
istic p > 0 which is defined over a finite field F,. Let F' = Frob, be the Frobenius endomorphism of
G and let I' C G(K) be a cyclic group. Then the intersection of an F-set with I is a finite union
of widely F-sets.

Remark 2.7. (i) We will see that the common ratio 2 of the geometric series on the exponents
comes from the two different absolute values of the roots of the minimal polynomial of the

Frobenius endomorphism.

(ii) With some efforts, one can show that the conclusion above also holds for the intersection of a
(widely) F'-set with a finitely generated subgroup of G(K). But since we only need this general
statement in the Appendiz and its proof is essentially the same as the proof of Proposition

2.0, we will focus on the intersection of an F'-set with a cyclic group for simplicity.
In order to make things clear, we start with a technical definition.
Definition 2.8. Letd € Z,..

(i) A good subgroup of Z? = {(ni,...,ng)| ni,...,nq € Z} is a subgroup defined by some
requirements of the following 4 types
(a) n; =0,
(b) n; is a multiple of some positive integer D,
(¢c) n; =n;, and
where 1 < 1,5 < d.

(ii) A big rectangle in N¢ is a set of the form {(ny,...,ng) € N¢| ny > My,... ,ng > My} for

some nonnegative integers My, ..., M.



(iii) A good coset in N? is the intersection set of a big rectangle in N® with a coset of a good

subgroup of Z.°.
The following lemma is easy to verify and so we omit its proof.

Lemma 2.9. (i) The intersection of two good subgroups of Z¢ is also a good subgroup of Z%; the

intersection of two good cosets in N% is also a good coset in N?.

k
(ii) A good subgroup of Z can be expressed as the form > 7Z-Din; where k € N, Dy, ..., Dy, € Z,
i=1

and 1y, ..., m € N are vectors satisfying

(a) every component of each n; lies in {0} U {2™| m € N}, and

(b) the vectors n; are pairwise orthogonal, i.e. any two of them do not have a common

nonzero component.

k
A nonempty good coset in N? can be expressed as the form ny + > N - D;n; where ny € N¢
i=1

and k,D1,..., Dg,m,...,nc are as above.

Remark 2.10. In fact, the vectors n; in part (i1) above also has a property that their components
are “continuous”, i.e. m; will have a component which is 2% if it has a component which is 2° for

some b > a. But we do not need this fact in the following proof.
Now we can prove Proposition 2.6.

Proof of Proposition 2.6. Let I' C G(K) be a cyclic subgroup generated by g € G(K). We may

assume that ¢ is non-torsion because otherwise I' will be a finite group and hence the result follows.

d
Recall that an F-set is a set of the form {ag + > F*(a;)| ni,...,ng € N} where k,d € Z, and
i=1
g, a1, ...,aq € G(K). We denote ® = F* and thus @ is also a Frobenius endomorphism of

G, namely, ® = Frob,. In the following, we will prove that if the intersection set of {ag +
d d
ST ®"i(ay)| ny,...,ng € N} and T is infinite, then {(n,...,nq4) € N ag + > ®"(a;) € T} is
i=1 =1

a finite union of good cosets in N¢ and hence the result follows. At this point, we would like to
make two remarks: firstly, one can let some o;; be 0 in the definition of widely F-sets; secondly,

although the positive integers D; in Lemma 2.9(ii) can be different, one may consider their least

d r .

common multiple and then split a set of the form {ag+ > > FFPi2'ni(qy;)| ny, ..., ng € N} into
i=1;=0

finitely many widely F'-sets.

Now firstly, recall that ® admits an equation P(®) = 0 where P(z) = (x—ay) - - - (x —as) € Z|x]
is a Z-coeflicient polynomial with leading coefficient 1 whose complex roots aq, ..., as are pairwise

distinct and all have absolute value ¢* or qg. Then for each n € N and every a € G(K), we have
s—1

that ®"(a) = > ¢j(n)®?(«) in which for each 0 < j < s—1, ¢j(n) is the linear recurrence sequence
3=0



satisfying ¢;(j) =1 and ¢;(0) =--- =¢;(j — 1) = ¢;(j+1)--- = ¢j(s — 1) = 0 whose characteristic
polynomial is P(x). Then for each 0 < j < s — 1, we can write down the explicit formula that
cj(n) = bja} + -+ + bjsal for some bjy,...,b;5 € C.
Now let M be the finitely generated subgroup of G(K) generated by {ap} U {®7(a;)| 1 < <
d
d,0<j<s—1}. So {oqﬁ—z O™ ()| ny,...,ng € N} C M. If MNT = {0}, then the intersection

set of {ag + Z O™ ()| n,...,nqg € N} and T is contained in {0} and hence is a finite union of
widely F —sets So we may assume that M N F is an infinite cyclic group generated by gy € M. We
want to show that {(ny,...,ng) € N¢| ag + Z O™ () € Z - go} is a finite union of good cosets in
N,

Write M = M., & My where M, is a free Z-module. We can find positive integers mg, D and
a Z-basis {Ry, ..., R} of My such that mg-go = D - Ry. Now fix any integer r € {0,...,mo — 1},
we will prove that {(ni,...,nq) € N¢| o + i O"i (o) € (r+mpZ) - go} is a finite union of good
cosets in N¢, z . l

Write ag — 7 - go = Tp + Z Ty - Ry and &7 (ay) = Tp5 + Z Yiju - Ry for some Ty, T;; € Mo, and
xu,yWEZWherel<z<d0<] <s—1and1<u<l Then for each 1 < i < d, we have

P"i(oy) = iZ:z)c](nz) Hoy) = Z;j c;(ng)(Tij+ ;yiju.Ru)' So (ao_r.go)Jrzd: O ;) = (TOJF:%_
R,) + ilszlc;(m)( ij é Ry = (To + ilszlcj(nz) -Ti) + é( i%i;cj(ni)yiju) ‘R,

Therefore, we may interpret the condition on (n4,...,ns) € N that ag+ Z O™i(ay) € (r+moZ)-go
i=1
as follows (recall that mg-go = D - Ry):

() T0+lecg(nz) T‘Z'j:O,
i=1j
d s—1

(i) =1+ > > ¢j(n;)yij is a multiple of D, and
i=1j=0

[y

S—

d
(ili) @, + Z Z (1) yiju = 0 for every 2 <u < [.

Now we argue that for each one of those three conditions, the set {(n,...,nq) € N¢| (ny,...,ng)

satisfies that condition} is a finite union of good cosets in N%. Then by Lemma 2.9(i), we conclude
d

that the intersection set {(n1,...,nq) € N¥| ag+ > ®"(ay) € (r+meZ) - go} is also a finite union
i=1

of good cosets in N¢.
Firstly, we deal with condition (i). Notice that for every 0 < j < s — 1, the sequence

(¢;(n) (mod |Mie|))nen is eventually periodic. So for every 1 < i < d, the sequence of torsion
s—1

points (Y ¢j(n)-Ti;)nen is eventually periodic. Now one can easily see that the set {(n1,...,nq) €
j=0



N¢| (ny,...,nq) satisfies condition (i)} is a finite union of good cosets in N¢. Indeed, the good
subgroups of Z¢ involved here can be defined using only requirements of type (a)(b) in Definition
2.8(i).

Secondly, for condition (ii), the argument is just the same as in that for condition (i). One just
substitute “mod |M;|” by “mod D”.

Lastly, we deal with condition (iii). Using Lemma 2.9(i), we only need to prove that the
d s—1

set {(n1,...,nq) € N z, + > > ¢;j(n;)yiju = 0} is a finite union of good cosets in N? for
i=1 ;=0

vl
—_

d
every fixed integer u € {2,...,1}. So now we fix u and calculate that z, + Z Z ¢ (ni)Yiju =

s—1 —

d s
Ty + Z Z ylju(z bjpall) = x, + z Z(z Yijubjv)ari. To be clear, we let C;, = Z Yijubju and
i—1o=1 =0

i=1j=

then the condition can be written as x, + Z Z Ciayt = 0 in which Cy, € C are constants for
(i) e {1,...d} x {1,... s} =

Now consider the elements \; = (1,...,1,a1,...,a,1,...,1) € G¥(C) for 1 <i < d in which
as lies at the isth coordinate in the vector \;. Let V C (Gfri(c be the hyperplane defined by the

d s
linear equation z, + Y > CiuX(i—1)s+v» = 0 where X7, ..., Xy are the coordinates of ijc. Then
i=1v=1
d

for (ni,...,nq) € N% we interpret the condition z,, + > Z ¢;(ni)yiju = 0 as Z n;-A; € V(C). Let
i=1j=0 =1

A C G%(C) be the free subgroup with Z-basis {\, ..., A\¢}. Then [Lau84, Théoreme 2| says that
{Zd: n;- Al ny,...,ng € Z and zdj n;-A; € V(C)} is a finite union of sets of the form A+ (H NA) in
V;Eilch AeANand H C ngc is gllalgebraic subgroup defined by some equations of the form X; =1
or X; = X where 1 < 4,5 < ds. Now recall that a4, ..., as are complex numbers that have absolute
value ¢* or ¢2, we conclude that {(ni, ..., ng) € Z9| ini -\ € V(C)} is a finite union of cosets of
good subgroups of Z?. As a result, we have proved that {(ni,...,nq) € N| 2, + zd: sf ¢ (M) Yiju =

i=1j=0
0} is a finite union of good cosets in N? for every fixed integer u € {2,...,1}.

