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Abstract. The aims of this paper are answering several conjec-
tures and questions about multiplier spectrum of rational maps
and giving new proofs of several rigidity theorems in complex dy-
namics, by combining tools from complex and non-archimedean
dynamics.

A remarkable theorem due to McMullen asserts that aside from
the flexible Lattès family, the multiplier spectrum of periodic points
determines the conjugacy class of rational maps up to finitely many
choices. The proof relies on Thurston’s rigidity theorem for post-
critically finite maps, in where Teichmüller theory is an essential
tool. We will give a new proof of McMullen’s theorem (hence a
new proof of Thurston’s theorem) without using quasiconformal
maps or Teichmüller theory.

We show that aside from the flexible Lattès family, the length
spectrum of periodic points determines the conjugacy class of ra-
tional maps up to finitely many choices. This generalize the afore-
mentioned McMullen’s theorem. We will also prove a rigidity the-
orem for marked length spectrum. Similar ideas also yield a simple
proof of a rigidity theorem due to Zdunik.

We show that a rational map is exceptional if and only if one of
the following holds (i) the multipliers of periodic points are con-
tained in the integer ring of an imaginary quadratic field; (ii) all
but finitely many periodic points have the same Lyapunov expo-
nent. This solves two conjectures of Milnor.
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1. Introduction

1.1. Exceptional endomorphisms. Let f : P1 → P1 be an endomor-
phism over C of degree at least 2. It is called Lattès if it semi-conjugates
to an endomorphism on an elliptic curve. Further it is called flexible
Lattès if it semi-conjugates to the multiplication by an integer n on an
elliptic curve for some |n| ≥ 2. We say that f is of monomial type if
it semi-conjugates to the map z 7→ zn on P1 for some |n| ≥ 2. We call
f exceptional if it is Lattès or of monomial type. An endomorphism f
is exeptional if and only if some iterate fn is exceptional. Exceptional
endomorphisms are considered as the exceptional examples in complex
dynamics.

In this paper we will prove a criterion for an endomorphism being
exceptional via the information of a homoclinic orbit of f . See Theo-
rem 2.11 for the precise statement and see Section 2 for the definition
and basic properties of homoclinic orbits. Since every f has plenty of
homoclinic orbits, the above criterion turns out to be very useful. A
direct consequence is the following characterization of exceptional en-
domorphisms by the linearity of a conformal expending repeller(CER).

Theorem 1.1. Let f : P1 → P1 be an endomorphism over C. Assume
that f has a linear CER which is not a finite set, then f is exceptional.

CER is an impotent concept in complex dynamics introduced by
Sullivan [Sul86]. See Section 7.1 for its definition and basic properties.

1.2. Rigidity of stable algebraic families. For d ≥ 1, let Ratd(C)
be the space of degree d endomorphisms on P1(C). It is a smooth quasi-
projective variety of dimension 2d + 1 [Sil12]. Let FLd(C) ⊆ Ratd(C)
be the locus of flexible Lattès maps, which is Zariski closed in Ratd(C).
The group PGL 2(C) = Aut(P1(C)) acts on Ratd(C) by conjugacy. The
geometric quotient

Md(C) := Ratd(C)/PGL 2(C)

is the (coarse) moduli space of endomorphisms of degree d [Sil12]. The
moduli spaceMd(C) = Spec (O(Ratd(C)))PGL 2(C) is an affine variety of
dimension 2d− 2 [Sil07, Theorem 4.36(c)]. Let Ψ : Ratd(C)→Md(C)
be the quotient morphism.
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An irreducible algebraic family fΛ (of degree d endomorphisms) is an
algebraic endomorphism fΛ : P1

Λ → P1
Λ over an irreducible variety Λ,

such that for every t ∈ Λ(C), the restriction ft of fΛ above t has degree
d. Giving an algebraic family over Λ is the same as giving an algebraic
morphism Λ→ Ratd. A family fΛ is called isotrivial if Ψ(Λ) is a single
point.

For every f ∈ Ratd(C) and n ≥ 1, fn has exactly Nn := dn + 1
fixed points counted with multiplicity. Their multipliers define a point
sn(f) ∈ CNn/SNn

1, where SNn is the symmetric group which acts on
CNn by permuting the coordinates. The multiplier spectrum of f is the
sequence sn(f), n ≥ 1. An irreducible algebraic family is called stable
if the multiplier spectrum of ft does not depend on t ∈ Λ(C).2

In 1987, McMullen [McM87] established the following remarkable
characterization of stable irreducible algebraic families:

Theorem 1.2 (McMullen). Let fΛ be a non-isotrivial stable irreducible
algebraic family of degree d ≥ 2, then ft ∈ FL(C) for every t ∈ Λ(C).

McMullen’s proof relies on the following Thurston’s rigidity theorem
for post-critically finite (PCF) maps [DH93], in where Teichmüller the-
ory is essentially used. An endomorphism f of degree d ≥ 2 is called
PCF if the critical orbits of f is a finite set.

Theorem 1.3 (Thurston). Let fΛ be a non-isotrivial irreducible alge-
braic family of PCF maps, then ft ∈ FL(C) for every t ∈ Λ(C).

In this paper, we will give a new proof of McMullen’s theorem with-
out using quasiconformal maps or Teichmüller theory. Since an irre-
ducible algebraic family of PCF maps is automatically stable, this leads
to a new proof of Theorem 1.3 without using quasiconformal maps or
Teichmüller theory. Except Theorem 2.11 whose proof relies on some
basic complex analysis, our proof of Theorem 1.2 only requires some
basic knowledges in Berkovich dynamics and hyperbolic dynamics. We
explain our strategy of the proof as follows:

Cutting by hypersurfaces, one may reduce to the case that Λ is a
smooth affine curve. Let W be the smooth projective compactification
of Λ and let B := W \ Λ. For every o ∈ B, our family induces a
non-archimedean dynamical system on the Berkovich projective line
(see Section 4 for details), which encodes the asymptotic behavior of
ft when t → o. Since fΛ is non-isotrivial and stable, via the study of

1Via the symmetric polynomials, we have CNn/SNn
' CNn .

2Stability has several equivalent definitions and can be defined for more general
families [McM16, Chapter 4].
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non-archimedian dynamics, we show that there is one point o ∈ B such
that when t → o, ft “degenerates” to a map taking form z 7→ zm in
a suitable coordinate, where 2 ≤ m ≤ d − 1. The above degeneration
z 7→ zm is called a rescaling limit of fΛ at o, in the sense of Kiwi
[Kiw15], see Definition 5.4. On the central fiber, it is easy to find a
homoclinic orbit satisfying the condition in our exceptional criterion
Theorem 2.11. Using an argument in hyperbolic dynamics [Jon98] (see
Lemma 6.1), we can deform such homoclinic orbit to nearby fibers
preserving the required condition. By Theorem 2.11, ft is exceptional
for all t sufficiently close to o. We conclude the proof by the fact that
exceptional endomorphisms that are not flexible Lattès are isolated in
the moduli space Md(C).

1.3. Length spectrum as moduli. According to the noetheriality
of the Zariski topology on Ratd, McMullen’s rigidity theorem can be
reformulated as follows:

Theorem 1.4 (Multiplier spectrum as moduli=Theorem 1.2). Aside
from the flexible Lattès family, the multiplier spectrum determines the
conjugacy class of endomorphisms in Ratd(C), d ≥ 2, up to finitely
many choices.

Replace the multipliers by its norm in the definition of multiplier
spectrum, one get the definition of the length spectrum. More precisely,
for every f ∈ Ratd(C) and n ≥ 1, we denote by Ln(f) ∈ RNn/SNn the
element corresponding to the multiset {|λ1|, . . . , |λNn|}, where λi, i =
1, . . . , Nn are the multipliers of all fn-fixed points. The length spectrum
of f is defined to be the sequence Ln(f), n ≥ 1. A priori, the length
spectrum contains less information than the multiplier spectrum. But
in this paper we will show that it determines the conjugacy class up to
finitely many choices, hence generalize Theorem 1.4.

Theorem 1.5 (Length spectrum as moduli). Aside from the flexible
Lattès family, the length spectrum determines the conjugacy class of
endomorphisms in Ratd(C), d ≥ 2, up to finitely many choices.

1.3.1. Strategy of the proof of Theorem 1.5: Let g ∈ Ratd(C)\FLd(C).
We need to show that the image of

Z := {f ∈ Ratd(C) \ FLd(C)| L(f) = L(g)}
in Md(C) is finite. For n ≥ 0, set

Zn := {f ∈ Ratd(C) \ FLd(C)| Li(f) = Li(g), i = 1, . . . , n}.
It is clear that Zi, i ≥ 1 is a decreasing sequence of closed subsets of
Ratd(C) \ FLd(C) and Z = ∩n≥1Zn. For simplicity, we assume that
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all periodic points of g are repelling. Otherwise, instead of the length
spectrum L(g) of all periodic points, we consider the length spectrum
RL(g) of all repelling periodic points. Such a change only adds some
technical difficulties. To get a contradiction, we assume that Ψ(Z) ∈
Md(C) is infinite. Our proof contains two steps.

In Step 1, we show that Z = ZN for some N ≥ 0. We first look at
the analogue of this step for multiplier spectrum. The analogue of Zn
is

Z ′n := {f ∈ Ratd(C) \ FLd(C)| si(f) = si(g), i = 1, . . . , n},
which is Zariski closed in Ratd(C) \ FLd(C). Hence Z ′n is stable when
n large by the noetheriality. This is how Theorem 1.2 implies The-
orem 1.4. In the length spectrum case, since the n-th length map
Ln : Ratd(C) → RNn/SNn takes only real values, it is more natural
to view Ratd(C) as a real algebraic variety by splitting the complex
variable to two real variables via z = x + iy. If all Zn, n ≥ 1 are real
algebraic, we can still conclude this step by the noetheriality. Unfor-
tunately, this is not true in general (c.f. Theorem 8.10). Since the
map L2

n sending f to {|λ1|2, . . . , |λNn|2} ∈ RNn/SNn is semialgebraic,
all Zn, n ≥ 1 are semialgebraic. The problem is that, in general closed
semialgebraic sets do not satisfy the descending chain condition. We
solve this problem by introducing a class of closed semialgebraic sets
called admissible subsets. Roughly speaking, admissible subsets are
the closed subsets which are images of algebraic subsets under étale
morphisms. See Section 8.2 for its precise definition and basic prop-
erties. We show that admissible subsets satisfy the descending chain
condition. Under the assumption that all periodic points of g are re-
pelling, we can show that all Zn are admissible. The admissibility is
only used to prove Theorem 1.5.

Step 1 implies that Z = ZN is semialgebraic. Since Ψ(Z) is infinite,
there is an analytic curve γ ' [0, 1] contained in Z such that Ψ(γ) is
not a point. Every t ∈ γ ⊆ Ratd defines an endomorphism ft. After
shrinking γ, we may assume that f0 is not exceptional.

In Step 2, we show that the multiplier spectrum of ft does not depend
on t ∈ γ. Once Step 2 is finished, we get a contradiction by Theorem
1.4. Since for every t ∈ γ, L(ft) = L(g), all periodic points of ft
are repelling. For every repelling periodic point x of f0, there is a real
analytic map φx : γ → P1(C) such that for every t ∈ γ, φx(t) and x have
the same minimal period and the norms of their multipliers are same.
Using homoclinic orbits, we may construct a CER E0 of f0 containing
x. It is non-linear by Theorem 1.1. By Lemma 6.1, for t sufficiently
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small, E0 can be deformed to a CER Et of ft containing φx(t). Using
Sullivan’s rigidity theorem [Sul86] (Theorem 7.7), we show that E0 and
Et are conformally conjugate. In particular, the multipliers of φx(t) is a
constant for t sufficiently small. Since γ is real analytic, the multipliers
of φx(t) is a constant on γ. Since x is arbitrary, all ft, t ∈ γ have the
same multiplier spectrum. This finishes Step 2.

1.3.2. Further discussion. It is interesting to know whether the uniform
version of Theorem 1.5 holds.

Question 1.6. Is there N ≥ 1 depending only on d ≥ 2, such that for
every f ∈ Ratd(C) \ FLd(C),

#Ψ({g ∈ Ratd(C) \ FLd(C)| Li(g) = Li(f), i = 1, . . . , N}) ≤ N ?

For every n ≥ 0, we set

Rn := {(f, g) ∈ (Ratd(C) \ FLd(C))2| Li(f) = Li(g), i = 1, . . . , n}
and

R′n := {(f, g) ∈ (Ratd(C) \ FLd(C))2| si(f) = si(g), i = 1, . . . , n}.
Both of them are decreasing closed subsets of (Ratd(C) \ FLd(C))2.
Since all R′n are algebraic subsets of (Ratd(C)\FLd(C))2, the sequence
R′n is stable for n large. This implies that Theorem 1.4 for multiplier
spectrum is equivalent to its uniform version.