To sum up, the whole argument above proves that {(ny,...,ng) € Nd| ap + Z O™i(a;) € I'} is

a finite union of good cosets in N?. So taking the argument at the end of the ﬁrst paragraph in

the proof into account, we finish the proof of Proposition 2.6. O

2.3 The form of widely F-sets contained in an infinite cyclic group

In subsection 2.2, we proved that the intersection of an F-set with a cyclic group is a finite union
of widely F-sets. So in this subsection, we will discuss the form of those widely F-sets contained
in a cyclic group.

Let G be a semiabelian variety over an algebraically closed field K of characteristic p > 0
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which is defined over a finite field IF,. Let F' = Frob, be the Frobenius endomorphism of G' and let
I' € G(K) be an infinite cyclic group. Since our purpose is to describe the form of the intersection
of I' with a closed subvariety X C G, it is natural to consider that whether I' has a nontrivial
F*-invariant subgroup for some k € Z_. If so, then we may apply Theorem 2.4 and hence in this
case, we only need to consider the form of F-sets contained in an infinite cyclic group. The result

to this end is as follows.

Proposition 2.11. Let G be a semiabelian variety over an algebraically closed field K of charac-
teristic p > 0 which is defined over a finite field F,. Let F' = Frob, be the Frobenius endomorphism
of G. Let T" be the cyclic group generated by a non-torsion point g € G(K) and let S be an F-set
contained in I'. Then the set {n € Z| n-g € S} is a finite union of sets of the form Sym 40(co; cio)
defined in Definition 1.1. In other words, the “widely” p-sets will not appear in here.

d

Proof. Firstly, recall that S is of the form {ag+ > F*"(a;)| ny,...,ng € N} where k,r € Z, and
i=1

g, a1, ..., g € G(K). Denote ® = F* and hence ® admits an equation P(®) = 0 in which P(z) €

Z[z] is a polynomial with leading coefficient 1 such that every integer root of P has the form +p°
for some positive integer e. Let us analyze what the condition S = {ay + Zd: Q" ()| My ..., g €
N} C I' means. One can see that g + a; + -+ + g € I' and ®(oy;) — o ZE_lf foreach 1 < i < d.
Write ag + a3 + -+ ag = ¢+ g and ®(;) — o; = [; - g for some ¢, 1y, ...,l; € Z. We may assume
l; # 0 for each i since otherwise ®"i(q;) = ; for all n; € N and so that this term can be absorbed
into the constant term ag. Now the condition S C I' can be read as [;®"(g) € I" for any 1 <i <d
and n € N.

Write 1;0"(g) = (g for some I € Z (so I”) = I;). Then I("g = 1;6"(g) = ®(1;d"(g)) =
(1" Mg) = 1" Vd(g) for any 1 < i < d and n € Z,. Since g is not a torsion point, we deduce
(lgn_l))2 = l§”‘2)l§") for any n > 2. Thus li|l§1) must hold because ZEO) =l; # 0 and each lgn) is an
integer. So we can write I\") = [;t; for some integer t; and hence I;(®(g) — t;9) = 0 for each i.

Since each ®(g) —t;g is a torsion point but g is non-torsion, we can see that t; = --- =t;:=1 €
Z. Write ®(g) = tg+ h for some torsion point h € G(K). Then ®"(g) = t"g+ " 'h+t""2F(h) +

.-+ F"71(h) so that ®"(g) — t"g is a torsion point for each n € Z,. But P(®) =0, so P(t)- g is
a torsion point and hence P(t) = 0 because ¢ is non-torsion. As a result, ¢ has the form £p°© for
some positive integer e.

Now, we calculate ®"(c;). We have ®"i(a;) = oy + (@(az) ozz)—k A (D" () — P () =
aitlig+-+L0" 1 (g) = g +1Vg+- - +1" Vg Since 1V = 1,1 = it and (1”72 = 12
for any n > 2, we deduce lg") = [;t" for each n € N by [;t # 0. Thus ®" () = oz + L;(1 +t+ -+
M) = o + LS g,

Lg = (c—i-zltnl 1) - g for

d

So we know ag + > " () = (a0 + a1 + -+ ag) +
i=1

nonnegative integers nq,...,ng in which ¢, ly,...,lg € Z and t = :I:p with a p081tlve integer e. If
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d
t is positive, we immediately see that {n € Z| n-g € S} = {c+ le%| ni,...,ng € N} =

d
Spe.a0(c — Z ot SR i), If ¢ is negative, we write {n € Z| n-g € S} = U A{(c+
i=1 €1,,€4€{0,1}
d i (£2)7i — .- . .
> ll%@l)) - g| n1,...,nqg € N} and then also conclude that it is a finite union of sets of
i=1
the form Spze 40(co; cio). Thus we are done. O

Now we have to consider the case that the infinite cyclic group I' € G(K) has no nontrivial

F*_invariant subgroup for any k € Z,. Our result is as follows.

Proposition 2.12. Let G be a semiabelian variety over an algebraically closed field K of charac-
teristic p > 0 which is defined over a finite field F,. Let F' = Frob, be the Frobenius endomorphism
of G and let T be the cyclic group generated by a non-torsion point g € G(K). Let S be a subset

d r )
of T of the form {ag+ > > F¥"(;)| na,...,nq € N} where d € Z,,r € N and oy, ay; € G(K)
i=1j=0
where (i,7) € {1,...,d} x {0,...,r}. Suppose that
(i) F admits an equation P(F) = 0 where P(x) = (x—q)Py(z) for some polynomial Py(x) € Z|x]

with leading coefficient 1 such that every complex root of Py has absolute value q%, and
(ii) T has no nontrivial F*-invariant subgroup for any k € Z., .

Then {n € Z| n-g € S} is a set of the form S,a,—1(co;cij) defined in Definition 1.1 where
co, Cij € Q for (i,7) € {1,...,d} x{0,...,r —1}.

Remark 2.13. (i) The condition (i) for the Frobenius endomorphism F is easy to fulfill. One

Just raise to a bigger finite field Fx on which the torus part of G' splits and then this condition
holds for Frob

(11) Notice that in the conclusion, the power of 2 is only up to 2"~ while we have 2" in the widely
F-set.

In the following discussions, we will always inherit the setting as in Proposition 2.12. More pre-
cisely, we will always let G, F),I", g be objects as in Proposition 2.12 satisfying those two conditions.

We start with several lemmas.

Lemma 2.14. Let a € G(K) be a point, (1,)nen be a sequence of integers and (t,)nen be a sequence
of torsion points in G(K). If F"(«) =1, - g + t, for every nonnegative integer n, then l,, = 0 for

every n € N and hence a 1s a torsion point.

Proof. For every n > 0, we have l,11 - g + tor1 = F""Ha) = [,F(g9) + F(t,). So lpy1 -9 =
1,F(g9) + (F(t,) — ty11) and hence (12,1 — lpla42) - g is a torsion point for every n > 0. But g is

non-torsion and hence we conclude that ln 41 = Inlpyo for each n.
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If Iy # 0, then we may deduce a contradiction as follows. Since (I, ),en is a sequence of integers,
we deduce that there exists an integer a such that [,, = lpa™ for every n > 0 (one may consider the
cases that whether /; = 0 and find that the conclusion always holds). So we have a = [y - g + 1
and F(a) =1;-g+t; = lpa-g+1t; and therefore, F(log) = F(a) — F(to) = alog+ (t1 — F(to)). But
there exists a positive integer D such that D(t; — F(ty)) = 0, so we have F(Dlyg) = a - Dlpg and
thus the nontrivial subgroup of I' generated by DIy - g is F-invariant. So we get a contradiction
and conclude that [; = 0.

Now as lp = 0, we have « is a torsion point. Therefore, F"(«) and hence [, - g is torsion for

each n. So [,, = 0 for each n and thus we are done. O

Lemma 2.15. Let r be a nonnegative integer, oy, . .., o, € G(K) be closed points and let (1,,)nen be

a sequence of integers, (tp)nen be a sequence of torsion points in G(K). If > F2j”(aj) =l,-g+t,
5=0
r—1 X
for every n > 0, then there exists cy, . ..,c,—1 € Q such that I, = Y ¢;¢*™ for every n >0 (where
5=0
q 1s the power of p which corresponds to F', i.e. F' = Frob,).

Proof. We prove by induction on r. We notice that although the data G,T', g are fixed, we may
change ¢, F' into a suitable power in the induction procedure. The case when r = 0 is exactly
Lemma 2.14 as in this case we have proved that [,, = 0 for each n. Suppose the result holds for r,
now we consider the case of r 4 1.

Recall we have assumed that F' admits an equation P(F) = 0 where P(z) = (z — ¢)Fo(x)
for some polynomial Py(x) € Z[x] with leading coefficient 1 such that every complex root of B
has absolute value q2. Write Py(z) = (# — 21)--- (z — z,) for some complex numbers 2, ..., z,
of absolute value ¢z. For every m > 0, we let Q,(z) = (z — ¢™)(z — 2) - - - (x — z™) which is a
Z-coefficient polynomial and let R(z) = Qa(z)Q4(z) - - - Qor+1(x). Then we have Q,,(F™) = 0 for
every m and thus R(F?) = R(F*) = --- = R(F?") = 0. So by doing some Z-coefficient, linear
combinations, we can see that there are a sequence of integers (I/),en and a sequence of torsion
points (¢),)nen such that F™"(R(F)(a)) = I, - g+t for every n > 0. Hence by Lemma 2.14, we
conclude that R(F')(«ap) is a torsion point.

Notice that the greatest common divisor of P(z) and R(x) in Q[z] is 1 or  — ¢ since the only
common root of them is ¢ (if there exists one) and the root ¢ has multiplicity 1 in P(z). But
now R(F)(ap) is a torsion point and P(F)(ag) = 0, so we can see that (F' — ¢)(ap) must be a
torsion point. Now denote I}, = l,11 — ql, and o) = (F? — q)(a;) for every n > 0 and every

1 < j < r+1, then we can see that there is a certian sequence of torsion points (t]),en such
r+1 )
2In _ . . .
that J;F (o) =1, - g + t;, for every n. We want to use the induction hypothesis towards

¢*, F? =Frobp and ' =Z- g.
We need to check that the two conditions in Proposition 2.12 are still valid: firstly, condition
(i) still holds because F? = Frob,: satisfies Q2(F?) = 0 where Qz(z) = (v — ¢*)(x — 2%) - - - (x — 2?)
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and (z—2%) -+ (z—2?) is a Z-coefficient polynomial with leading coefficient 1 whose complex roots
have absolute value ¢; and secondly, condition (ii) tautologically holds as I' has no nontrivial F'-

invariant subgroups for any k£ € Z,. So now we can use the induction hypothesis to conclude that

there exists ¢} ...,c. € Q such that [/, = > c;-q2j” for every n > 0. As a result, we can calculate
7j=1
n—1-m n n— n n— 27 -1n
that I, = "l + Zoq = gl + g 121( ZCJ” DMy = gl + q IZ Gl =

T

loq™ —1—20"1 —" = (I, — J] )q”—{—z 2/ ¢¥n = chqznfor some ¢y, ...,¢, € Q and
j=1 -4 j=19"71 j=19"71 =0
thus we have proved that the result also holds in the case of r + 1. So we finish the proof by

induction. [
Now we can prove Proposition 2.12.

Proof of Proposition 2.12. Firstly, the condition S C I' implies that for every 1 < ¢ < d, there

exists a sequence of integers (I, )nen such that > F?" o (F? —1)(ay;) = liy - g for every n > 0. So
=0

r—1 )
by Lemma 2.15, we know that there exists ¢;o...,¢,—1 € Q such that l;;, = > cm-qy” for every

j=0
d T
(i,n) € {1,...,d} x N. Let ap+ >_ > uj = lo - g for some [y € Z. Then we can calculate that
i=17=0
d r ; r d r n;—1 p ; d n;—1
ag+ 30 > F¥ (o) = (040+ZZ%) o2 2 FPMo(FY —1)(ay) =lo g+ > limg=
i=135=0 i=1j= :]OmD i=1 m=0
d n;—1r— .
(lo+> > chqum)- (lo—l—z Zc” 2]1 11) g for every (ni,...,nq) € N%. As a result, we
i=1m=0 j= i=1j=
d =1 2n1 1 d r=1 Ci i Ci s
have {n € 2| n-g € S} = {lo+ 32 3 ey e € N} = Sy llo— 30 % S B
i=1j= 1=175=0
Thus we are done. L

3 Translation of algebraic groups

In this Section, we prove that Conjecture 1.3 holds for translation of algebraic groups. This is
a special case of our main Theorem 1.6 and it is interesting as it connects the p-Mordell-Lang
problem and the dynamical p-Mordell-Lang problem. The main result of this section is as follows.

We will use the preparations in Section 2 to prove it.

Theorem 3.1. Let G be an algebraic group over an algebraically closed field K of characteristic
p>0. Let g € G(K) be a closed point and let X C G be a closed subvariety. Then {n € Z| g" €
X(K)} is a widely p-normal set as in Definition 1.1.

The proof of Theorem 3.1 has 4 steps: firstly, we prove that it holds for isotrivial semiabelian
varieties; secondly, we prove that it holds for semiabelian varieties; thirdly, we prove that it holds

for commutative group varieties; and lastly, we prove that it holds for arbitrary algebraic groups.

14



Now we start with the first step.

Proposition 3.2. Theorem 3.1 holds when G is an isotrivial semiabelian variety, i.e. when G is

a semiabelian variety defined over F,.

Proof. We prove by induction on dim(X). Notice that we only need to deal with the case when
X is an irreducible closed subvariety of G. The case when dim(X) = 0 is easy.

Firstly, we argue that we may assume Stabg(X) = {0} without loss of generality. Here we
denote Stabg(X) as the smooth algebraic subgroup of G satisfies Stabg(X)(K) = {a € G(K)| a+
X = X}. We know that Stabg(X) (and in fact every smooth algebraic subgroup of G) is defined
over IF_‘p as an algebraic subgroup of G. So G/Stabg(X) is also an isotrivial semiabelian variety
and now X/Stabg(X) C G/Stabg(X) is an irreducible closed subvariety with trivial translation
stabilizer. But if we denote 7 : G — G/Stabg(X) as the quotient map, we find that {n € Z| n-g €
X(K)} ={n€Z|n-n(g) € (X/Stabg(X))(K)}. So we may assume that Stabg(X) = {0} without
loss of generality.

Now we find ¢ which is a power of p such that G is defined over F, and the corresponding
Frobenius endomorphism F' = Frob, satisfies the condition (i) in Proposition 2.12 (we can do this,
see Remark 2.13(i)). We may assume g € G(K) is non-torsion since otherwise {n € Z| n-g €
X(K)} is a finite union of arithmetic progressions. We will deal with two cases that whether

I' = Z - g has a nontrivial F*-invariant subgroup for some positive integer k.

Case 1: There exist ky,ng € Z, such that nol" is an F*o-invariant group.
no—1

Now since {n € Z| n-g € X(K)} = U (a+no-{n € Z| (a+non)-g € X(K)}), we only need
a=0
to show that {n € Z| (a + non) - g € X(K)} is a widely p-normal set for every 0 < a < ny — 1

by Remark 1.2(ii). Write {n € Z| (a + non) - g € X(K)} = {n € Z| n-npg € (—ag + X)(K)}
and then we can apply Theorem 2.4 for F* = Frob g, the F ko_invariant group nel' and the closed
subvariety —ag+ X C G. Then we can conclude that (—ag+ X)(K)Nnel is an F*-normal set in
nol. So{n € Z| n-npg € (—ag + X)(K)} is a widely p-normal set by Proposition 2.11 for every
0 <a <ng—1 and in fact, the “widely” p-sets will not appear in here. So we have proved that

{n€Z|n-ge X(K)} is a widely p-normal set in this case.

Case 2: T has no nontrivial F*-invariant subgroup for any positive integer k.

Now let 'y = Z[F] - g be a finitely generated F-invariant subgroup of G(K). Using Theorem
A B
2.4, we can write X(K)NTq= J(S; +A;) U S! where Sy,...,54,5],...,55 are F-sets in 'y
i=1 i=1
and Aq,...,A4 C I’y are infinite subgroups since one can split the term whose A is a finite group
A

B
into a finite union of F-sets in I'y. Notice that X(K)NT' = J (S + A(K)NnT)u J(SiNT), we
i=1

=1

A B
have {n€Z|n-ge X(K)}=U{ne€eZln-geS+MNK)JuU{neZ n-ge S, NI}
=1 =1
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For every 1 < i < A, we have S; + A; ; X because it is contained in X and it has a nontrivial
translation stabilizer. So dim(S; + A;) < dim(X) because we have assumed that X is irreducible
and hence we conclude that {n € Z| n-g € S; + A;(K)} is a widely p-normal set by induction
hypothesis.

For every 1 <i < B, we have S/ NI is a finite union of widely F-sets by Proposition 2.6. Now
since we have known that the two conditions in Proposition 2.12 holds for F' = Frob,, we can see
that they also holds for every power F*¥ = Frobgr. So using Proposition 2.12, we conclude that
{ne€Zln-geS NI} isa widely p-normal set for every 1 <i < B.

Combining the arguments above, we deduce that in this case {n € Z| n-g € X(K)} is a widely

p-normal set.

All in all, we proved that {n € Z| n-g € X(K)} is a widely p-normal set by induction. O

Next, we prove that Theorem 3.1 holds for arbitrary semiabelian varieties.

Lemma 3.3. Theorem 3.1 holds when G is a semiabelian variety.
Proof. Denote I' = Z - g. Firstly, we may assume that X is an irreducible closed subvariety of

G and X(K)NT = X without loss of generality. Then using Theorem 2.1, we can see that there

exists

a semiabelian subvariety Gy C G,

an isotrivial semiabelian variety G over K,

a closed subvariety Xy C Gy,

a surjective algebraic group homomorphism f : G; — Gy, and
a point zy € G(K)

such that X = zo+ f~1(Xj) as a closed subset of G.