If one can show that the sequence Rn, n ≥ 0 is stable, for example if
one can show that Rn are admissible, then Question 1.6 has a positive
answer. But at the moment, we only know that Rn are semialgebraic.

1.4. Marked multiplier and length spectrum. By Theorem 1.5
and 1.4, aside from the flexible Lattès family, the length spectrum
(hence the multiplier spectrum) determines the conjugacy class of en-
domorphisms of degree d ≥ 2 up to finitely many choices. On the other
hand, by [Sil07, Theorem 6.62], the multiplier spectrum f 7→ s(f)
(hence the length spectrum f 7→ L(f)) is far from being injective when
d large. For this reason, we consider the marked multiplier and length
spectrum. We show that both of them are rigid.

Theorem 1.7 (Marked multiplier spectrum rigidity). Let f and g be
two endomorphisms of P1 over C of degree at least 2 such that f is
not exceptional. Assume there is a homeomorphism h : J (f) → J (g)
such that h ◦ f = g ◦h on J (f). Then the following two conditions are
equivalent.

(i) There is a non-empty open set Ω ⊂ J (f) such that for every
periodic point x ∈ Ω we have dfn(x) = dgn(h(x)), where n is
the period of x;
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(ii) h extends to an automorphism h : P1(C) → P1(C) such that
h ◦ f = g ◦ h on P1(C).

Let U, V ⊂ P1(C) be two open sets. A homeomorphism h : U → V is
called conformal if h is holomorphic or antiholomorphic in every con-
nected component of U . Note that a conformal map h is holomorphic
if and only if h preserves the orientation of P1(C).

Theorem 1.8 (Marked length spectrum rigidity). Let f and g be two
endomorphisms of P1 over C of degree at least 2 such that f is not
exceptional. Assume there is a homeomorphism h : J (f)→ J (g) such
that h ◦ f = g ◦ h on J (f). Then the following two conditions are
equivalent.

(i) There is a non-empty open set Ω ⊂ J (f) such that for every
periodic point x ∈ Ω we have |dfn(x)| = |dgn(h(x))|, where n is
the period of x;

(ii) h extends to a conformal map h : P1(C) → P1(C) such that
h ◦ f = g ◦ h on P1(C).

Note that if h : Ω→ h(Ω) is bi-Lipschitz, then it is not hard to show
that for n-periodic point x ∈ Ω we have |dfn(x)| = |dgn(h(x))|. So
the above theorem implies that a locally bi-Lipschitz conjugacy can be
improved to a conformal conjugacy on P1(C).

Combining Theorem 1.7 and λ-Lemma [McM16, Theorem 4.1], we
get a second proof of Theorem 1.2. This proof does not use Teichmüller
theory, but we need to use quasiconformal maps and the highly non-
trivial Sullivan’s rigidity theorem, which is a great achievement in ther-
modynamic formalism.

Remark 1.9. In Theorem 1.8, in general h can not be extended to an
automorphism on P1(C). The complex conjugacy σ : z 7→ z induces

a mark h := σ|J (f) : J (f) → J (f) = J (f) preserving the length
spectrum. In general, some periodic point of f may have non-real mul-
tipliers, hence in this case h can not be extended to an automorphism
on P1(C).

Remark 1.10. Theorem 1.8 was proved by Przytycki and Urbanski
in [PU99, Theorem 1.9] under the assumptions that both f and g
are tame and Ω = J (f). See [PU99, Definition 1.1] for the precise
definition of tameness. In [Ree84, Theorem 2], Rees showed that there
are endomorphisms having dense critical orbits, hence not tame.

The study of marked length spectrum rigidity has been investigated
in various settings in dynamics and geometry.
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In one-dimensional real dynamics, marked multiplier spectrum rigid-
ity was proved for expanding circle maps (see Shub-Sullivan [SS85]),
and for some unimodal maps (see Martens-de Melo [MdM99] and Li-
Shen [LS06]).

In the contexts of geodesic flows on Riemannian manifolds with
negative curvature, a long-standing conjecture stated by Burns-Katok
[BK85] (and probably considered even before) asserted the rigidity of
marked length spectrum (for closed geodesics). The surface case was
proved by Otal [Ota90] and by Croke [Cro90] independently. A Local
version of the Burns-Katok conjecture in any dimension was proved by
Guillarmou-Lefeuvre [GL19].

It was also studied in dynamical billiards. We refer the readers to
Huang-Kaloshin-Sorrentino [HKS18], Bálint-De Simoi-Kaloshin-Leguil
[BDSKL20], De Simoi-Kaloshin-Leguil [DSKL19], and the references
therein.

We prove Theorem 1.8 by combining Theorem 1.1 and Sullivan’s
rigidity theorem [Sul86], see Theorem 7.7. More precisely, let o be a
repelling fixed point of f . We construct a family C of CERs of f using
homoclinic orbits which covers all backward orbits of o. By Theorem
1.1, all of them are non-linear. We show that their images under h
are CERs of g. Applying Sullivan’s rigidity theorem, we get conformal
conjugacies link the CERs in C to their images. Two CERs in C have
“large” intersections, hence those conformal conjugacies can be patched
together. Using this, we get a conformal extension of h to some disk
intersecting the Julia set of f . We can further extend it to a global
conformal map on P1(C).

Theorem 1.7 is a simple consequence of Theorem 1.8 and a result of
Eremenko-van Strien [EVS11, Theorem 1] about endomorphisms with
real multipliers.

1.5. Zdunik’s rigidity theorem. The following rigidity theorem was
proved by Zdunik [Zdu90].

Theorem 1.11 (Zdunik). Let f : P1 → P1 be an edomorphism over C
of degree at least 2. Let µ be the maximal entropy measure and let α
be the Hausdorff dimension of µ. Then µ is absolutely continous with
respect to the α-dimensinal Hausdorff measure Λα on the Julia set if
and only if f is exceptional.

Zdunik’s proof is divided into two parts. The first part was proved in
her previous work [PUZ89, Theorem 6] with Przytycki and Urbanski.
Later, she proved the second part (hence Theorem 1.11) in [Zdu90]. In
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this paper we will give a simple proof of the second part using Theorem
1.1.

1.6. Milnor’s conjectures on multiplier spectrum. As applica-
tions of Theorem 2.11 and Theorem 1.1, we prove two conjectures of
Milnor proposed in [Mil06].

Theorem 1.12. Let f : P1 → P1 be an endomorphism over C of degree
at least 2. Let K be an imaginary quadratic field. Let OK be the ring
of integers of K. If for every n ≥ 1 and every n-periodic point x of f ,
dfn(x) ∈ OK, then f is exceptional.

The inverse of Theorem 1.12 is also true by Milnor [Mil06, Corollary
3.9 and Lemma 5.6]. In fact, the original conjecture of Milnor concerns
the case K = Q. Since imaginary quadratic fields exist (e.g. Q(i)) and
they contain Q, Theorem 1.12 implies Milnor’s original conjecture.

Some special cases of Milnor’s conjecture for integer multipliers are
known before by Huguin:

(i) In [Hug22a], the conjecture was proved for quadratic endomor-
phisms.

(ii) In [Hug21], the conjecture was proved for unicritical polynomi-
als. In fact, Huguin proved a stronger statement, which only
assumes the multipliers are in Q (instead of Z).

Remark 1.13. In the recent preprint [Hug22b], Huguin reproved and
strengthened our Theorem 1.12. In his result, the multipliers are only
assumed to be contained in an arbitrary number field. Huguin’s result
relies on an arithmetic equidistribution result for small points proved
by Autissier [Aut01] and on a characterization of exceptional maps
proved by Zdunik [Zdu14].

The following result confirms another conjecture of Milnor in [Mil06].

Theorem 1.14. Let f : P1 → P1 be an endomorphism over C of degree
at least 2. Assume there exists a > 0 such that for every but finitely
many periodic point x, fn(x) = x, we have |dfn(x)| = an. Then f is
exceptional.

Remark 1.15. Theorem 1.14 can also be deduced by a minor modifi-
cation of an argument of Zdunik [Zdu14].

Let x be a n-periodic point of f . The Lyapunov exponent of x is a
real number defined by 1

n
log |dfn(x)|. We let ∆(f) be the closure of

the Lyapunov exponents of periodic points contained in the Julia set.
Combining Theorem 1.14 and results due to Gelfert-Przytycki-Rams-
Rivera Letelier [GPR10], [GPRRL13], we get the following description
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of ∆(f) when f is non-exceptional. A closed interval in R is called
non-trivial if it is not a singleton.

Corollary 1.16. Let f : P1 → P1 be a non-exceptional endomorphism
over C of degree at least 2. Then ∆(f) is a disjoint union of a non-
trivial closed interval I and a finite set E (possibly empty). Moreover
there are at most 4 periodic points whose Lyapunov exponents are con-
tained in E, in particular |E| ≤ 4.

1.7. Organization of the paper. In Section 2 we prove some basic
properties of homoclinic orbits and we prove the fundamental excep-
tional criterion Theorem 2.11 by using only the information of a homo-
clinic orbit. In Section 3 we prove Theorem 1.12. In Section 4 we recall
some reslts about dynamics on the Berkovich projective line. In Sec-
tion 5 we study the rescaling limit via the dynamics on the Berkovich
projective line. In Section 6 we give a new proof of McMullen’s theorem
(Theorem 1.2) by studying rescaling limits. In Section 7 we recall some
results about CER, and we prove Theorem 1.1, Theorem 1.7, Theorem
1.8, Theorem 1.14 and Corollary 1.16. Moreover we give a new proof
of Theorem 1.11 and we give another proof of Theorem 1.2. In Section
8 we prove Theorem 1.5.

Acknowledgement. The authors would like to thank Serge Cantat,
Romain Dujardin and Zhiqiang Li for their comments on the first ver-
sion of the paper. We thank Huguin for informing us his beautiful
recent work [Hug22b] for reproving and strengthening our Theorem
1.12. The first named author would like to thank the support and
hospitality of BICMR during the preparation of this paper. The sec-
ond named author would like to thank Thomas Gauthier and Gabriel
Vigny for interesting discussions on Thurston’s rigidity theorem and
thank the support of the project “Fatou” ANR-17-CE40-0002-01.

2. Homoclinic orbits and applications

For an endomorphism f of P1 of degree at least 2, we denote by
C(f) the set of critical points of f and PC(f) := ∪n≥1f

n(C(f)) the
postcritical set. In this section, P1(C) is endowed with the complex
topology.

Let f : P1 → P1 an endomorphism over C of degree at least 2. Let
o be a repelling fixed point of f . A homoclinic orbit 3 of f at o is a
sequence of points oi, i ≥ 0 satisfying the following properties:

3This terminology was introduced by Milnor [Mil11] in his presentation of Julia’s
proof that repelling periodic points are dense in the Julia set. The word “homoclinic
orbit” dates back to Poincaré.
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(i) o0 = o, o1 6= o and f(oi) = oi−1 for i ≥ 1;
(ii) lim

i→∞
oi = o.

Be aware that oi, i ≥ 0 is actually a backward orbit.
The main result of this Section is Theorem 2.11 which is a criterion

for an endomorphism f being exceptional via the information of a ho-
moclinic orbit. We will state and prove this theorem in the end of this
section.

2.1. Linearization domain and good return times. Define a lin-
earization domain of o to be an open neighborhood U of o such that
there is an isomorphism φ : U → D sending o to 0, which conjugates
f |U0 : U0 → U to the morphism z 7→ λz via φ, where U0 = f−1(U) ∩ U
and λ = df(o). We call such φ a linearization on U .

Define g to be the morphism U → U sending z to φ−1(λ−1φ(z)). It
is the unique endomorphism of U satisfiying f ◦ g = id.

Remark 2.1. By Koenigs’ theorem [Mil11, Theorem 8.2], for every
repelling point o there is always a linearization domain U . For every
r ∈ (0, 1], φ−1(D(0, r)) is also a linearization domain of o. In particular,
the linearization domains of o form a neighborhood system of of o.

Remark 2.2. Since g is injective, for every x ∈ U , f−1(x)∩U = g(x).
In particular, if oi ∈ U for i ≥ l, then oi = gi−l(ol) for all i ≥ l.

The following lemma shows that for every repelling fixed point o,
there are many homoclinic orbits.

Lemma 2.3. For every integer m ≥ 0 and for every a ∈ f−m(o), there
is a homoclinic orbit oi, i ≥ 0 of o such that om = a.