Now we have {n € Z| n-g € X(K)} ={n € Z| ng—z¢ € G1(K) and f(ng—zq) € Xo(K)}. We
may assume that the set {n € Z| ng—xzy € G1(K)} is infinite since otherwise {n € Z| n-g € X(K)}
will be a finite set and then we are done. Then {n € Z| ng — zo € G1(K)} must be an infinite

arithmetic progressions. So we may write {n € Z| ng — o € G1(K)} = a + ngZ where a is an
integer which satisfies ag — xo € G1(K) and nyg is a positive integer which satisfies nog € G1(K).
Then {ne€Z|n-ge X(K)}=a+no-{n €Z| flag—xo) +n- f(nog) € Xo(K)} =a+ng-{n €
Z| n- f(nog) € (—f(ag—z0)+ Xo)(K)}. So we reduce to the case of isotrivial semiabelian varieties
and finish the proof by Proposition 3.2 and Remark 1.2(ii). O

Remark 3.4. At this point, we remark that the original version of pDML conjecture holds for
translation of abelian varieties. More precisely, the set {n € Z| n-g € X(K)} will be a p-normal
set as in Definition 6.1 if the ambient algebraic group is an abelian variety. This statement can
be proved by running the procedure of the proof once again for abelian varieties. The key point is

that every complex root of the minimal polynomial of the Frobenius endomorphism of an isotrivial
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abelian variety has the same absolute value. Therefore, in the setting of Proposition 2.6 we have
that the intersection set of an F-set with a cyclic group is also a finite union of F-sets (instead of
widely F-sets).

Next, we prove that Theorem 3.1 holds for commutative group varieties. We remark that the
notion of group varieties here is a synonym of smooth algebraic groups, i.e. they do not need to

be connected.

Lemma 3.5. Theorem 3.1 holds when G is a commutative group variety.

Proof. Firstly, by [Bril7, Theorem 5.6.3(i)], we know that G' admits an exact sequence 0 — S —
G — (Q — 0 where S is a semiabelian variety over K and () is commutative group variety over
K which has finite exponent. So in particular Q(K) is a torsion group. As a result, there exists

a positive integer ng such that ng - g € S(K). Then we may write {n € Z| n-g € X(K)} =
no—1

U @+no-{n€Z n-nyg € (—a+ X)(K)}). But for every 0 < a < ng — 1, we can see that
a=0

{neZln-ngée(—a+X)K)}={neZln-nge ((—a+X)NS)(K)}is a widely p-normal set
by Lemma 3.3. So we conclude that {n € Z| n-g € X(K)} is a widely p-normal set by Remark
1.2(id). O

Finally, we prove Theorem 3.1.

Proof of Theorem 3.1. Firstly, one can see that there is a smooth commutative algebraic subgroup
H C G whose underlying set is ¢2. Denote X, = X N H which is a closed subvariety of H. Then
{neZl gte X(K)} ={neZ| g" € Xo(K)} is a widely p-normal set by Lemma 3.5 and thus we
have finished the proof. O

At the end of this Section, we would like to give an example. It is well-known that the set
{n € Z| g¢* € X(K)} in Theorem 3.1 can be a “p-set” when the ambient algebraic group is an
algebraic torus. We shall give an explicit example to show that when the ambient algebraic group is
an abelian variety, this set can also be something beyond a finite union of arithmetic progressions.
The result in this example will be used in Section 6 to give a rigorous disproof of the original

version of pDML conjecture.

Example 3.6. (i) Letp =5 and let K = F,(t). Let E be the elliptic curve x3xy = x3+x3 in P%
with zero point O =1[0,1,0] € E(K). Let A= E X E be an abelian variety. We embed A into
P3 by Segre embedding, i.e. [xo, 1, 2] X [Yo, Y1, Y2] = [Toyo, Toyr, Loz, T1Y0, L1Y1, T1Y2, T2Yo,
Toy1, ToYo)|. Let z;j be the coordinate of P® corresponding to x;y; for any 0 < 4,5 < 2. Let
X C A be the closed subvariety {zoa = 290 + 222} N A. Let g = (Q1,Q2) € A(K) where
Q1= (t+ 1,/ (t+1)3+1),Qy = (t,V13+1) are points lie in the affine chart of E(K).
Denote S={neN|n-ge X(K)}. Then we have

(o) {p"| n €N} C S, and
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(b) S C{0}U{p*m| ke N;m € Z,,m = +1 (mod 2p)}.

Thus S cannot be a finite union of arithmetic progressions in N.

(ii) Let A be an abelian surface over an algebraically closed field K of characteristic p > 0. Let

X C A be a closed subvariety and let g € A(K) be a closed point. Then {n € Z| n-g € X(K)}

is a union of finitely many arithmetic progressions (possibly singleton) along with finitely

many sets of the form Sq,1,o(qc_—°1; qc_—ll) as in Definition 1.1 where q is a power of p and cg, ¢

are integers satisfying ¢ — 1 | co + 1.

Proof. (i) Let F be the Frobenius endomorphism Frob, of E. Since E is a supersingular elliptic

curve, we have F? = [—p| € End(FE). As a result, p"- P = (—1)" - F?"(P) for any n € N and
P € E(K). Thus we can see that (i) holds.

To prove (ii), we need the explicit formula of the multiplication-by-m map of an elliptic curve
described in [Sil86, (III, Ex. 3.7)]. We apply this result to our FE.

For any positive integer m, there exist f,,(2) = 2™ + (lower order terms) and g (z) =

m2z™ 14 (lower order terms) which are coprime polynomials in [F,[x], such that

m-P = (525373/) , gm(x) #0
where P = (z,y) lies in the affine chart of F(K). In particular, the points ¢ and @y are

non-torsion.

Now S = {0} U{m € Z,| j;:gﬁg = g:gg + 1}. But since f,,(x) and g,,(z) are coprime, this

condition on m yields g, (t + 1) = gm(t). So gm(x) must be a polynomial of 2P — z and as a

result, the number of different roots of g,,(z) in K is a multiple of p.

Denote this number by pd,, and write m = p*m’ in which p { m’. Then by the supersingularity
of E, we deduce
1+ 2pd,,, 2¢m

m” = |E[m]| =
44 2(pdp —3), 2|m

But p = 5 cannot be a factor of m? + 2, so we have 2 { m and m’ = +1 (mod p). Thus we

are done.

Assume g is non-torsion without loss of generality. We only have to deal with the case
that X C A is an irreducible curve and {n € Z| n-g € X(K)} is an infinite set. We
may further assume that ngg + X # X for every positive integer ny because otherwise
{n€Z| n-ge X(K)} will be a finite union of arithmetic progressions and hence we are
done. Now recall the statement in Remark 3.4 which implies that {n € Z| n-g € X(K)}
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is a union of finitely many arithmetic progressions along with finitely many sets of the form

Sq7d70(qc_—°1; qﬁl) where ¢y, ¢1,. .., cq are integers satisfying ¢ — 1| co + ¢ + -+ + ¢cq.

Notice that for every positive integer ng, the set {n € Z| ng € X(K) and (n+ng)g € X(K)}
must be finite because of the assumption ngg + X # X. But then this condition forces

{n€Z| n-ge X(K)} to be a union of finitely many singletons along with finitely many

sets of the form Sq,l,o(qc_—ol; qc_—ll) where ¢y, ¢; are integers satisfying ¢ — 1 | ¢ 4+ ¢;. Thus we
have finished the proof.

]

Remark 3.7. We find it hard to completely determine the return set. In part (i) above, we do not
know how to prove that S = {0} U {p"| n € N} although we believe this is true. Maybe one can
follow the procedure in [BGM) to get a rigorous proof.

4 Bounded-degree self-maps

We will prove Theorem 1.6 in this Section. We shall use some knowledge in [Bri] as well as a
regularization theorem (Theorem 4.6) to deduce Theorem 1.6 from Theorem 3.1. More precisely,
we will deal with the case of bounded-degree automorphisms in subsection 4.1, and prove Theorem
1.6 in subsection 4.2 by reducing to the case of bounded-degree automorphisms.

Through this Section, we fix an algebraically closed field K of characteristic p > 0 and let
everything be over this field. We require K to be of positive characteristic only because we use

Theorem 3.1 in the proof of Proposition 4.4.

4.1 Bounded-degree automorphisms

In this subsection, let X be a projective variety and let f be a bounded-degree automorphism of
X. We denote N'(X) as the group of line bundles on X up to numerical equivalence, which is a
finite free Z-module. For L € Pic(X), we denote by [L],um the class of L in N'(X). We will prove
that Conjecture 1.3 holds for the bounded-degree system (X, f) at the end of this subsection. Now
we start with the following proposition which says that bounded-degree automorphisms come from

group actions.

Proposition 4.1. Let X, f be as above. Then there exists a (not necessarily connected) group
variety G, a group action F : G x X — X and a point gy € G(K) such that f = F,, in which F,,

18 the automorphism of X induced by the group action.

Firstly, we shall show that the action of the bounded-degree automorphism f on N'(X) is

unipotent. We need the following lemma on intersection theory.
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Lemma 4.2. Let X be as above and let C' C X be an integral closed subcurve. Then there exists
an ample line bundle Ly € Pic(X) such that for every ample line bundle L € Pic(X), we have
L-L§m™*1t>[.C.

Proof. We prove the assertion by induction on dimX. If dimX = 1, then there is nothing to
prove. So we may assume that dimX > 2.

Denote I C Oy as the ideal sheaf of C' C X. Pick an ample line bundle L; € Pic(X) such that
Ic ® Ly is globally generated. Pick a nonzero global section s € I'(X, I ® L1) C I'(X, L1) (notice
that I ® L, is a subsheaf of L1). Let D = (s)g be the divisor of zeros of s, which is an effective
Cartier divisor on X such that L; =2 £ (D). Let Y C X be the closed subscheme associated with
D. Then C' C Y and Y is of pure codimension 1 in X.