Proof. Let U be a linearization domain of o. Since preimages of a are
dense in the Julia set, there is l ≥ m such that fm−l(a) ∩ U 6= ∅. Pick
ol ∈ fm−l(a)∩U and for i = 0, . . . , l, set oi := f l−i(ol). Then o0 = o and
om = a. For i ≥ l + 1, set oi := gi−l(ol). Then oi, i ≥ 0 is a homoclinic
orbit of o. �

Definition 2.4. Let U be a connected open neighborhood of o such
that U is contained in a linearization domain. For i ≥ 0 let Ui be the
connected component of f−i(U) containing oi. An integer m ≥ 1 is
called a good return time for the homoclinic orbit and U if

(i) oi ∈ U for every i ≥ m;
(ii) Um ⊂⊂ U , and and fm : Um → U is an isomorphism between

Um and U.
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Remark 2.5. If U itself is a linearization domain and m is a good
return time then i is a good return time for all i ≥ m. Indeed, one
has Ui = gi−m(Um) ⊂⊂ U and f i : Ui → U can be writen as fm ◦ gm−i
which is an isomorphism.

Proposition 2.6. The following statements are equivalent:

(i) oi 6∈ C(f) for every i ≥ 1;
(ii) there is a linearization domain U and an integer m ≥ 1 which

is a good return time of U ;
(iii) there is a linearization domain U such that for every connected

open neighborhood V of o , V ⊂ U , there is an integer m ≥ 1
which is a good return time of V .

In particular, when o 6∈ PC(f), (i) (hence (ii) and (iii)) are satisfied.

Proof. We first show (i) is equivalent to (ii). To see (ii) implies (i), let m
be a good return time of U , then by the definition of good return time
oi 6∈ C(f) for i = 1, . . . ,m. By Remark 2.5 we conclude that oi /∈ C(f)
for every i ≥ 1. To see (i) implies (ii), first choose a linearization
domain U0. Let g : U0 → U0 be the morphism such that f ◦ g = id.
Since lim

i→∞
oi = o, there is l ≥ 1 such that oi ∈ U0 for i ≥ l. Since

oi 6∈ C(f) for every i ≥ 1, we have d(f l)(ol) 6= 0. So there is an
open neighborhood W of ol in U0 such that f l(W ) ⊆ U0 and f l|W is
injective. Pick a linearization domain of U of o contained in f l(W ).
Set Ul := f−l(U) ∩W. Since g is attracting, there is m ≥ l such that
gm−l(Ul) ⊂⊂ U. We note that Um := f−m(U) ∩ U = gm−l(Ul). Hence
Um ⊂⊂ U , and fm : Um → U is an isomorphism. This implies (ii).

It is clear that (iii) implies (ii). It remains to show (ii) implies (iii).
Let l ≥ 1 be a good return time of U . Let Ui (resp. Vi) be the connected
component of f−i(U) (resp. f−i(V )) for i ≥ 0. We have Ul ⊂⊂ U .
Since g is attracting, there is m ≥ l such that gm−l(Ul) ⊂⊂ V. This
implies m is a good return time of V .

�

2.2. Adjoint sequence of periodic points. Let U be a linearization
domain and let m be a good return time of U . We construct a sequence
of periodic points qi, i ≥ m as follows: By Remark 2.5, for every i ≥ m,
f i|Ui

: Ui → U is an isomorphism. Since Ui ⊂⊂ U , the morphism
(f i|Ui

)−1 : U → Ui is strictly attracting with respect to the hyperbolic
metric on U . Hence it has a unique fixed point qi ∈ Ui. Such qi is the
unique i-periodic point of f which is contained in Ui. Indeed, i is the
smallest period of qi and qi is repelling. We call such a sequence an
adjoint sequence for the homoclinic orbit oi, i ≥ 0 with respect to the
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linearization domain U and the good return time m (we write (U,m) for
short). One say that a sequence of points qi, i ≥ 0 is an adjoint sequence
of the homoclinic orbit oi, i ≥ 0 if qi, i ≥ m is an adjoint sequence for
oi, i ≥ 0 with respect to some (U,m). It is clear that for every adjoint
sequence qi, i ≥ 0 of oi, i ≥ 0, lim

i→∞
qi = o. The following lemma shows

that the adjoint sequences are unique modulo finite terms.

Lemma 2.7. Let qi, i ≥ 0 and q′i, i ≥ 0 be two adjoint sequence for
oi, i ≥ 0. Then there is l ≥ 0 such that qi = q′i for all i ≥ l.

Proof. We only need to prove the case where qi, i ≥ l is an adjoint
sequence with respect to (U, l) and q′i, i ≥ l′ is an adjoint sequence with
respect to (U ′, l′). Since there is a linearization domain U ′′ such that
U ′′ ⊆ U ∩ U ′, we may assume that U ′ ⊆ U. After replacing l, l′ by
max {l, l′}, we may assume that l = l′. Then for every i ≥ l, U ′i ⊆ Ui.
Then both qi and q′i are the unique i-periodic point of f in Ui. So
qi = q′i for i ≥ l. �

2.3. Poincaré’s linearization map. Set λ := df(o) ∈ C. Since o is
repelling, |λ| > 1. Let (U,m) be the pair of linearization domain and
good return time for oi, i ≥ 0 and let qi, i ≥ 0 be an adjoint sequence.

A theorem of Poincaré [Mil11, Corollary 8.12] says that there is a
morphism ψ : C→ P1(C) such that ψ|D gives an isomorphism between
D and U and

(2.1) f(ψ(z)) = ψ(λz)

for every z ∈ C. In particular, ψ|−1
D : U → D is a linearization of f on

U. Such a ψ is called a Poincaré map.
The following criterion for exceptional endomorphisms using the

Poincaré map ψ is due to Ritt.

Lemma 2.8. [Rit22] If the Poincaré map ψ is periodic, i.e. there is a
a ∈ C∗ such that ψ(z+a) = ψ(z) for every z ∈ C, then f is exceptional.

Ritt’s theorem can be easily generalized as following.

Lemma 2.9. If there is an affine automorphism h : C→ C such that
h(0) 6= 0 and ψ ◦ h = ψ, then f is exceptional.

Proof. Let G be the group of affine automorphisms g of C satisfying
ψ ◦ g = ψ. We have h ∈ G. It takes form h : z 7→ az + b, a ∈ C∗ and
b = h(0) ∈ C∗. For every z ∈ C, we have

ψ(λh(λ−1z)) = fψ(h(λ−1z)) = fψ(λ−1z) = ψ(z).

Hence the automorphism g : z 7→ λh(λ−1z) = az + λb is contained in
G. Then T := h−1 ◦ g : z 7→ z + a−1(λ − 1)b is contained in G. Since
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b 6= 0 and |λ| > 1, T is a nontrivial translation. We conclude the proof
by Lemma 2.8. �

Set P := λmψ|−1
D (om) and V := λm(ψ|−1

D (Um)). For i ≥ m, set
Qi := ψ|−1

D (qi). One has ψ(V ) = U , ψ(P ) = o and ψ|V : V → U is
an isomorphism. We set T := (ψ|V )−1 ◦ ψ|D : D → V , then T is an
isomorphism. Similar constructions of T appeared already in the works
of Ritt [Rit22] and Eremenko-van Strien [EVS11]. We summaries our
construction in the following figure.

We have ψ ◦T = ψ and T (0) = P. Moreover, by our construction we
have for every i ≥ m, V = λi(ψ|D)−1(Ui). In particular λiQi ∈ V . By
(2.1) we have

ψ(λiQi) = f i(ψ(Qi)) = f i(qi) = qi.

This implies

(2.2) T (Qi) = λiQi.

Since lim
i→∞

qi = o, we have lim
i→∞

Qi = 0 and

(2.3) lim
i→∞

λiQi = P.



15

By (2.1) we have for every i ≥ 1,

(2.4) df i(ψ(z))dψ(z) = λidψ(λiz),

and by ψ ◦ T = ψ we have

(2.5) dψ(T (z))T ′(z) = dψ(z).

Set z = Qi. Combine (2.2), (2.4) and (2.5) we get

df i(qi)dψ(λiQi)T
′(Qi) = λidψ(λiQi).

Since zeros of a holomorphic function are isolated, as λiQi → P , for i
large enough we have dψ(λiQi) 6= 0. Hence for i large enough,

(2.6) λiT ′(Qi)
−1 = df i(qi).

The following observation will be used in the proof of Theorem 1.12.

Lemma 2.10. Set θ := 1/T ′ : D→ C. We have

lim
i→∞

(df i(qi)− λiθ(0)) = Pθ′(0).

Proof. By (2.3) and (2.6),we have

lim
i→∞

(df i(qi)− λiθ(0))/P = lim
i→∞

(df i(qi)− λiθ(0))/λiQi

= lim
i→∞

(df i(qi)/λ
i − θ(0))/Qi = lim

i→∞
(θ(Qi)− θ(0))/Qi = θ′(0),

which concludes the proof. �

The following is the main result of this section, which characterize
exceptional endomorphisms by using the multipliers of adjoint sequence
of a homoclinic orbit.

Theorem 2.11. Let f : P1 → P1 be an endomorphism over C of degree
at least 2. Let o be a repelling fixed point of f such that df(o) = λ. Let
oi, i ≥ 0 be a homoclinic orbit of o such that oi /∈ C(f) for every i ≥ 0.
Assume that there is C ∈ C∗, such that for one (hence every) adjoint
sequence qi, i ≥ 0 of oi, i ≥ 0, df i(qi) = Cλi for i large. Then f is
exceptional.

Proof. We may assume that qi, i ≥ m is adjoint with respect to the
linearization domain and good return time (U,m) for oi, i ≥ 0, and
d(f i)(qi) = Cλi for all i ≥ m. By (2.6), we get T ′(Qi) = C−1 for i ≥ m.
Since Qi 6= 0 for i ≥ m and lim

i→∞
Qi = 0, T ′ = C−1 on D. It follows

that T (z) = C−1z + P for every z ∈ D. Then T extends to the affine
endomorphism on C sending z to C−1z+P. One have ψ = ψ ◦T on C.
We conclude the proof by Lemma 2.9. �
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3. Proof of Milnor’s conjecture

In this section we prove one of Milnor’s conjectures (Theorem 1.12).
We postpone the proof of another conjecture of Milnor (Theorem 1.14)
to Section 7.

Proof of Theorem 1.12. Let f : P1 → P1 be an endomorphism over C
of degree at least 2. Let K an imaginary quadratic field. Assume that
for every n ≥ 1 and every n-periodic point x of f , dfn(x) ∈ OK .

After replacing f by a suitable positive iterate, we may assume that
f has a repelling fixed point o /∈ PC(f). Let oi, i ≥ 0 be a homoclinic
orbit of o. By Proposition 2.6, there is a linearization domain and a
good return time (U,m) for oi, i ≥ 0. Let qi, i ≥ m be the adjoint
sequence for it. Set µi := df i(qi) ∈ OK for i ≥ m. Set λ := df(o).

Lemma 3.1. There are a ∈ K∗, b ∈ K such that µi = aλi + b for i
large.

Proof of Lemma 3.1. We view K as a subfield of C. Then OK is a
discrete subgroup of (C,+). Set T := C/OK and π : C → T the
quotient map. Since λ ∈ OK , the multiplication by λ on L descents to
an endomorphism [λ] on T. By Lemma 2.10, we have

(3.1) lim
i→∞

(µi − aλi) = b,

where a = θ(0) = 1/T ′(0) ∈ C∗ and b = Pθ′(0) ∈ C (See Section 2 for
the definitions of T and θ). Since µi ∈ OK , i ≥ m, we get

lim
i→∞

[λ]iπ(a) = π(b).

In particular, π(b) is fixed by [λ]. Since d[λ](b) = λ, [λ] is repelling at
π(b). Hence for i large we must have

(3.2) [λ]iπ(a) = π(b).

Since OK is discrete in C, by (3.1) and (3.2), we have

(3.3) µi = aλi + b for i large.

There are n > l ≥ m such that µn = aλn + b and µl = aλl + b. This
implies that a, b ∈ K. �

After enlarging m, we may assume that µi = aλi + b for all i ≥ m.
Assume by contradiction that f is not exceptional. By Theorem 2.11,
we must have b 6= 0. For p ∈ SpecOK , let Kp be the completion of K
with respect to p. Denote by | · |p the p-adic norm on Kp normalized
by |p|p = p−1 where p := charOK/p. Let K◦p be the valuation ring of
Kp. For µ ∈ OK , µ ∈ p if and only if |µ|p < 1.
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Lemma 3.2. For p ∈ SpecOK and ε > 0, if λ 6∈ p, then there is
N ∈ Z>0 such that |λNi − 1|p < ε for all i ≥ 0.

Proof of Lemma 3.2. Since OK/p is a finite field and λ 6∈ p, there is
l ≥ 1 such that λl − 1 ∈ p. Since

lim
n→∞

λlp
n

= lim
n→∞

(1 + (λl − 1))p
n

= 1

in the p−adic topology, there is N ∈ Z>0, such that |λN−1|p < ε. Then
for every i ≥ 0, |λNi − 1|p = |λN − 1|p|1 + λN · · ·+ λN(i−1)|p < ε. �

Let S be the finite set of prime ideals p ∈ SpecOK \ {0} dividing
λ(deg f)! ∈ OK . For every p ∈ SpecOK \ (S ∪{0}), there is an embed-
ding of field τK : K ↪→ Cp such that | · |p is the restriction of the norm
on Cp via this embedding. Recall that Cp is the completion of the alge-
braic closure of Qp. Then τK extends to an isomorphism τ : C → Cp.
Via τ , the norm | · |p extends to a non-archimedean complete norm
on C. By [RL03a, Corollaire 4.7 and Corollaire 4.9] of Rivera-Letelier
(or [BIJL14, Corollary 1.6] of Benedetto-Ingram-Jones-Levy), for ev-
ery p ∈ SpecOK \ (S ∪ {0}), there are at most finitely many integers
i ≥ m satisfying |µi|p < 1. We claim that for every i ≥ m, we have
µi = aλi + b 6∈ p for every p ∈ SpecOK \ (S ∪ {0}). In fact if there is
p ∈ SpecOK\(S∪{0}) such that aλi+b ∈ p for some i ≥ m, by Lemma
3.2, there is N ∈ Z>0, such that for all j ≥ 0, |λNj − 1|p < |a−1|/2.
Then for every j ≥ m, we get

|µi+Nj|p = |aλi+Nj + b|p ≤ max{|aλi + b|p + |aλi(λNj − 1)|p} < 1.

Thus we obtain infinitely many integers i ≥ m satisfying |µi|p < 1,
which is a contradiction.

Set S ′ := {p ∈ S| λ ∈ p} and S ′′ = S \S ′. Since a 6= 0, there is l ≥ 0
such that aλl + b 6= 0. Set

A := min({|aλl + b|p| p ∈ S ′′} ∪ {|b|p| p ∈ S ′} ∪ {1}) > 0.

For every p ∈ S ′, there is an integer Mp ≥ m such that |aλMp |p <
|b|p. Then, for every i ≥Mp,p ∈ S ′, we have

|µi|p = |b|p ≥ A.

For every p ∈ S ′′, by Lemma 3.2, there is Np ∈ Z>0 such that for
every j ≥ 0, |λNpj−1|p < |a−1|p|aλl + b|p. Then for all j ≥ m, we have

|µl+Npj|p = |aλl+Npj+b|p = |(aλl+b)+aλi(λNpj−1)|p = |aλl+b|p ≥ A.

Set M := max{Mp| p ∈ S ′} and N :=
∏

p∈S′′ Np. For every i ≥ M ,

by the above discussion we get |µl+Ni|p ≥ A for all p ∈ S. Fix an
embedding of K in C. For every p ∈ SpecOK \{0}, set np := [Kp : Qp]
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with p = charOK/p. We have np ≤ 2. By product formula, we get,
since |µl+Ni|p = 1 for all p ∈ SpecOK \ (S ∪ {0}),

|µl+Ni|[K:Q] =
∏

p∈SpecOK\{0}

|µl+Ni|−np
p =

∏
p∈S

|µl+Ni|−np
p ≤ A−2|S|,

where i ≥ m.
Hence µl+Ni, i ≥ m is bounded in C. Since a 6= 0 and |λ| > 1, we get

a contradiction. The proof is finished. �

4. The Berkovich projective line

Let k be a complete valued field with a non-trivial non-archimedean
norm | · |. We denote by k◦ the valuation ring of k, k◦◦ the maximal

ideal of k◦ and k̃ = k◦/k◦◦ the residue field.
In this section, we collect some basic facts about Berkovich’s analyti-

fication of P1
k. We refer the readers to [Ber90] for a general discussion

on Berkovich space, and to [BR10] for a detailed description of the
Berkovich projective line and the dynamics on it.

4.1. Analytification of the projective line. Let P1,an
k be the ana-

lytification of P1
k in the sense of Berkovich, which is a compact topolog-

ical space endowed with a structural sheaf of analytic functions. Only
its topological structure will be used in this paper. We describe it
briefly below.

The analytification A1,an
k of the affine line A1

k is the space of all
multiplicative semi-norms on k[z] whose restriction to k coincide with
| · |, endowed with the topology of pointwise convergence. For any
x ∈ A1,an

k and P ∈ k[z], it is customary to denote |P (x)| := |P |x,
where | · |x is the semi-norm associated to x.

As a topological space P1,an
k is the one-point compactification of A1,an

k .

We write P1,an
k = A1,an

k ∪ {∞}. More formally it is obtained by gluing

two copies of A1,an
k in the usual way via the transition map z 7→ z−1 on

the punctured affine line (A1
k \ {0})an.

The Berkovich projective line P1,an
k is an R-tree in the sense that

it is uniquely path connected, see [Jon15, Section 2] for the precise
definitions. In particular for x, y ∈ P1,an

k , there is a well-defined segment
[x, y].

For a ∈ k and r ∈ [0,+∞), we denote D(a, r) by the closed disk
D(a, r) := {x ∈ A1,an

k : |(z−a)(x)| ≤ r}. One may check that the norm∑
i≥0 ai(z−a)i 7→ max{|ai|ri, i ≥ 0} defines a point ξa,r ∈ D(a, r). One

set xG := ξ0,1 and call it the Gauss point.
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Remark 4.1. When r = 0, ξa,0 is exactly the image of a via the

identification k = A1(k) ↪→ A1,an
k .

The group PGL 2(k) acts on P1
k, hence on P1,an

k .

Lemma 4.2. [DF19, Proposition 1.4] For a point x ∈ P1,an
k , x ∈

PGL 2(k) · xg if and only if it takes form x = ξa,r for some a ∈ k
and r ∈ |k∗|.

Remark 4.3. The stablizer of PGL 2(k) at xg is PGL 2(k◦) which is
open in PGL 2(k). So for any dense subfield L of k, we have PGL 2(L) ·
xg = PGL 2(k) · xg.

4.2. Points in P1,an
k . Let k̂ be the completion of the algebraic clo-

sure of k. It is still algebraically closed. By [Ber90, Corollary 1.3.6],

Aut(k̂/k) acts on P1,an

k̂
and we have P1

k̂
/Aut(k̂/k) = P1

k. We denote by

π : P1,an

k̂
→ P1,an

k the quotient map. The points of P1,an
k can be classified

into 4 types:

(i) a type 1 point takes form π(a) where a ∈ k̂ ∪ {∞} = P1,an

k̂
;

(ii) a type 2 point takes form π(ξx,r) where x ∈ k̂ and r ∈ |k̂
∗
|;

(iii) a type 3 point takes form π(ξx,r) where x ∈ k̂ and r ∈ R>0\|k̂
∗
|;

(iv) a type 4 point takes form π(x) where x is the pointwise limit
of ξxi,ri such that the corresponding discs D(xi, ri) form a de-
creasing sequence with empty intersection.

See [Ber90, Section 1.4.4] for further details when k is algebraically
closed. See also [Ked11, Proposition 2.2.7] and [Ste19, Section 2.1].
The set of type 1 (resp. type 2) points is dense in P1,an

k . Points of type

4 exist only when k is not spherically complete. If we view P1,an
k as a

metric tree, then the end points have type 1 or 4.

For every x ∈ P1,an
k , we can define an equivalence relation on the set

P1,an
k \ {x} as follows: y ∼ z if the paths (x, y] and (x, z] intersect. The

tangent space Tx at x is the set of equivalences classes of P1,an
k \ {x}

modulo ∼. See [Jon15, Section 2.5] for details. If x is an end point (a
point of type 1 or 4), then |Tx| = 1. If x is of type 3, then |Tx| = 2. If
x is of type 2, then |Tx| ≥ 3. For a direction v ∈ Tx, let U(v) be the
set of all y ∈ P1,an

k such that the path (x, y] presents v. Then U(v) is
an open subset such that ∂U(v) = x.

4.3. Dynamics on P1,an
k . Let f : P1

k → P1
k be an endomorphism of

degree d ≥ 2. We still denote by f the induced endomorphism on P1,an
k .
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4.3.1. The tangent map. For x, y ∈ P1,an
k , if f(x) = y, then x, y have the

same type. Moreover, f induces a tangent map Txf : Tx → Ty sending
v ∈ Tx to the unique direction w ∈ Ty such that for every z ∈ U(v),
(y, f(z)]∩U(w) 6= ∅. We note that, in general f(U(v)) may not equal to
U(w). If f(U(v)) = U(w), we say that v is a good direction. Otherwise,
it is called a bad direction. If v a bad direction, then f(U(v)) = P1,an

k

[Ben, Theorem 7.34].

We may naturally identify TxG with P1(k̃) as follows: Consider the
standard model P1

k◦ of P1,an
k . There is a reduction map red : P1,an

k → P1
k̃
.

The preimage of the generic point of P1
k̃

is the Gauss point xG and

for every y ∈ P1(k̃), there is a unique vy ∈ TxG such that U(vy) =

red−1(y). The map P1(k̃) → TxG sending y to vy is bijective. Let h
be any endomorphism of P1

k such that h(xG) = xG, it extends to a

rational self-map hk◦ of P1
k◦ . We denote by h̃ : P1

k̃
→ P1

k̃
the restriction

of h to the special fiber of P1
k◦ and call it the reduction of h. Then

TxGh : TxG = P1(k̃) → TxG is induced by h̃. We define deg TxGh to be

the degree of h̃. We note that deg h̃ ≤ deg h. The equality holds if and
only if hk◦ is an endomorphism. In this case, we say that h has explicit
good reduction.

More generally, for every x, y ∈ PGL 2(k) ·xG with f(x) = y, we may
define

deg Txf := deg TxG(h−1fg) = deg h̃−1fg,

where h, g ∈ PGL 2(k) with g(xG) = x and h(xG) = y. Then 1 ≤
deg TxGf ≤ deg f and deg TxGf does not depend on the choices of g, h.

Remark 4.4. Assume that k is algebraically closed. By Lemma 4.2,
the set of type 2 points in P1,an

k is exactly PGL 2(k) · xG.

4.3.2. Periodic points. Assume that k is algebraically closed. For n ≥
1, a n-periodic point of f is a point x ∈ P1,an

k such that fn(x) =
x. They can be divided into three types: attracting, indifferent and
repelling. A type 1 periodic point x ∈ P1(k) of period n ≥ 1 is called
attracting if |d(fn)(x)| < 1; indifferent if |d(fn)(x)| = 1; and repelling
if |d(fn)(x)| > 1. A n-periodic point x ∈ P1,an

k of type 2 is called
indifferent if deg Txf = 1; repelling if deg Txf ≥ 2. Every n-periodic
point x ∈ P1,an

k of type 3 or 4 are indifferent [RL03b, Lemma 5.3, 5.4].

4.3.3. Fatou and Julia sets. Assume that k is algebraically closed.

The Julia set of f is the set J (f) of points z ∈ P1,an
k with the

following property: for every neighborhood U of z, the union of iterates
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n≥0 f

n(U) omits only finitely many points of P1,an
k . Its complement

F(f) := P1,an
k \ J (f) is the Fatou set of f .

We list some basic properties of the Julia and Fatou sets of f .

Proposition 4.5. [Ben, Chapter 8 and Section 12.2]

(i) The Fatou set F(f) is open and the Julia set J (f) is closed.
(ii) All attracting periodic points of f are contained in F(f).
(iii) All repelling periodic points of f are contained in J (f).
(iv) We have J (f) = f(J (f)) = f−1(J (f)) and F(f) = f(F(f)) =

f−1(F(f)).
(v) Both J (f) and F(f) are nonempty.
(vi) For every z ∈ J (f), ∪n≥0f

−n(z) is dense in J (f).
(vii) Repelling periodic points are dense in J (f).

4.3.4. Good reduction. We say f has good reduction if after some co-
ordinate change h ∈ PGL 2(k), the map h−1 ◦ f ◦ h has explicit good
reduction.

Theorem 4.6. [FRL10, Theorem E] The endomorphism f has explicit
good reduction if and only if J (f) = xG. Moreover, if k is algebraically
closed, f has good reduction if and only if J (f) is a single point.

Remark 4.7. Assume that k is algebraically closed. If J (f) is a single
point, then by Theorem 4.6 and (vii) of Proposition 4.5, it is a type 2
repelling point.

5. Rescaling limits of holomorphic families

5.1. Holomorphic families. Recall that Ψ : Ratd(C) → Md(C) is
the quotient morphism, where Md(C) := Ratd(C)/PGL 2(C) is the
moduli space.

Let Λ be a complex manifold, we denote by Oan(Λ) the ring of holo-
morphic functions on Λ. Moreover, if Λ is complex algebraic variety,
we denote by O(Λ) the ring of algebraic functions on Λ.