Let Yy C Y be an irreducible component of Y containing C' and equip Y, with the reduced
induced closed subscheme structure. Then Y is a projective variety of dimension dimX — 1. Let
t : Yy — X be the closed immersion. By induction hypothesis, there is an ample line bundle
Ly € Pic(Yp) such that (L' - L™ 1)y > (L/- C)y, for every ample line bundle I’ € Pic(Yy). Now
we choose an ample line bundle Ly € Pic(X) such that both Ly — L; and i* Ly — Lo are ample. We
claim that Ly has the desired property.

Indeed, for every ample line bundle L € Pic(X), we have (L-L3™*~) > (L. Ld™X~2. 1)) = (L-
LAmX =2y > (L. LAWY =20y — (% L.(* Lo)mX—2)y > (i*L- (L)X -2)y. > (i*L-C)y, = (L-C).
Thus we finish the proof by induction. O

Lemma 4.3. Let X, f be as above. Then there exists a positive integer ng such that (f™)* :
NY(X) — NY(X) is the identity map.

Proof. Pick a Z-basis {[L1]num; - - -, [Lalnum } of N*(X). Then there exists {C1,...,Cy} which are
Q-coefficient 1-cycles in X, such that L; - C; = ¢;; for all 1 <4,j < d where ¢;; is the Kronecker
symbol. Let A € GL4(Z) be the matrix corresponds to f* : N'(X) — N'(X) under this basis. We
have to show that there is a poistive integer ny such that A" = I; which is the identity matrix.
For each nonnegative integer n, we have A™ = ((f*)*(L1), ..., (f")*(Lq))"+(C4,...,Cy). But by
Remark 1.5 and Lemma 4.2, we can see that each sequence {(f™)*(L;) - C;| n € N} is bounded. So
{A"| n € N} is a sequence in GL4(Z) in which each element is bounded. As a result, there are only

finitely many different matrices in that sequence. Thus we are done because A is invertible. [

Next, we need to recall some knowledge of the automorphism groups of projective varieties.
For a reference, see [Bri, Section 2].

Let X be our projective variety. Let Autx be the contravariant functor from the category of
(locally noetherian) K-schemes to the category of groups, which sends the K-scheme S to the group
Aut(X x.S/5) (the products will always be taken over K'). This functor is represented by a locally
algebraic group Autx over K. Let Aut(X) = Autx,q be the reduced closed (locally algebraic)
subgroup of Auty, then there are canonical bijections Aut(X/K) = Autx(K) = Aut(X)(K). Let
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Aut’(X) be the identity component of Aut(X), which is a connected group variety. Then Aut(X)
acts on N'(X) and in fact Aut’(X) acts trivially on it (see [Bri, Lemma 2.8] and the discussion
above it).

Let L € Pic(X) be an ample line bundle and let Aut(X, [L]num) be the stabilizer of [L]y,m, under
the action of Aut(X). Then [Bri, Theorem 2.10] says that Aut(X, [L]yum) is a closed algebraic
subgroup of Aut(X). Notice that Aut(X, [L]yum)(K) € Aut(X)(K) is canonically identified with
{f € Aut(X/K)| f*(L) = L} C Aut(X/K) where “=" stands for numerically equivalent.

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. Let gy € Autx(K) = Aut(X)(K) be the closed point which corresponds
to the bounded-degree automorphism f. Combining Lemma 4.3 and the discussion above, we
can see that there is a positive integer ny such that g;° lies in a closed algebraic subgroup of
Aut(X) (as it lies in any Aut(X, [L]yum) where L € Pic(X) is an ample line bundle). As a result,
if we let G C Auty be the closed smooth (locally algebraic) subgroup whose underlying space is
{gi]n € Z}, then G is in fact an (algebraic) group variety.

Now notice that there is a natural group action o : Autx x X — X such that f = oy, (in which
04, is the automorphism of X induced by the group action), we may just let F': G x X — X be
the group action induced by ¢ and then one can verify that the conclusion of Proposition 4.1 holds
for G, F and gy € G(K). O

Now we can prove Theorem 1.6 for bounded-degree automorphisms of projective varieties.

Proposition 4.4. Let X, f be as in the beginning of this subsection. Then f satisfies the arithmetic
pDML property, i.e. the conclusion of Theorem 1.6 holds.

Proof. Let x € X(K) be a closed point and let V' C X be a closed subvariety. We will prove that
{n ezl f"(x) € V(K)} is a widely p-normal set.

Let G, F and gy € G(K) be as in Proposition 4.1. Since f = F},, we know that f" = Fyn for
every integer n where Fyx is the automorphism of X induced by F' and g§ € G(K). So for each
integer n, we have f*(x) = F(g(,z). Now let i, : G — G x X be the closed immersion given by
g (g,7) and let j : G — X be the composition F oi,. Then we have {n € Z| f*(x) e V(K)} =
{ne€Z| gy e€ji "(V)} Thus the result follows from Theorem 3.1. O

4.2 Proof of Theorem 1.6

We will finish the proof of Theorem 1.6 in this subsection. Firstly, we reduce to the case in which
the orbit O(x) is dense in X.

Lemma 4.5. In order to prove Theorem 1.6, we may assume that the orbit Of(x) is dense in X

without loss of generality.
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Proof. Assume that we have proved Theorem 1.6 with the additional assumption that Og(z) is
dense in X, we want to prove Theorem 1.6. We will do induction on dim(X). The case in which
dim(X) =1 is easy.

Now assume f : X --+ X is a bounded-degree self-map of a projective variety X and z € X (K)
is a point such that Of(x) is well-defined. Let V' C X be a closed subvariety. We will prove that
{n e N| f*(z) € V(K)} is a widely p-normal set in N. Assume further without loss of generality
that Of(x) is not dense in X. By substituting x by a proper iterate, we may assume that the

closed subsets {f"(x)| n > N} are all the same for any nonnegative integer N. Denote this closed
subset as a proper closed subvariety X, C X.

Let Xi1,..., X14,, X215+ -+, Xodys - - oy Xo1, - -, Xpg, be the irreducible components of X such
that dim(Xy;) = -+ = dim(Xy4) > dim(Xg) = -+ = dim(Xag,) > -+ > dim(X,q) = -+ =
dim(X,4,). Notice that since Of(x) is dense in Xy, we have O(z) N X;; is nonempty for each ¢, j.
So U;j := Dom(f) N X;; is a nonempty open subset of X;; for each i, j. We can see that |J f(U;)

irj

is a dense subset of Xj.
As aresult, one can choose a pair (01(1, 7), 02(7, 7)) for each 4, j such that f(Ui;) C Xo,(ij)os(i5)-
Using the density of | f(U;;) in Xo, one can show that (by induction on ¢ from 1 to r) o4 (4, j) = i for
.3

each 7, j and o9(4, 1),7. ..,09(1,d;) is a permutation of 1, ..., d; foreachi = 1,2, ..., r. Furthermore,
by the same reason, f(U;;) must be dense in X4, (; j) for each i, 7. We abbreviate 03(, ) as (i, j).

By the discussion above, we see that f induces dominant rational maps f;; : Xi; —— Xio )
for each 4, j, and U;; C Dom(f;;). Suppose z € U, j, (K) and let ji,j2, ..., jt, jey1 = j1 be a circle

under the action of o(ig,j). We abbreviate X; ;, as X and f; ;, as fi, then we get a circle of

0Jk
dominant rational maps fi : Xi --» X1 (k= 1,...,t, understood by modulo ¢ for the indices),
all induced by f. Denote g : X --+ X as the composite fris10---0 fp for k =1,... ¢, which
is a dominant rational self-map of Xj.

One can verify that for each k = 1,...,¢, Dom(f") N X} is nonempty and f*|y, maps into
X. In fact, one can show that f'|y, : Xy --» Xj is same as g. So by (the proof of)
[JSXZ, Proposition 3.2, we know that g, are bounded-degree (dominant) self-maps for each k =
1,...,t. Moreover, since x € U, (K) C X1(K), we have f*(x) = f,0---0 fi(z) € U, (K) C
Xn11(K) for each n € N. As a result, we have O,, (f*7(z)) is well-defined and g7'(f*'(z)) =
frith=l(z) for every k = 1,...,t and every n € N. Notice that dim(X;) = --- = dim(X;) <

dim(X), we know each g, satisfies the conclusion of Theorem 1.6 in view of the induction hypothe-
t

sis. So using Remark 1.2(ii), we may conclude that {n € N| f*(z) € V(K)} = ! (k=1)+t-{n e
N| fr+k=1(z) € V(K)}) = kLtJ (k—=1)+t-{n e N| g2(ff(z)) € (VN X)(K)}) is a widely

=1
p-normal set in N for any closed subvariety V' C X. Hence we finish the proof by induction. [

Next, we introduce our main tool. This result was firstly proved in [HZ96, Section 5] for the
case that the base field is C. Inheriting the methods in [HZ96], the second author writes a note
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[Yan| which deals with the arbitrary characteristic case and copes with the details carefully. One

can consult [HZ96, Section 5], [Canl4, Theorem 2.5] or [Yan, Corollary 1.3] for references.

Theorem 4.6. Let f: X --+ X be a bounded-degree self-map of a projective variety. Then there
exists a projective variety Y, a birational map w:Y --+ X and a bounded-degree automorphism g
of Y, such that fomr =mog.

We need another lemma before proving Theorem 1.6.

Lemma 4.7. Let X, Y be varieties and let m .Y --+ X be a dominant rational map. Let [ be a
dominant rational self-map of X and g be a flat endomorphism of Y such that fow =mog. Let
r € X(K) be a point such that the orbit O¢(x) is well-defined and dense in X. Suppose that g
satisfies the arithmetic pDML property, i.e. {n € N| ¢"(y) € W(K)} is a widely p-normal set in
N for every point g € Y(K) and every closed subvariety W C Y. Then for every closed subvariety
V C X, we have {n € N| f*"(z) € V(K)} is a widely p-normal set in N.

Proof. Firstly, notice that since the flat endomorphism ¢ of ¥ must be dominant, no problem will
occur when compositing the maps. Let D = Dom(7) and let mg : D — X be the morphism which
represents . Then D is an open dense subset of Y and 7y(D) is a constructible dense subset of X
since 7 is dominant. So my(D) contains an open dense subset of X. By substituting x by a proper
iterate, we may assume x € my(D) without loss of generality because Oy(z) is dense in X. Then
we can choose a point y € D(K) such that m(y) = x. We firstly prove that O,(y) C D.

Let n be a nonnegative integer. We want to prove that ¢"(y) € D. By the assumption that
Of(z) is well-defined, we can see that x € Dom(f™). As a result, we have y € Dom(f" o 7).
So y € Dom(m o g") because f"om = 7o g". Now since ¢g" is a flat morphism, we conclude
that ¢"(y) € D by [BLR90, 2.5, Proposition 5] (although the statement of this reference contains
a smoothness requirement, one can verify that the proof is still valid without that assumption).
Therefore, we deduce that ¢g"(y) € D for each nonnegative integer n and thus O,(y) C D.

Now for each nonnegative integer n, we have f"(z) = f™(m(y)) = mo(g"(y)) since x € Dom( f"),
g"(y) € D and ff"om = mog". Let W be the closure of 7;*(V) in Y. Then W is a closed
subvariety of Y such that W N D = m; (V). Now combining the fact O,(y) C D with the equality
fM(x) = m(g™(y)) above, we know that {n € N| f*(z) € V(K)} = {n € N| ¢g"(y) € W(K)}.

Hence the result follows. O

Remark 4.8. The analogue of the lemma above for the 0-DML property (i.e. the statement which
asserts that the return set is a finite union of arithmetic progressions in N) is also valid. No change

1 needed to make in the proof.

Now we can finish the proof of Theorem 1.6.

Proof of Theorem 1.6. Combining Lemma 4.5, Theorem 4.6, Lemma 4.7 and Proposition 4.4 and

then we are done. O

23



At the end of this Section, we would like to give a remark on the complexity of the return set.

Remark 4.9. By running the proof procedure more carefully, one may let all of the “widely p-

sets” involved in the return set have the form {co + Z Z c”q””l
i=175=0

power of p and d 4+ r1 + -+ + rq 1s not greater than the dimension of the closed subvariety V

| n1,...,nqg € N} where q a

at least in the situation of Theorem 3.1 or Proposition 4.4. The key point is that by running
through the proof in [MS04], one may let all of the F-sets invioved in X(K)NT have the form

d
{ag + " FFi(ay)| ny,...,nq € N} where d < dim(X) in the situation of Theorem 2.4. We guess

=1
that with some more efforts, one may prove that this kind of statement also holds in the situation

of Theorem 1.6 and moreover one may add this kind of statement in Conjecture 1.5.

5 Geometric version of the pDML conjecture

For the dynamical Mordell-Lang conjecture in characteristic 0, we know that there is an arithmetic
version and a geometric version which are equivalent with each other. See [BGT16, Section 3.1.3].
Both of the two versions can be regarded as the dynamical analogue of the corresponding version
of the classical Mordell-Lang conjecture in characteristic 0. Since to our knowledge there is still
no geometric version of the dynamical p-Mordell-Lang conjecture, we would like to formulate a
reasonable one in this article.

We want our conjecture to be a dynamical analogue of the “geometric p-Mordell-Lang the-
orem”, that is, [Hru96, Theorem 1.1] (see Theorem 2.1). It is a core philosophy in arithmetic
dynamics that the algebraic dynamic systems are analogues of semiabelian varieties in arithmetic
geometry. So here we have to find a notion which serves as an analogue of isotrivial semiabelian
varieties in positive characteristic. We think that the bounded-degree self-maps might be a right
answer.

Now we propose our conjecture. We want to focus on the dominant rational self-maps of

(quasi-)projective varieties.

Conjecture 5.1. (pDML, geometric version) Let X be a projective variety over an algebraically
closed field K of arbitrary characteristic and let f : X --+ X be a dominant rational self-map.
Let Y C X be an irreducible closed subvariety of positive dimension and let x € X(K) be a point
whose orbit O¢(x) is well-defined. Suppose that O¢(x) NY is dense in'Y, then there exist

e a positive integer ng, an irreducible closed subvariety X1 C X, and a dominant self-map
fi: Xy --» Xy such that Dom(f™) N X; is nonempty and f™|x, =i o fi in which i is the closed
immmersion X1 — X,

e a projective variety Xo over K and a bounded-degree self-map fy: Xo --+ X,

e a dominant rational map F : X1 --+ Xo such that F o f{ = foo F, and

e a closed subvariety Yy C X,
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such that Y C F~1(Yy) and (F~1(Yo)\Y) N Oy(x) is a finite set. Here we interpret F~(Yy) as
the closure of (F|pom(r)) *(Yo) € Dom(F) in X;.

Remark 5.2. (i) One can verify that the above description of the closed subvariety Y C X
includes the case in which Y is f-periodic. The point is that one can let the bounded-degree
system (Xo, fo) be trivial, i.e. (Spec(K),id).

(ii) By changing every “projective” into “quasi-projective” and every rational map into morphism
in the statement of Conjecture 5.1, we get another version of the geometric pDML conjecture.
Taking Theorem 1.6 into account, this version of the conjecture implies the arithmetic pDML
Conjecture 1.3 for the case of endomorphisms of quasi-projective varieties. Although we also
believe that the statement of this version should be true, we deliberately remain the rational
maps as in Conjecture 5.1 because we think that the rational maps should naturally appear

i the picture.

(111) A closed subvariety of X of the form F~Y(Yy) as in Conjecture 5.1 above is of “f-bounded-
degree”. We think that “f-bounded-degree” should be a reasonable relaxed condition on subva-
rieties of “f-preperiodic” (as the relationship between bounded-degree and periodic self-maps).
One can also substitute the term F~1(Yy) in Congecture 5.1 by “an f-bounded-degree closed
subvariety of X7 and get a weaker version of Conjecture 5.1, which is more similar to the

geometric version of 0-DML.

Briefly, Conjecture 5.1 says that in the positive characteristic case, counterexamples of the
statement of 0-DML conjecture should come from some bounded-degree system which is “a factor
of a subsystem” of the original dynamical system (X, f). But if f is a polarized endomorphism
of a projective variety X, then the subsystems of (X, f) are all polarized and hence they cannot
admit nontrivial bounded-degree systems as their factor. So the Conjecture 5.3 below is a succinct
consequence of Conjecture 5.1. It says that the statement of 0-DML conjecture should hold for

polarized dynamical systems in arbitrary characteristic.

Conjecture 5.3. Let X be a projective variety over an algebraically closed field K of arbitrary
characteristic and let f : X — X be a polarized endomorphism. Then for every point x € X (K)
and every closed subvariety V- C X, the return set {n € N| f"(x) € V(K)} is a finite union of

arithmetic progressions in N.

The careful reader may have noticed that the statement of Conjecture 5.1 is a little bit more
complicated than Theorem 2.1. The example below shows that the irreducible closed subvariety
Y C X may not be f-bounded-degree. So we cannot expect that Y itself is of the form F~1(Yp).

Example 5.4. Let the base field K be F,(t). Let X = G}, and let f be the automorphism of
X gwen by (x1, 2, x3,24) — (x129, (t + 1)xe, x324,t24). Let x = (1,1,1,1) € X(K) and let
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Y ={zy =24+ 1} N {aixy = 2324 + 1} be a 2-dimensional integral closed subvariety of X. Then
Of(z) NY(K) is dense in Y but'Y is not of f-bounded-degree.

n(n—1)

Proof. Firstly, we compute that f™(xy, xe, x3,24) = ((t+1)" 2 x5, (t+1)"x, thgmff, t"xy)
for all nonnegative integer n. So in particular we have f™(x) = ((¢t + 1)n<n271>, (t+ 1), t@,t").
As a result, the intersection O(x) NY (K) = {f?"(x)| n € N}. The assertion “{f?"(x)| n € N} is
dense in Y7 is equivalent to that {((t + 1)pn(p;_l> : tpn(p;_l>)| n € N} is dense in A%, which can be
easily verified by using [Ghil9, Theorem 1.3].

However, one can verify that f*(Y) = {(t + 1) "z, = t x4 + 1} N {(t + 1)V 222y =
" 22272+ 1+ 1} for each nonnegative n. Substituting z, = (¢t + 1)"(¢t "z4 + 1) into the second

equation, we get the equation ¢"?"~Dg2z2=1 — (f 4 1)1 (g, 4+ )21 (" 22 4+ 2271) = 0 in

which the left hand side is an irreducible polynomial of degree 4n — 2 for large n. As a result, Y
is not of f-bounded-degree. ]

In the example above, one can realize the hypersurface {xo = 24+ 1} C X as F~(Y}) in the
way of Conjecture 5.1. This explains why we modify the naive analogue of Theorem 2.1 into the

statement of Conjecture 5.1 in this way.