A holomorphic (resp. meromorphic) family on Λ is an endomor-
phism (resp. meromorphic self-map) fΛ on P1 × Λ such that πΛ ◦
fΛ = πΛ, where πΛ : P1(C) × Λ → Λ is the projection to Λ. More
concretely, one may write fΛ([x : y], t) = ([Pt(x, y) : Qt(x, y)], t)
where Pt(x, y), Qt(x, y) are homogenous polynomials of same degree
d in Oan(Λ)[x, y] without common divisor. We say that fΛ is of degree
d. Then fΛ is holomorphic if there is no (t, x, y) ∈ Λ × C∗ × C∗ such
that Pt(x, y) = Qt(x, y) = 0.

For t ∈ Λ, we denote by ft the restriction of fΛ to the fiber above
t. We denote by I(fΛ) the indeterminacy locus of fΛ and B(fΛ) :=
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πΛ(I(fΛ)). Then I(fΛ) and B(fΛ) are proper closed analytic subspace
of P1×Λ and Λ respectively. For every t ∈ Λ\B(fΛ), we have deg ft = d.
When Λ is connected, this is equivalent to say that deg ft = d for one
t ∈ Λ \ B(fΛ). A meromorphic family is holomorphic if and only if
B(fΛ) = ∅.

So give a degree d holomorphic family fΛ on Λ is equivalent to give
a holomorphic morphism t 7→ ft = Pt/Qt from Λ to Radd(C). We say
that fΛ is algebraic if Λ is a complex algebraic variety and fΛ : P1×Λ→
P1 × Λ is algebraic i.e. Pt, Qt ∈ O(Λ)[x, y]. In other words, it means
that the induced morphism Λ→ Radd(C) is algebraic.

For a degree d holomorphic family fΛ on Λ, let ΨΛ : Λ→Md be the
holomorphic morphism sending t ∈ Λ to the class of ft in Md(C). We
say that fΛ is isotrivial if ΨΛ : Λ→Md is locally constant. More gen-
erally for degree d meromorphic family fΛ, we say that fΛ is isotrivial
if f |Λ\B(fΛ) is isotrivial.

5.2. Potentially good reduction. Assume that Λ is a Riemann sur-
face and fΛ is a meromorphic family of degree d.

For b ∈ Λ, we say that fΛ has potentially good reduction at b if
ΦΛ\(B(fΛ)∪{b}) : Λ → Md extends to a holomorphic morphism on (Λ \
B(fΛ))∪{b}. In particular, fΛ has potentially good reduction at every
b ∈ Λ \B(fΛ).

Lemma 5.1. Assume that Λ is an irreducible smooth projective curve.
Let fΛ be a meromorphic family of degree d. If fΛ has potentially good
reduction at every point in Λ, then fΛ is isotrivial.

Proof. Since fΛ has potentially good reduction at every point in B(fΛ),
ΨΛ\B(fΛ) : Λ \ B(fΛ) →Md extends to a holomorphic morphism ΨΛ :

Λ → Md. Recall that Md(C) = Spec (O(Ratd(C)))PGL 2(C) is affine
[Sil07, Theorem 4.36(c)]. This follows from the fact that Ratd(C) is
affine and the geometric invariant theory [MF82, Chapter 1]. Since Λ
is projective, ΨΛ is a constant map. This concludes the proof. �

Having potentially good reduction is a local property at b, i.e. for
every open neighborhood U of b in Λ, fΛ has potentially good reduction
at b if and only if fU := fΛ|P1(C)×U has potentially good reduction at
b. Note that there is an open neighborhood U of b which is isomorphic
to a disk D such that fU\{b} is holomorphic. So we can focus on the
case that fD is a meromorphic family which is holomorphic on D∗.
We will give another characterization of potentially good reduction via
non-archimedean dynamics.
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5.3. Holomorphic family on puncture disk. Let fD be a a mero-
morphic family of degree d ≥ 2 which is holomorphic on D∗. Let t be the
standard coordinate on D. We can relate fD to some non-archimedean
dynamics on the field of Laurent’s series C((t)).

Recall that on C((t)), there is a t-adic norm | · |: Given an element
z =

∑
n≥n0

ant
n 6= 0, where n0 ∈ Z, an ∈ C and an0 6= 0, the t-adic

norm of z is |z| := e−n0 . This norm is non-archimedean and C((t)) is

complete for | · |. Set L := Ĉ((t)).

Write

f([x : y], t) = ([Pt(x, y) : Qt(x, y)], t)

where Pt(x, y), Qt(x, y) are homogenous polynomials of degree d in
Oan(D)[1/t][x, y] without common divisors. SinceOan(D)[1/t] ⊆ C((t)),
fD defines an endomorphism fC((t)) : [x, y] 7→ [Pt(x, y) : Qt(x, y)] on

P1
C((t)) of degree d. Set fL := fC((t))⊗̂C((t))L : P1

L → P1
L.

Recall that

(5.1) C((t)) = ∪n≥1C((t1/n)).

To get endomorphisms over C((t1/n)), we introduce some base changes
of fD as follows. Consider the morphism φn : Un := D → D sending
t to tn. There is un ∈ Oan(Un) such that unn = φ∗t. Then un is a
coordinate on Un and we may identify C[un] with C[t1/n] (hence we
may identify C((un)) with C((t1/n))). Let o ∈ Un be the point defined
by un = 0. The endomorphism on P1,an

C((un)) induced by fUn is fC((un)) =

fC((t))⊗̂C((t))C((t1/n)).

Lemma 5.2. If fL has good reduction then fD has potentially good
reduction at 0.

Remark 5.3. The inverse statement of Lemma 5.2 is also true. How-
ever, we do not need that direction in this paper. So we leave it to
readers.

Proof of Lemma 5.2. By Theorem 4.6, there is h ∈ PGL 2(L) such that
J (fL) = {h(xG)}. Then h−1 ◦ fL ◦ h has explicit good reduction. By
(5.1) and Remark 4.3, we may assume that h ∈ PGL 2(C((t1/n))) for
some n ≥ 1. Since C(un) is dense in C((un)) = C((t1/n)), by Remark
4.3 again, we may assume that h ∈ PGL 2(C(un)). There is an open
neighborhood V of o such that h and h−1 are holomorphic on V \ {o}
i.e. they define holomorphic families hV \{o} and h−1

V \{o}. We may assume

further that V ' D. Consider the family fV := h−1
V ◦fUn|V ◦hV . Observe
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that

(5.2) ΨD∗ ◦ φ|V \{o} = ΨV \{o}.

Then fV induces an endomorphism fC((u)) = fC((t))⊗̂C((t))C((u)) on

P1,an
C((u)), which has good reduction. So fV is an endomorphism on P1×V .

So ΨV \{o} extends to a holomorphic morphism ΨV : V →Md. By (5.2),
ΨD∗ is bounded in some neighborhood of o. So ΨD∗ extends to a holo-
morphic morphism on D, which means that fD has potentially good
reduction at 0. �

The following definition was introduced by Kiwi.

Definition 5.4. [Kiw15] Let fD be a meromorphic family of degree
d ≥ 2 which is holomorphic on D∗. We say an endomorphism g is a
rescaling limit of fD (or fD∗) (via (q,MD)) if there is an integer q ≥ 1,
a finite set S ⊂ P1(C) and a meromorphic family MD of degree 1, such
that MD and M−1

D are holomorphic on D∗ and

M−1
t ◦ f

q
t ◦Mt(z)→ g(z)

when t→ 0 , uniformly on compact subsets of P1(C) \ S.

The following result was proved by Kiwi.

Proposition 5.5. [Kiw15, Proposition 3.4] Let fD be a meromorphic
family of degree d ≥ 2 which is holomorphic on D∗. Let MD be a mero-
morphic family of degree 1 , such that MD and M−1

D are holomorphic
on D∗. Then for all q ≥ 1, the following are equivalent:

(i) There exist an endomorphism g on P1 and a finite set S ⊂
P1(C) satisfy

M−1
t ◦ f

q
t ◦Mt(z)→ g(z)

when t→ 0 , uniformly on compact subsets of P1(C) \ S.

(ii) The point x = ML(xG) is fixed by f qL and ˜M−1
L ◦ f

q
L ◦ML = g.

In the case (i) and (ii) hold, Txf
q : Tx → Tx can be identified with

g after identify Tx to TxG = P1(C) via TxGML : TxG → Tx. Under
this identification, S is a finite subset of Tx which contains all the bad
directions of Txf

q.

Remark 5.6. One may rewrite Definition 5.4 in the following more
geometric way: Let hD be the meromorphic family hD := M−1

D ◦f
q
D◦MD

on P1(C) × D, then h0 = g. Moreover, S can be any finite subset
containing S0 where I(hD) = S0 × {0} ⊆ P1(C)× D.
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Corollary 5.7. Let x ∈ P1,an
L be a type 2 fixed point of fL. Assume

that TxfL conjugates to some endomorphism g : P1(C)→ P1(C). Then
there is n ≥ 1, such that g is a rescaling limit of fUn|V where fUn is the
base change of fD by the morphism Un := D→ D sending t to tn as in
Section 5.3 and V is an open neighborhood of o ∈ Un isomorphic to D.

Proof. There is ML ∈ PGL 2(L) such that x = ML(xG), by (5.1) and

Remark 4.3, we may assume that ML ∈ PGL 2(C((t
1/n
n ))) for some n ≥

1. Let fUn be the base change of fD by the morphism φn : Un := D→ D
sending t to tn and pick un with unn = φ−1

n (t) as in Section 5.3. Since
C(un) is dense in C((un)) = C((t1/n)), by Remark 4.3 again, we may
assume that ML ∈ PGL 2(C(un)). There is an open neighborhood V of
o such that ML and M−1

L are holomorphic on V \ {o} i.e. they define
holomorphic families MV \{o} and M−1

V \{o}. Then we conclude the proof

by Proposition 5.5. �

5.4. Endomorphisms without repelling type I periodic points.
In general the Julia set of an endomorphism fL on P1,an

L is a complicated
object. The following theorem due to Favre-Rivera Letelier [FRL] and
independently by Luo [Luoar, Proposition 11.4] classifies the case when
fL has no repelling type I periodic points.

Theorem 5.8. Let fL : P1,an
L → P1,an

L be an endomorphism. Assume
fL has no type 1 repelling periodic points. Then the Julia set of fL is
contained in a segment.

By (v) of Proposition 4.5, J (fL) 6= ∅. In the above theorem, if fL
does not have good reduction, then the segment can not be a point.
As a corollary, we get the following lemma.

Lemma 5.9. Let fL : P1,an
L → P1,an

L be an endomorphism of degree d ≥
2, which does not have good reduction. Assume that J (fL) is contained
in a minimal segment [a, b]. Let x be a repelling type 2 periodic point
in (a, b) with period q ≥ 1. Then the tangent map Txf

q conjugates to
z 7→ zm for some |m| = deg Txf

q ≥ 2. Moreover every bad direction of
Txf

q is presented by (x, a] or (x, b] and under the above conjugacy, it
is identified to 0 or ∞.

Proof. Since [a, b] is the minimal segment that contains J (f), a and b
are contained in the Julia set. Since deg fL ≥ 2 and fL does not have
good reduction, the Julia set is not a single point. Hence a 6= b. Let v1

(resp. v2) be the direction in Tx represented by the segment (x, a] (resp.
(x, b]). Since J (fL) ⊆ [a, b], {v ∈ Tx| U(v) ∩ J (fL) 6= ∅} = {v1, v2}.
Since J (fL) is totally invariant, for v ∈ Tx, if f q(U(v)) ∩ J (fL) 6= ∅,
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then U(v) ∩ J (fL) 6= ∅. Hence v ∈ {v1, v2}. This implies (i) {v1, v2} is
totally invariant by Txf

q. Actually let w ∈ (Txf
q)−1(vi) for some i =

1, 2. Then we have U(vi) ⊂ f q(U(w)). This implies f q(U(w))∩J (fL) 6=
∅. Thus w = vi. (ii) Bad directions of Txf

q are contained in {v1, v2}.
Actually if w is a bad direction, then we have f q(U(w)) = P1,an

L , hence
f q(U(w)) ∩ J (fL) 6= ∅, which implies w = v1 or v2.

Finally, an endomorphism of degree deg Txf
q on P1(C) has a totally

invariant set with two elements must conjugates to z 7→ zm for some
|m| = deg Txf

q. This conjugacy maps {v1, v2} to {0,∞}, which con-
cludes the proof. �

The following Theorem is the main result of this section.

Theorem 5.10. Let fD be a meromorphic family of degree d ≥ 2 which
is holomorphic on D∗. Assume that fD does not have potentially good
reduction at 0. For every n ≥ 1, assume that the multipliers of the
n-periodic points of ft are uniformly bounded in t. Then there is n ≥
1,m ≥ 2, such that g : z 7→ zm is a rescaling limit of fUn|V where fUn

is the base change of fD by the morphism Un := D→ D sending t to tn

as in Section 5.3 and V is an open neighborhood of o ∈ Un isomorphic
to D. Moreover, we may ask the finite set S in Definition 5.4 to be
contained in {0,∞}.