6 A disproof of the original version of pDML conjecture

In this Section, we will disprove the original version of the pDML conjecture. So firstly let us

review its statement.

Definition 6.1. Let p be a prime. A p-normal set (in Z) is a union of finitely many arithmetic

progressions (possibly singleton) along with finitely many sets of the form S, 7d70(q‘i—°1; q?l) (see Defi-
nition 1.1) in which q is a power of p and cg, c1, . .., cq are integers satisfying g—1 | co+c1+- - +cq.
A p-normal set in N is a subset of N which is, up to a finite set, equal to the intersection of a

p-normal set and N.

As we have mentioned in the Introduction, this definition was firstly introduced in [Der07] for
the Skolem—Mahler—Lech problem in positive characteristic. Now the original version of the pDML
conjecture [BGT16, Conjecture 13.2.0.1] can be read as follows.

Conjecture 6.2. Let X be a variety over an algebraically closed field K of characteristic p > 0
and let f be a rational self-map of X. Let x € X(K) be a closed point such that the orbit Of(x)
is well-defined and let V- C X be a closed subvariety. Then {n € N| f"(x) € V(K)} is a p-normal
set in N.

We shall prove that this statement fails even in the special case of translations of isotrivial

semiabelian varieties (but it is valid in the case of translation of abelian varieties, see Remark 3.4).
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We will give some heuristic of counterexamples in subsection 6.1 and then give a rigorous disproof

in subsection 6.2.

6.1 Heuristic of counterexamples

In this subsection, we provide some evidence to the existence of counterexamples of Conjecture
6.2 in the case of translation of isotrivial semiabelian varieties. Since we only want to give some

heuristic arguments here, we will not be quite rigorous in this subsection.

Example 6.3. Let G be a semiabelian variety over an algebraically closed field K of characteristic
p > 0 which is defined over a finite field F,. Let ' = Frob, be a Frobenius endomorphism of
G. Suppose there are points a, 8 € G(K) such that F(a) = ¢* -« and F(B) = q - 3 (this may
happen as we may play with tori and supersingular elliptic curves). Let g = o+ . Let d € Z
and let cq,. .. cd € Z. If there is a closed subvariety X C G such that X(K)n (Z[F] cg) =

{Fn1<cla) + Z Fm(czOé + ¢ 1ﬁ) + Fnd""l(CdB)’ Ny, ..., Ng+1 € N} = {(;C q2n1) o+ (Zc qn1+l> .

=

d :
B| ni,...,ngp1 € N}, then X(K) N (Z - g) will contain {(>_ ¢;¢*™) - g| n € N}.
i=1
A more precise (but still only heuristic) example is as below.

Example 6.4. Let p, K, (E,O) be same as in Example 3.6(i). Let G = G? x E?. Let C1,Cs, C3 be
curves in G given by C1(K) = {(z +1,2,0,0)| € K},Co(K) = {(1,1,(y + 1,£/(y + 1)3 + 1),
(1, VY + D)l y € K} and C3(K) = {(z + 1,2, (2 + 1, £/(z + 1) + 1), (2, £V +1))| 2 € K}
(here we abuse some notations since in fact the sets C;(K) will be larger as C; are closed subcurves
of G). Let X = Cy+Cy+Cs be a closed subvariety of G and let g = (t+1,¢, (t+1,/(t + 1)3 + 1),
(t,V#* +1)) € G(K). Then one can see that {(p" +p™) - g € X(K)| n € N} C X(K) because
(tp“+1 t".0,0) € C1(K), (1, p2” t+1,/(t + 13+ 1),p>(t, VB + 1)) € Cy(K) and (7" +1,
m (1, (D)3 1),p" - (4B 1)) € C3(K) for every n € N.

We believe that this example should already be a counterexample of Conjecture 6.2. But
as we have mentioned in Remark 3.7, we are unable to completely determine the return set in
this example. So we will modify this example and give a rigorous disproof of Conjecture 6.2 by

contradiction in next subsection.

6.2 A rigorous disproof of Conjecture 6.2

In this subsection, we will prove that Conjecture 6.2 fails for some certain translation of isotrivial
semiabelian varieties. We fix the data p, K, (E,O) as in Example 3.6(i) through this subsection.
Namely, we let our prime p = 5, let the base field K be [F,(¢) and let (E, O) be that supersingular

elliptic curve as in Example 3.6(i). Our main statement is as follows.
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Proposition 6.5. Let G = G2 x (G2, x E?). Let g = ((t+a,t—a,t), (t+1,t, (t+1,/(t +1)3 + 1),
(t, V13 +1))) € G(K) in which o € F, is a generator of this cyclic group. Let Vo C G, be the
closed subvariety given by the equation x + 1y = 2z + 2a%. Then there exists a closed subvariety
V C G2, x E* such that {n e N| n-g € (Vo x V)(K)} is not a p-normal set in N.

Firstly, we need a lemma which is a direct consequence of [Der07, Corollary 9.4]. Although all
numbers in the reference are assumed to be rational, one can verify that this condition is not used

in the proof.

Lemma 6.6. Letd € N,q € Roy and ¢y, ¢, €9, €1, ...,eq € R. Then the set {(ny,no) € N?| Imq, my

d
ooy mg €N st g™ + g™ =eg + > eiq™} is a finite union of sets of the 5 forms below:
i=1

(i) a singleton {(n1,na)} for some ny,ny € N.
(i1) {(n +ni,n2)| n € N} for some ny,ny € N.
(tii) {(n1,n+ny)| n € N} for some nqy,no € N.
(w) {(n+n1,n+ny)| n €N} for some ny,ny € N.
(v) {(n1 + nyo, ng + ngg)| n1,n2 € N} for some nyg, ngy € N.

Next, we introduce a notation which will be used in the proof of Proposition 6.5. We denote

pozp2 = 25.

Definition 6.7. Let g € {pf| n € Z+},q1,q2 € {pj| n € N} and ¢o € N,¢y € Z. We denote
A(q; q1, q2) as the set {q1q"™ +q2q"*| n1,ny € N} and denote B(q; co, ¢1) as the set {co+c1¢4"| n € N}.
We will obey the convention that all of these coefficients must lie in their “domain of definition”

(ie. ge{pgl n € Zi},q1,q2 € {pf| n € N} and ¢y € N, ¢y € Z ) when we use this notation.

Now we can prove Proposition 6.5.

Proof of Proposition 6.5. Assume by contradiction that {n € N| n-g € (Vo x V)(K)} is a p-normal
set in N for every closed subvariety V' C G2 x E?. Notice that {n € N| n-(t+a,t—a,t) € Vo(K)} =
{pg* + po?| n1,n2 € N}. Firstly, we prove that up to a finite set, {n € N[ n-g € (Vo x V)(K)} is
a union of finite sets of the form A(q; ¢1,¢2) along with finite sets of the form B(g; ¢g, ¢1) in which

V C G2, x E? is a closed subvariety and the sets A(q; q1,q2), B(q; co,c1) are as in Definition 6.7.

For a closed subvariety V C G2, x E?, we denote S(V) as the set {n € N|n-g € (Vo x V)(K)}.
So by assumption, all of the sets S(V') are p-normal sets in N. But since S(V) C A(pg;1,1), we
firstly conclude that up to a finite set, S(V') is a finite union of sets of the form S, 40(;%5; -27) NN
as in Definition 1.1. Now by considering the “least common power” gq of pg and all the powers of

p (i.e. the number ¢) involved here and split Sq7d70(%; q‘fl

) into a finite union of sets of the form
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Sq07d70(%c—/31; qoc—él), we may conclude that there is an element ¢y € {p{| n € Z,} such that up to

a finite set, S(V) is a finite union of sets of the form Sy 40(*7; -*5) N N. Now using the fact

S(V) C A(po;1,1) once more, we know that up to a finite set, S(V') is a finite union of sets of
M—1M—1

)N A(po; 1,1). But we have A(po;1,1) = U U A(qo; ps, ph) if qo =
a=0 b=0
in which M € Z,. So by Lemma 6.6 we may conclude that up to a finite set, S(V') is a union

the form Sy, 4.0(

s |

of finite sets of the form A(q; ¢, ¢2) along with finite sets of the form B(q;co, ¢1) for every closed
subvariety V C G2, x E®.

Now let C4, Cy, C3 be locally closed subvarieties of G2, x E? such that for any closed point
u € (G2, x E*)(K), we have

(i) w e Cy(K) if and only if u = (x + 1,2,0,O) for some z € K\{0, -1},

(i) u € Co(K) if and only if u = (1,1, (y + 1, £+/(y + 1)2 + 1), (y, £4/y> + 1)) for some y € K,
and

(i) v € C3(K) if and only if u = (z + 1,2,(z + 1, £y/(z + 1)3 + 1), (2, V2% + 1)) for some
z € K\{0,—1}.

In fact C| is a closed subvariety of G2, x E? but Cy, C3 are just locally closed subvarieties. Here
we use “+” to remind that there are two square roots in K while in the definition of g € G(K),
we just arbitrarily fix one. So for example ﬂ:\/m should be comprehended as “an element in
K whose square is y> + 17.