Proof. Let fL : P1,an
L → P1,an

L be the endomorphism induced by fD.
The multipliers of the n-periodic points of ft are uniformly bounded
in t implies fL has no repelling type 1 periodic points. By Theorem
5.8, J (fL) is contained in a minimal segment [a, b]. Since fD does
not have potentially good reduction at 0, by Lemma 5.2, fL does not
have good reduction. By a result of Rivera-Letelier [BR10, Theorem
10.88], there are infinitely many repelling type 2 periodic points. By
(iii) of Proposition 4.5, they are necessarily contained in J (fL). Pick a
repelling type II periodic point x that are contained in (a, b) of period
q ≥ 1. By Lemma 5.9, replace q by 2q if necessary, the tangent map
Txf

q is conjugate to z 7→ zm for some m ≥ 2. Moreover the bad
directions of Txf

q can be identified with a subset of {0,∞} by the
conjugacy. The proof is finished by using Corollary 5.7. �

6. A new proof of McMullen’s theorem

We can now give a new proof of Theorem 1.2.

Proof of Theorem 1.2. Let fΛ be a non-isotrivial stable irreducible al-
gebraic family of endomorphisms of degree d ≥ 2. Since Λ is covered
by affine open subsets, we may assume that Λ itself is affine. Cutting
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Λ by hyperplanes and removing the singular points, we can reduce to
the case that Λ is a connected Riemann surface of finite type. Since
the only non-isotrivial family of exceptional endomorphisms of degree
d is the flexible Lattès family, we only need to show that there is a
nonempty open subset W of Λ such that for t ∈ W , ft is exceptional.

Write Λ = M \ B, where M is a compact Riemann surface and B
is a finite subset. Since fΛ is algebraic, it extends to a meromorphic
family of degree d. We have B(fM) ⊆ B. Since fΛ is not isotrivial,
by Lemma 5.1, there is b ∈ B such that fM does not have potentially
good reduction at b. Reparametrize our family near b ∈ M , we get a
meromorphic family fD of degree d ≥ 2, which is holomorphic on D∗
and presevres multiplier spectrum.

By Theorem 5.10, after replacing fD by the family fV in Theorem
5.10, we may assume that z 7→ zm for some m ≥ 2 is a rescaling limit
of fD with S = {0,∞}. Using the reformulation of the rescaling limit
in Remark 5.6, there is an integer q ≥ 1 and a meromorphic family
MD of degree 1, such that MD and M−1

D are holomorphic on D∗, and
h0 is z → zm where hD := M−1

D ◦ f
q
D ◦MD on P1(C) × D. Moreover

I(hD) ⊆ {0,∞} × {0} ⊆ P1(C) × D. We may replace fD by hD and
assume that f0 : z 7→ zm and I(fD) ⊆ {0,∞}× {0} ⊆ P1(C)× D.

The Julia set of f0 is the unit circle S1, and f0 is expanding on
S1. We need the following classical lemma of holomorphic motions of
expanding sets. A proof can be found (without using quasiconformal
maps) in Jonsson [Jon98], which is also valid in higher dimension. Let
K ⊂ P1(C) be a compact set. We say f : K → K is expanding if there
exists C > 0 and ρ > 1 such that |dfn(x)| ≥ Cρn for every n ≥ 0 and
x ∈ K.

Lemma 6.1. Let (ft)t∈D be a family of endomorphisms on P1(C). Sup-
pose f0 has an expanding set K, f(K) = K. Assume (ft) is a holo-
morphic family in a neighborhood of K, i.e. there exists an open set
V , K ⊂ V such that for every z ∈ V , t 7→ ft(z) is holomorphic in D.
Then there exists r > 0 and a continuous map h : Dr × K → P1(C)
such that for each t ∈ Dr:

(i) Kt := h(t,K) is an expanding set of ft.
(ii) the map ht := h(t, ·) : K → Kt is a homeomorphism and ft ◦

ht = ht ◦ f0.

We set f0 : z 7→ zm and K := S1 in the above lemma. The endo-
morphism f0 has the following properties:

(1) f−1
0 (K) = f0(K) = K;

(2) all periodic points outside the exceptional set {0,∞} are
contained in K;
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(3) for every n-periodic point z ∈ K, we have dfn0 (z) = mn.

Since the family (ft)t∈D∗ has the same multiplier spectrum, the mul-
tiplier of the periodic point ht(z) of ft does not change in the family
t ∈ D∗r. Hence for every t ∈ Dr we have dfnt (ht(z)) = mn. We choose
a homoclinic orbit oi, i ≥ 0 of f0 with o0 = 1. By (1), all oi, i ≥ 1
are contained in K. Hence ht(oi), i ≥ 0 is a homoclinic orbit of ft at
z = ht(1), for t ∈ Dr. Let qi, i ≥ 0 be an adjoint sequence of oi, i ≥ 0.
For every t ∈ D∗r, we need to show ht(qi), i ≥ 0 is an adjoint sequence
of ht(oi), i ≥ 0. In fact let Ut be a linearization domain of ft at ht(1).
Let Ut,i be the connected component of f−it (Ut) containing ht(oi). Let
l be a good return time of Ut. For every n ≥ l, fnt : Ut,n → Ut is an
isomorphism, with a unique fixed point pn. Let V be the connected
component of h−1

t (Ut ∩Kt) containing 1. It is an open arc in S1. Let
Vn be the connected component of f−n0 (V ) containing on. Since K is
totally invariant by f0 and V contains some linearization domain at 1,
after enlarging l if necessary, for every n ≥ l we have qn ∈ Vn ∩ K.
Hence ht(qn) ∈ Ut,n ∩ Kt, which is fixed by fnt : Ut,n → Ut. By the
uniqueness of pn we have pn = ht(qn). Hence ht(qi), i ≥ 0 is an adjoint
sequence of ht(oi), i ≥ 0.

For every t ∈ D∗r, we consider the dynamics of ft. The fixed point
ht(1) has multiplier m and the adjoint sequence ht(qi), i ≥ 0 of the
homoclinic orbit ht(oi), i ≥ 0 has multiplier mi when i large enough.
By Theorem 2.11, ft is exceptional, which concludes the proof. �

7. Conformal expanding repellers and applications

7.1. Definition, examples and rigidity of CER. The following
definition was introduced by Sullivan [Sul86].

Definition 7.1. Let f : P1 → P1 be an edomorphism over C. An
compact set K ⊂ P1(C) is called a CER of f if

(i) There exists m ≥ 1 and a neighborhood V of K such that
fm(K) = K and K = ∩n≥0f

−mn(V ).
(ii) fm : K → K is expanding.

(iii) fm : K → K is topologically exact, i.e. for every open set
U ⊂ K there exists n ≥ 0 such that fmn(U) = K.

Remark 7.2. Condition (i)+(ii) is equivalent to fm is expanding on
K and fm : K → K is an open map [PU10, Lemma 6.1.2].

Remark 7.3. Our definition of CER is slightly stronger than the def-
inition in [PU10], where fm need not to be topologically exact on K.
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However by the classical spectral decomposition theorem [PU10, The-
orem 4.3.8], the non-wandering set of a CER in the sense of [PU10] is
a finite disjoint union of CERs in the sense of Definition 7.1.

The following is an important class of examples of CER.

Example 7.4. Assume V , Ui, 1 ≤ i ≤ k are connected open sets in
P1(C), k ≥ 2 such that Ui ⊂ V , and there exists m ≥ 1 such that
fm : Ui → V is an isomorphism. Then we call

K :=

{
z ∈

k⋃
i=1

Ui

∣∣∣∣∣ fmn(z) ∈
k⋃
i=1

Ui for every n ≥ 0

}
a horseshoe of f . We check that K satisfies the three conditions in
Definition 7.1. Let V0 := ∪ki=1Ui.

Condition (i): It follows from the definition of K;
Condition (ii): fm : V0 → V strictly expands the hyperbolic
metric of V , this implies fm : K → K is expanding;

Condition (iii): Again using fm : V0 → V strictly expands the
hyperbolic metric of V , the maximal diameter of the connected
components of f−nm(V0) ∩ V0 shrinks to 0 when n → ∞. For
each open set W ⊂ K, there exist integer n ≥ 0 and a connected
component B of f−nm(V0) ∩ V0 such that B ∩ K ⊂ W . Since
f (n+1)m(B ∩ K) = K, we have f (n+1)m(W ) = K. Hence fm :
K → K is topologically exact.

Moreover K is a Cantor set, in particular K is not a finite set.

When f has degree at least 2, there are plenty of horseshoes. Follow-
ing the terminology in section 2, we can construct a horseshoe associ-
ated to finite numbers of homoclinic orbits at o. We prove the following
lemma which will be used in the proof of Theorem 1.8.

Lemma 7.5. Let o be a repelling fixed point. Let k ≥ 1 be an integer.
Assume for each fixed 1 ≤ j ≤ k, oji , i ≥ 0 is a homoclinic orbit

of o such that oji /∈ C(f). Then there exists an integer m ≥ 1 and

a horseshoe fm : K → K such that ojmi ∈ K for every i ≥ 0 and
1 ≤ j ≤ k. Moreover for each 0 ≤ q ≤ m− 1, f q(K) is a CER.

Proof. By Lemma 2.6, there exists a linearization domain U of o and
an integer m such that for every 1 ≤ j ≤ k, m is a common good return
time of U for the homoclinic orbits oji , i ≥ 0. Let U j

m be the connected
component of f−m(U) containing ojm. Let

V0 :=

(
k⋃
j=1

U j
m

)
∪ gm(U).
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Then the set

K := {z ∈ V0| fmn(z) ∈ V0 for n ≥ 0}

is a horseshoe of f . Clearly we have ojmi ∈ K for every i ≥ 0 and
1 ≤ j ≤ k.

For each 0 ≤ q ≤ m − 1 let Kq := f q(K). We know that f q :

U j
m → U j

m−q is an isomorphism, and f q : gm(U) → gm−q(U) is an
isomorphism. This implies f q : V0 → f q(V0) is a finite holomorphic
covering (the image of f q of two components of V0 may coincide). We
let φq denote this map. Then we have

φq ◦ fm|V0 = fm|fq(V0) ◦ φq
on f−m(V0) ∩ V0, which implies that fm : K → K and fm : Kq →
Kq are holomorphically semi-conjugated by φq on the corresponding
neighborhoods of K and Kq. We check that Kq satisfies the three
conditions in Definition 7.1. Since φq is a covering and fm : K → K is
an open map, fm : Kq → Kq is an open map. Since fm : K → K is
expanding and |dφq| > c on K for some constant c > 0, fm : Kq → Kq

is expanding. By Remark 7.2, conditions (i) and (ii) hold. Since fm :
K → K is topologically exact and φq : K → Kq is a semi-conjugacy,
fm : Kq → Kq is topologically exact. This implies Condition (iii).
Hence Kq = f q(K) is a CER. �

The following definition of linear CER was introduced by Sullivan
[Sul86].

Definition 7.6. Let f : P1 → P1 be an edomorphism over C. Let K
be a CER of f . f(K) = K. We call K linear if one of the following
conditions holds.

(i) The function log |df | is cohomologous to a locally constant func-
tion on K, i.e. there exists a continuous function u on K such
that log |df | − (u ◦ f − u) is locally constant on K.

(ii) There exists an atlas {φi}1≤i≤k that is a family of holomorphic

injections φi : Vi → C such that K ⊂ ∪ki=1Vi and all the maps
φi ◦ φ−1

j and φi ◦ f ◦ φ−1
j are affine.

A proof that these two conditions are acutually equivalent can be
found in Przytycki-Urbanski [PU10, section 10.1].

The following Sullivan’s rigidity theorem [Sul86] will be used in the
proof of Theorem 1.5 and Theorem 1.8. A proof can be found in [PU10,
section 10.2].
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Theorem 7.7 (Sullivan). Let (f,Kf ), (g,Kg) be two CERs such that
Kf is non-linear, f(Kf ) = Kf , g(Kg) = Kg. Let h : Kf → Kg be a
homeomorphism such that h ◦ f = g ◦h on Kf . Then the following two
conditions are equivalent

(i) for every periodic point x ∈ Kf we have |dfn(x)| = |dgn(h(x))|,
where n is the period of x;

(ii) there exist a neighborhood U of Kf and a neighborhood V of Kg

such that h extends to a conformal map h : U → V .

Here as in Theorem 1.8, a conformal map may change the orientation
of P1(C).

7.2. Having a linear CER implies exceptional. Now we give a
proof of Theorem 1.1.

Proof of Theorem 1.1. Let K be a linear CER of f , which is not a finite
set. By [PU10, Proposition 4.3.6], there exists a repelling periodic point
o ∈ K of f . Passing to an iterate of f we may assume f(K) = K and
f(o) = o. Topological exactness of f on K implies for every a ∈ K,
the preimages of f |K are dense in K. Let U be a linearization domain
U of f at o. Since K 6= {o}, there exists l ≥ 1 and a point pl ∈ K such
that pl 6= o, f l(pl) = o. Then there exists a (unique) homoclinic orbit
oi, i ≥ 0 such that ol = pl and oi ∈ U for every i ≥ l. Clearly oi ∈ K
when i ≤ l. By the definition of CER, there exists a neighborhood V
of K such that K = ∩n≥0f

−n(V ). Shrink U if necessary we assume
U ⊂ V . Hence for every i ≥ l we have oi ∈ V . This implies for every
fixed i ≥ 0, for every n ≥ 0 we have fn(oi) ∈ V . Hence oi ∈ K for
every i ≥ 0.

Let {Vj}1≤j≤k be an affine atlas in Definition 7.6. Shrink the lin-
earization domain U if necessary we may assume for every i ≥ 0, Ui
(the connected component of f−i(U) containing oi) is contained in some
affine chart, say Vj(i). In particular U ⊂ Vj(0) and Ui ⊂ Vj(0) for every
i ≥ l. Let {qi}, i ≥ 0 be the adjoint sequence of oi, i ≥ 0. For every
large enough integer n we have qn ∈ Un. For such fixed n, for every
1 ≤ i ≤ n we have fn−i(qn) ∈ Ui ⊂ Vj(i). Let λi ∈ C∗ be the derivatives
of the affine map φj(i+1) ◦ f ◦ φ−1

j(i), where 0 ≤ i ≤ l − 1. Let λ ∈ C∗

be the derivatives of the affine map φj(0) ◦ f ◦ φ−1
j(0). Then we have

df(o) = λ, and for every n large enough we have

dfn(qn) =

(
l−1∏
i=0

λi

)
λn−l.

By Theorem 2.11, f is exceptional. The proof is finished. �
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7.3. Marked length spectrum rigidity. We now prove Theorem
1.8 by using Theorem 1.1 and Lemma 7.5.

Proof of Theorem 1.8. It is clear that (ii) implies (i). We need to show
(i) implies (ii). Assume that h preserves the marked length spectrum
on Ω. If h extends to a global conformal map P1(C) → P1(C), since
h ◦ f = g ◦ h on J (f), the same equality holds on P1(C). So we may
replace f by its iterate. Passing to an iterate of f , we assume f has
a repelling fixed point o ∈ Ω and o /∈ PC(f). A result of Eremenko-
van Strien [EVS11] says that if a non-Lattès endomorphism f has the
property that all the multipliers are real for periodic points contained
in a non-empty open set of J (f), then J (f) is contained in a circle.
By this result there are two cases:

(i) we can further choose o such that df(o) /∈ R;
(ii) J (f) is contained in a circle C.

By our choice of o, h(o) is a repelling fixed point of g. Moreover we
have h(o) /∈ PC(g) since h presevre critical points in the Julia set. This
can be proved using the total invariance of the Julia sets and the fact
that critical means locally not injective. Let oi i ≥ 0 be a homoclinic
orbit of o. Then h(oi), i ≥ 0 is a homoclinic orbit of h(o). Let U
be a linearization domain of o such that U ∩ J (f) ⊂ Ω. Let W be
a connected open neighborhood of h(o) such that h(U ∩ J (f)) ⊂ W
and W ∩ J (g) ⊂ h(Ω). By Lemma 2.6, shrink U and W if necessary
there exists m ≥ 1 such that m is a good return time of U (resp.
W ) for oi, i ≥ 0 (resp. h(oi), i ≥ 0 ). By Lemma 7.5, there exist
two horseshoes, fm : Kf → Kf (resp. gm : Xg → Xg) such that
oim ∈ Kf , i ≥ 0 (resp. h(oim) ∈ Xg, i ≥ 0). We let Kg := h(Kf ).
By our construction we have h : Kf → Kg is a homeomorphism and
h ◦ fm = gm ◦ h on Kf . Moreover Kg ⊂ Xg. We check that Kg is
a CER of g: gm : Kg → Kg is open and topologically exact since
fm : Kf → Kf is; gm : Kg → Kg is expanding since Kg is contained in
an expanding set Xg. Hence Kg is a CER of g. Passing to an iterate we
may assume f(Kf ) = Kf and g(Kg) = Kg. To simplify the notation,
for i ≥ 0 we let oi be the unique point in f−i(o) which is contained in
the previous homoclinic orbit.

Since f is not exceptional, Kf is a non-linear CER by Theorem 1.1.
Moreover by our construction we have Kf ⊂ Ω. Hence for every n-
periodic point x ∈ Kf , we have |dfn(x)| = |dgn(h(x))|. By Theorem
7.7, h can be extended conformally to a neighborhood V of Kf such

that V ∩J (f) ⊂ Ω. We denote this extension by h̃. In case (ii), we can

further assume that h̃ is in fact holomorphic: if h̃ is antiholomorphic on
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some connected component B of V , let φ be a non-identity conformal
map (necessarily antiholomorphic) on P1(C) such that φ fixes every

point in C, then on B, we may replace h̃ by h̃◦φ, which is holomorphic.
We have h̃ = h on Kf . Since h̃ ◦ f = g ◦ h̃ on Kf and Kf is a perfect

set, by the conformality of h̃ we have h̃ ◦ f = g ◦ h̃ on V .

Next we show that h̃ = h on U0∩J (f), where U0 ⊂ V is a lineariza-
tion domain of o. Let E be the set of all f -preimages of o. For every
a ∈ E ∩U0, f q(a) = o, there exists a homoclinic orbit o′i of o such that
a = o′q, and o′i ∈ U0 for every i ≥ q.

Choose m′ ≥ q, by similar construction as in first paragraph, we
get two CERs, fm

′
: K ′′f → K ′′f (resp. gm

′
: K ′′g → K ′′g ) such that

oim′ ∈ K ′′f and o′im′ ∈ K ′′f (resp. h(oim′) ∈ K ′′g and h(o′im′) ∈ K ′′g ) for
i ≥ 0. Moreover, K ′′f is a horseshoe and K ′′g is contained in a horseshoe

X ′′g . By Lemma 7.5, K ′f := fm
′−q(K ′′f ) and fm

′−q(X ′′f ) are CERs. Since

K ′g := fm
′−q(K ′′g ) ⊆ fm

′−q(X ′′f ), gm : K ′g → K ′g is expending. Since

h : K ′f → K ′g is a homeomorphism and h ◦ fm′ = gm
′ ◦ h on K ′f , g

m′ :
K ′g → K ′g is open and topologically exact. By Remark 7.2, K ′g is a CER.
Moreover, we have oq+im′ ∈ K ′f and o′q+im′ ∈ K ′f (resp. h(oq+im′) ∈ K ′g
and h(o′q+im′) ∈ K ′g) for i ≥ 0. Since f is not exceptional, K ′f is a
non-linear CER by Theorem 1.1. Moreover every periodic point x of
fm
′
: K ′f → K ′f has the form x = fm

′−q(y), where y is a periodic point

x of fm
′

: K ′′f → K ′′f . Since K ′′f ⊂ Ω, we get that the f -orbit of x
has non empty intersection with Ω. This implies for every n-periodic
point x of fm

′
: K ′f → K ′f we have |dfm′n(x)| = |dgm′n(h(x))|. By

Theorem 7.7, h can be extended conformally to a neighborhood V ′ of
K ′f . Denote this extension by h̃′. In case (ii) we further assume that h̃′

is holomorphic. We have h̃′(oq+im′) = h̃(oq+im′) = h(oq+im′), i ≥ 0. The
set {oq+im′ , i ≥ 0} is a set with accumulation point o. We claim that

h̃′ = h̃ on V0, where V0 is the connected component of V ∩V ′ containing
o. In case (i), since df(o) /∈ R, h̃′ and h̃ are both holomorphic or both

antiholomorphic on V0, hence h̃′ = h̃ on V0. In case (ii), by our choices

h̃′ and h̃ are both holomorphic, hence h̃′ = h̃ on V0.
There exists b ∈ V0 ∩ K ′f such that f q+nm

′
(b) = a for some n ≥ 0

and
{
b, f(b), · · · , f q+nm′(b)

}
⊂ U0. We also have h̃(b) = h̃′(b) = h(b).

Since h̃ ◦ f = g ◦ h̃ on U0 we have

h̃(a) = h̃(f q(b)) = gq(h̃(b)) = gq(h(b)) = h(f q(b)) = h(a).

This implies h̃ = h on E ∩ U0. Since E is dense in J (f) we get that

h̃ = h on U0 ∩ J (f).
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To summary we have shown that the homeomorphism h : J (f) →
J (g) conjugates f to g can be extended conformally to a disk intersect-
ing J (f). By a lemma due to Przytycki-Urbanski [PU99, Proposition
5.4, Lemma 5.5], h extends to a conformal map h : P1(C) → P1(C)
such that h ◦ f = g ◦ h on P1(C). �

7.4. Marked multiplier spectrum rigidity. Combining Theorem
1.8 and Eremenko-van Strien’s theorem [EVS11], we now prove Theo-
rem 1.7.

Proof of Theorem 1.7. It is clear that (ii) implies (i). We need to show
that (i) implies (ii). Assume h preserves the marked multiplier spec-
trum on Ω. By Theorem 1.8, h can be extended to a conformal map
on P1(C). If h is holomorphic then we are done. If h is antiholomor-
phic, then the multipliers of all periodic points in Ω are real. By the
main theorem in [EVS11], J (f) is contained in a circle C. Let φ be a
non-identity conformal map on P1(C) such that φ fixes every point in

C. Let h̃ := h ◦ φ, then h̃ ∈ PGL 2(C), and we have h̃ ◦ f = g ◦ h̃ on
P1(C), this finishes the proof. �

7.5. Another proof of McMullen’s theorem. Now we can give
another proof of Theorem 1.2 using λ-Lemma and Theorem 1.7.

Proof of Theorem 1.2. By using λ-Lemma [McM16, Theorem 4.1], it is
well known that two endomorphisms in a stable family are quasicon-
formally conjugate on thier Julia sets. Assume by contradiction the
conclusion is not true. Since exceptional endomorphisms that are not
flexible Lattès are isolated in the moduli space Md, there is at least
one f in the familly that is not exceptional. Let g be another endo-
morphism in the family. Let h : J (f) → J (g) be the quasicoformal
conjugacy. Since multiplier spectrum is preserved in this family and
the conjugacy h moves continuously in the family, for every n-periodic
point x of f we have dfn(x) = dgn(h(x)). By Theorem 1.7, h extends
to an automorphism on P1(C). This contradicts to the assumption that
the family is non-isotrivial. �

7.6. Milnor’s conjecture on Lyapunov exponent. We now prove
Theorem 1.14 using Theorem 1.1.

Proof of Theorem 1.14. Let S be the finite exceptional set of periodic
points in the assumption of Theorem 1.14. Passing to an iterate of f
there exists a repelling fixed point o of f such that o /∈ S. Choose a
linearization domain U of o such that U ∩ S = ∅. By the discussion in
Lemma 7.5, there exists a horseshoe K ⊂ U . Passing to an iterate of f ,
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we assume that f(K) = K. For every n-periodic point x ∈ K, we have
|dfn(x)| = bn for some b > 0. Consider the function φ := log |df |. We
have shown that for every n-periodic point x ∈ K,

∑n−1
i=0 φ(f i(x)) =

n log b. Recall the following classical Livsic Theorem [Liv72]

Lemma 7.8. Let K be a CER of f , f(K) = K. Let φ be a Hölder
continuous function on K. Assume there exits a constant C such that
for every n-periodic point x ∈ K of f we have

n−1∑
i=0

φ(f i(x)) = nC,

then there exists a continuous function u on K such that φ − C =
u ◦ f − u.

Apply the above theorem to φ := log |df |, we get that φ is cohomolo-
gous to a constant function on K in the sense of Definition 7.6. Hence
K is a linear CER, which is not a finite set. By Theorem 1.1, f is
exceptional. The proof is finished. �

Next we prove Corollary 1.16. Let f : P1 → P1 be an endomorphism
over C of degree at least 2. By Gelfert-Przytycki-Rams [GPR10], there
is a forward invariant finite set Σ ⊂ J (f) with cardinality at most
4 (possibly empty), such that for every finite set F ⊂ J (f) \ Σ, we
have f−1(F ) \ C(f) 6= F . Let ∆′(f) be the closure of the Lyapunov
exponents of periodic points contained in J (f) \ Σ. The following
Theorem was proved by Gelfert-Przytycki-Rams-Rivera Letelier. Be
aware that the definition of “exceptional” in [GPR10] and [GPRRL13]
has different meaning with ours.