Let X be the image of the composition map C; x Cy x C3 — (G2, x E?)* % G? x E?
where m is the addition map (u,v,w) — u+ v + w. Then X is a constructible set in G2, x E?

satisfying that for any closed point u € (G2, x E?)(K), we have v € X if and only if there exist

r,z € K\{0,—1} and y € K such that u = ((x + 1)(z + 1), 22, (y + L, £/ (y + 13+ 1) + (2 +
L+y/(z+ 12+ 1), (y, £v/y* + 1) + (2, £V23 + 1)),

N
Write X = |J(V;\W;) in which Vi,...,Vy,Wi,...,Wx C G2, x E? are closed subvarieties

i=1
satisfying W; C V; forevery 1 <i < N. So Lj\j( S(VONS(W;)) = {n € N| n-(t+a, t—a,t) € Vo(K)}N
{n€N|n-ggeX}inwhiChgo (t—l—lt t+1\/t+17 (t, V12 +1)) € (G2, x E?)(K).
As a result, we can write U( (VONS(W3)) = A(po; 1, 1)N{n € N| 3z, 2z € K\{0,—1},3y € K, s.t.
n-go=((x+1)(z+1),2z,(y+1L,E/(y+ 13+ 1)+ (z+ 1, £/ + 13+ 1), (y, £ /v + 1) +
(z,£v23+1))}. Then we know {p? + pt"| n € N} C (VJ( S(V))\S(W;)) by the calculation in
Example 6.4. We shall prove that there exists ¢y € {pj| nzzel Z.} and qio,q20 € {p§| n € N} such

that {(an0 + a)a| n € N} € U (STANSON).
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Firstly, fix an element ig € {1,..., N} such that S(V;,)\S(W,,) contains infinitely many ele-
ments of the form pj + p2". Recall that up to a finite set, S(V) is a union of finite sets of the form
A(q; q1, q2) along with finite sets of the form B(q; g, ¢;) for every closed subvariety V C G2, x E2,
So by using the trick of considering the least common power of all the ¢ involved here, we may fix
an element ¢y € {pj| n € Z,} and find E, ' C N such that

(i) up to a finite set, S(V},) is equal to £ and S(W},) is equal to F, and

(ii) both E and F are a union of finite sets of the form A(qo; ¢1,¢2) along with finite sets of the

form B(qo; co, c1).

So in particular the sets S(V;,)\S(W;,) and E\F are equal up to a finite set and hence E\F
contains infinitely many elements of the form p? + pZ". But a set of the form B(qo;co, 1) can
only contain finitely many elements of the form pj + p2". So we conclude that there exists a
set A(qo; 410, @h) € E such that A(qo; qo, ¢h)\F contains infinitely many elements of the form
g +pg

Now using Lemma 6.6, we can see that this condition forces A(qo; qlg, qho) N F' to be a union
of a finite set with finitely many sets of the form B(qo;co,c1). So for a sufficiently large positive
integer C', we have {(q1045 + ¢50)95| n € N} € A(qo; 410, 420) and {(q1045 + gho)g5| n € N} N F is a
finite set. So up to a finite set, {(¢10¢5 + ¢h)q4| n € N} is contained in E\F and hence it is also
contained in S(V;,)\S(W;,) up to a finite set. Therefore, there exists a positive integer Ny such
that {(¢}oq5 ™ + ¢had®)qt| n € N} C S(V;,)\S(W;,) and thus we have proved that there exists

N
qo € {p8| n € Z;} and qio, q20 € {p’[}] n € N} such that {(qio +‘J20)qg| n € N} C [J(S(ViH)\S(Wy)).
i=1

Now we have {(qi10 + ¢20)¢0| n € N} C {n e N| Jz,z € K\{0,—1},3y € K,st.n-go = ((z +

D(z4+1),22,(y+ 1, £/ (y+ 13+ D+ (z+ 1, £/ (2 + 1) + 1), (y, /¥ + 1) + (2, £vV22 + 1)) }.

This means that for every n € N, the set of equations

(t 4 1)@0F@0s = (4 1)(z + 1)
+(@10+4920)95 — 4 »

(qro+qo)gd - (t+1,/(t+1)P3+1)=(y+ 1,2/ (y+ 12+ 1)+ (z+ 1,2/ (2 + 1)3 + 1)
(g0 + q0)q0 - (L, VE+1) = (y, VY3 + 1) + (2, £V23 + 1)

have a solution (z,, s, 2,) € K>. But since both qi0q} and gooqf are powers of p, the first two
equations forces {w,,2,} = {t70% %% } and hence we may assume that there exist infinitely
many n € N such that x,, = t90% and z, = t920% without loss of generality.

Now for every such n € N, the last two equations can be read as

{ ((q10 + @20)90 £V q20q0) - (t+ 1,/ (E+ 12 +1) = (Yo + 1, /(Y0 +1)3 + 1)
((q10 + ¢20)95 £ Va20q5) - (1, VE + 1) = (Yn, £/yp + 1)
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for some suitable choice of the sign =+ since we have Frob? = [—p] on E (notice that \/qoq)
is a positive integer because gy, are powers of py = p?). But by the explicit formula in
[Sil86, (I11, Ex. 3.7)], one can see that the two signs £ before /go0g] in the two equations must

be same. So without loss of generality we assume that there exist infinitely many n € N such that

{ ((quo + q20)q8 + V@ooqq) - (t+ 1,1/t +1)3+1) = (yo + 1,1/ (yn + 1)3 + 1)
((q10 + @20)q8 + v/q2045) - (t, VI3 +1) = (yn, /Y3 + 1)

Now let S C N be the return set in Example 3.6(i). By Example 3.6, we know that
(i) S contains infinitely many positive integers of the form (g0 + ¢20)¢0 + V@204,
(ii) S C{0}U{p*m| k e Nym € Z,,m = +1 (mod 2p)}, and

(iii) S is a union of finitely many arithmetic progressions in N along with finitely many sets of the

form Sq,1,o(qc,—°1; %) NN where ¢ is a power of p and ¢y, ¢; are integers satisfying ¢—1 | ¢o+c¢;.

But since p = 5 > 3, condition (ii) implies that for any arithmetic progression {a + dn| n €
N} € S in which @ € N and d € Z,, we have v,(d) > v,(a + dn) for any n € N where v,(z) is
the number such that p*»®) || 2. So every arithmetic progression contained in S can only contain
finitely many numbers of the form (qi0 + ¢20)q0 + v/q2045- But every set of the form Sq71,0(%; ﬁ)
also can only contain finitely many numbers of the form (g9 + ¢20)q) + V2095 So we get a
contradiction.

All in all, we have proved that there exists a closed subvariety V' C G? x E? such that

{neN|n-ge (Vo xV)(K)} is not a p-normal set in N. O

One can see that Proposition 6.5 disproves Conjecture 6.2. In other words, one cannot require
all of the r to be 0 in Conjecture 1.3. Moreover, Example 6.3 suggests that one cannot require all
of the r to be bounded by an absolute constant in Conjecture 1.3 and we believe that one may

prove this statement rigorously by an argument similar to our argument here.

7 Appendix: an arithmetic version of the p-Mordell-Lang

problem

The careful reader may have noticed that there are “pML, geometric version” (Theorem 2.1),
“pDML, arithmetic version” (Conjecture 1.3) and “pDML, geometric version” (Conjecture 5.1)
above but we have not mentioned “pML, arithmetic version” yet. The arithmetic version of the
p-Mordell-Lang problem should describe the form of the intersection of a closed subvariety with
a finitely generated subgroup in a semiabelian variety of positive characteristic. But it turns out

that this intersection set can be quite wild (see [GY24,Section 2]). So one cannot expect the
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“pML, arithmetic version” to have a succinct statement. Some works to this end have been done
in [GY24, Theorem 1.6, Theorem 1.10], but it turns out that there is an error in that work. We
fix that error and generalize the results in [GY24] to arbitrary algebraic groups here. Our main

result is as follows.

Theorem 7.1. (pML, arithmetic version) Let G be an algebraic group over an algebraically closed
field K of characteristic p > 0. Let X C G be a closed subvariety and let I' C G(K) be a finitely

generated commutative subgroup. Then X (K)NT is a finite union of sets of the form
o + (7|ry) T (S)

where
e 1ycl
e Gy C G is an algebraic subgroup which is a semiabelian variety over K, and I'g = Go(K)NT,
e Hy is a semiabelian variety over a finite subfield ¥, C K, and Fy is the absolute Frobenius
endomorphism of Hy corresponding to I,
e H=Hyxy, K, and F' = Fy xy, K is the Frobenius endomorphism of H,

o m: Gy — H is a surjective algebraic group homomorphism, and

d r .
e S is a subset of m(Ly) of the form {apg+ > > F¥"(a;)| ni,...,ng € N} whered € Z,,r € N
i=17=0
and ag, aq, ..., aq € H(K).

Note that since I' is assumed to be commutative, we use “+ 7 for the multiply operation of

elements in I.

We shall just briefly sketch the proof of Theorem 7.1 since the details are in fact essen-
tially same as the corresponding arguments in [GY24] and Section 3 above. Firstly, one can
prove Theorem 7.1 in the case of semiabelian varieties in a way just the same as the proof
of [GY24, Theorem 1.6, Theorem 1.10]. The only thing to change is that one should use Re-
mark 2.7(ii) above instead of [Ghi08, Theorem 3.1] in the proof. This explains where the sets

d r )
{ag+ > > F¥"i(ay)| ny, . ..,ng € N} in Theorem 7.1 come from. In order to prove the statement
i=1;j=0
for general algebraic groups, one may inherit the strategy in Section 3. The key point is that one
can reduce the general case to the case of semiabelian varieties by using [Bril7, Theorem 5.6.3(i)]

as in the proof of Lemma 3.5 and Theorem 3.1.
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