Theorem 7.9. [GPR10, Theorem 2], [GPRRL13, Theorem 1, Propo-
sition 10]. Let f : P1 → P1 be an endomorphism over C of degree at
least 2. Then ∆′(f) is a closed interval (possibly a singleton).

Proof of Corollary 1.16. If ∆′(f) is not a singleton we are done by The-
orem 7.9. If ∆′(f) is a singleton, then by Theorem 1.14, f is excep-
tional, contradics to our assumption. This finishes the proof. �

7.7. A simple proof of Zdunik’s theorem. Next we give a simple
proof of Theorem 1.11, using Theorem 1.1.

Proof of Theorem 1.11. It is easy to observe that if f is exceptional
then µ is absolutely continuous with respect to Λα. We only need to
show the converse is true.
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Let φ := α log |df |. Following Zdunik [Zdu90], we say φ is coho-
mologous to log d if there exists a function u ∈ L2(J (f), µ) such that
φ − log d = u ◦ f − u holds for almost every point, where J (f) is the
Julia set. By a result of Przytycki-Urbanski-Zdunik [PUZ89, Theorem
6], φ is not cohomologous to log d implies µ is singular with respect
to Λα. So we only need to show that φ is cohomologous to log d im-
plies f is exceptional. Now we assume φ − log d = u ◦ f − u for some
u ∈ L2(J (f), µ). By a lemma due to Zdunik [Zdu90, Lemma 2], for
every p /∈ PC(f), there exists a neighborhood U of p such that u
equals to a continuous function almost everywhere. We observe that if
φf := α log |df | satisfy φf − log d = u ◦ f − u then φfn := α log |dfn|
satisfies

(7.1) φfn − n log d = u ◦ fn − u.

Passing to an iterate of f there exists a repelling fixed point o /∈
PC(f). Let U be a linearization domain of o such that u is continous
on U . Let K be a horseshoe of f contained in U . Passing to an iterate
of f , we may assume f(K) = K. Since u is continuous on K, by (7.1)
the function log |df | is cohomologous to a constant on K in the sense of
Definition 7.6. This implies K is a linear CER. Since K is not a finite
set, by Theorem 1.1, f is exceptional. The proof is finished. �

8. Length spectrum as moduli

For N ≥ 1, the symmetric group SN acts on CN (resp. RN) by
permuting the coordinates. Using symmetric polynomials, one can
show that CN/SN ' CN . For every element (λ1, . . . , λN) ∈ CN (resp.
RN), we denote by {λ1, . . . , λN} its image in CN/SN (resp. RN/SN).
We may view the elements in CN/SN as multisets.4

For d ≥ 2, let fRatd : Ratd × P1 be the endomorphism sending (t, z)
to (t, ft(z)) where ft is the endomorphism associated to t ∈ Ratd. For
t ∈ Ratd, f

n
t has Nn := dn + 1 fixed points counted with multiplicities.

Let λ1, . . . , λdn+1 be the multipliers of such fixed points. Define sn(t) =
sn(ft) := {λ1, . . . , λdn+1} ∈ ANn/SNn the n-th multiplier spectrum of
ft. Similarly, define Ln(t) = Ln(ft) := {|λ1|, . . . , |λdn+1|} ∈ RNn/SNn

the n-th length spectrum of ft. Both sn(ft) and Ln(ft) only depend on
the conjugacy class of ft.

4A multiset is a set except allowing multiple instances for each of its elements.
The number of the instances of an element is called the multiplicity. For example:
{a, a, b, c, c, c} is a multiset of cardinality 6, the multiplicities for a, b, c are 2,1,3.
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For every n ≥ 1, let Per n(fRatd) be the closed subvariety of Ratd×P1

of the n-periodic points of fRatd . Let φn : Per n(fRatd) → Ratd be
the first projection. It is a finite map of degree dn + 1. Let λn :
Per n(fRatd) → A1 be the algebraic morphism (ft, x) 7→ dfnt (x) ∈ A1.
Let |λn| : Per n(fRatd(C))(C)→ [0,+∞) be the composition of λn to the
norm map z ∈ C 7→ |z| ∈ [0,+∞). A fixed point x of fnt has multiplic-
ity > 1 if and only if dfnt (x) = 1. This shows that the map φn is étale
at every point x ∈ Per n(fRatd) \ λ−1

n (1).

We may view Per n(fRatd) as the moduli space of endomorphisms of
degree d with a marked n-periodic point. So we may also denote it by
Ratd[n] or Rat1

d[n]. More generally, for every s = 1, . . . , dn+1, one may
construct the moduli space Ratsd[n] of endomorphisms of degree d with
s marked n-periodic point as follows: For s = 2, . . . , dn + 1, consider
the fiber product (Ratd[n])s/Ratd

of s copies of Ratd[n] over Ratd. For

i 6= j ∈ {1, . . . , dn + 1}, let πi,j : (Ratd[n])s/Ratd
→ (Ratd[n])2

/Ratd
be the

projection to the i, j coordinates. The diagonal ∆ ⊆ (Ratd[n])2
/Ratd

is

an irreducible component of (Ratd[n])2
/Ratd

. One define Ratsd[n] to be
the Zariski closure of

(Ratd[n])s/Ratd
\ (∪i 6=j∈{1,...,dn+1}π

−1
i,j (∆))

in (Ratd[n])s/Ratd
.Denote by φsn : Ratsd[n]→ Ratd the morphism induced

by φn. Let λsn : Ratsd[n]→ As the morphism defined by (t, x1, . . . , xs) 7→
(dfn(x1), . . . , dfn(xs)) and |λsn| : Ratsd[n](C) → Rs the map defined
by (t, x1, . . . , xs) 7→ (|dfn(x1)|, . . . , |dfn(xs)|). Since φn is étale at ev-
ery point x ∈ Per n(fRatd) \ λ−1

n (1), φsn is étale at every point x ∈
(λsn)−1((A1 \ {1})s).

To prove Theorem 1.5, we need to study the subsets taking form
Λn(a) := L−1

n (a) where a ∈ RNn/SNn . Since Ln is not holomorphic
(hence not algebraic), in general, the above set is not algebraic. To get
some algebricity of Λn(a), one can view Ratd(C) as an real algebraic
variety by splitting a complex variable z into two real variety x, y via
z = x+ iy. A more theoretic way to do this is using the notion of Weil
restriction. See Section 8.1.1 for a brief introduction. However, even
when we view Ratd(C) as a real algebraic variety, Λn(a) is not real
algebraic in general (c.f. Theorem 8.10). Here real algebraic means
Zariski closed when viewing Ratd(C) as a real algebraic variety. See
Section 8.1.1 for the precise definition. This is one of the main difficulty
in the proof of Theorem 1.5. To solve this problem, we introduce a class
of closed subsets of Ratd(C) that are images of algebraic subsets under
étale morphisms. We will study such subsets in Section 8.2.
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8.1. An example of non-algebraic length level set. The main
result of this section is Theorem 8.10, in which we give an example to
show that the subsets Λn(a) may not be real algebraic in Ratd(C)5.

Except Definition 8.1, in which we give a precise definition of the
notion real algebraic using Weil restriction, this section will not be
used in the rest of the paper.

8.1.1. Weil restriction. We briefly recall the notion of Weil restriction.
See [Poo17, Section 4.6] and [BLR90, Section 7.6] for more information.

Denote by V ar/C (resp. V ar/R) the category of varieties over C (resp.
R). For every variety X over C, there is a unique variety R(X) over R
represents the functor V ar/R → Sets sending V ∈ V ar/R to Hom(V ⊗R
C, X). It is called the Weil restriction of X. The functor X 7→ R(X)
is called the Weil restriction. One has the canonical morphism τX :
X(C) → R(X)(R), which is a real analytic diffeomorphism. One may
view X(C) as a real algebraic variety via τX .

Definition 8.1. The real Zariski topology on X(C) is the restriction
of the Zariski topology on R(X) via τX . A subset Y of X(C) is real
algebraic if it is closed in the real Zariski topology.

By (iii) of Proposition 8.3 below, the real Zariski topology is stronger
than the Zariski topology on X(C).

Roughly speaking, the Weil restriction is just constructed by splitting
a complex variable z into two real variables x, y via z = x + iy. For
the convenience of the reader, in the following example, we show the
concrete construction of R(X) when X is affine.

Example 8.2. First assume that X = AN
C . Then R(X) = A2N

R . The
map

τX : AN
C (C) = CN → A2N

R (R) = R2N

sends (z1, . . . , zN) to (x1, y1, x2, y2, . . . , xN , yN) where zj = xj + iyj.

Consider the algebra B := C[I]/(I2 + 1) ' C ⊕ IC. Every f ∈
C[z1, . . . , zN ] defines an element

F := f(x1 + Iy1, . . . , xN + IyN) ∈ B[x1, y1, . . . , xN , yN ].

Since

B[x1, y1, . . . , xN , yN ] = C[x1, y1, . . . , xN , yN ]⊕ IC[x1, y1, . . . , xN , yN ],

F can be uniquely decomposed to F = r(f) + Ii(f) where r(f), i(f) ∈
C[x1, y1, . . . , xN , yN ].

5In our example, we will take d = 2 and n = 1.
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If X is the closed subvariety of AN
C = SpecC[z1, . . . , zM ] defined by

the ideal (f1, . . . , fs), then R(X) is the closed subvariety of R(AN
C ) =

A2N
R = SpecR[x1, y1, . . . , xN , yN ] defined by the ideal generated by

r(f1), i(f1), . . . , r(fs), i(fs).

We list some basic properties of Weil restriction without proof.

Proposition 8.3. Let X, Y ∈ V ar/C, then we have the following prop-
erties:

(i) if X is irreducible, then R(X) is irreducible;
(ii) dimR(X) = 2 dimX;
(iii) if f : Y → X is a closed (resp. open) immersion, then the in-

duced morphism R(f) : R(Y )→ R(X) is a closed (resp. open)
immersion.

Then we get the following easy consequence.

Lemma 8.4. Let Y ∈ V arC and X be a closed subset Y . Then R(X)
is the Zariski closure of X(C) = R(X)(R) in R(Y ).

Proof. We may assume that X and Y are irreducible. It is clear that
R(X)(R) ⊆ R(X). So R(X)(R)

zar
⊆ R(X). Since

dimRR(X)(R)
zar
≥ dimRR(X)(R) = 2 dimX = dimR(X)

and R(X) is irreducible, we get R(X)(R)
zar

= R(X). �

We denote by σ ∈ Gal(C/R) the complex conjugation z 7→ z. For
every complex variety X, one denote by Xσ the base change of X by
the field extension σ : C → C. This induces a morphism of schemes
(over Z) σ : Xσ → X. It is not a morphism of schemes over C. It is
clear that (Xσ)σ = X.

Example 8.5. If X is the subvariety of AN
C = SpecC[z1, . . . , zN ] de-

fined by the equations
∑

I ai,Iz
I = 0, i = 1, . . . , s Then Xσ is the

subvariety of AN
C defined by

∑
I ai,Iz

I = 0, i = 1, . . . , s. The map σ :
X = (Xσ)σ → Xσ sends a point (z1, . . . , zN) ∈ X(C) to (z1, . . . , zN) ∈
Xσ(C).

The following result due to Weil is useful for computing the Weil
restriction.

Proposition 8.6. [Poo17, Exercise 4.7] We have a canonical isomor-
phism

R(X)⊗R C ' X ×Xσ.
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Under this isomorphism,

R(X)(R) = {(z1, z2) ∈ X(C)×Xσ(C)| z2 = σ(z1)}
and τX sends z ∈ X(C) to (z, σ(z)) ∈ R(X)(R).

8.1.2. The norm map. For N ≥ 1, let νN : CN/SN → RN/SN be the
real analytic map sending {z1, . . . , zN} to {|z1|2, . . . , |zN |2}. We view
CN/SN as a real algebraic variety via the identification

CN/SN = (AN
C /SN)(C) = R(AN

C /SN)(R) ⊆ R(AN
C /SN)(C).

The following result is the aim of this section. We postpone its proof
to the end of this section.

Proposition 8.7. For a := {a1, . . . , aN} ∈ RN
>0/SN , ν−1

N (a) is real
Zariski closed if and only if N = 1 or N = 2 and a1 6= a2.

Set X := R(AN
C /SN)⊗RC = (AN

C /SN)× (AN
C /SN). (Since AN

C /SN is
defined over R we have AN

C /SN = (AN
C /SN)σ.) Consider the quotient

morphisms q1 : AN
C � AN

C /SN defined by

(z1, . . . , zN) 7→ {z1, . . . , zN}
and q2 : AN

C × AN
C � X defined by

(u1, . . . , uN ; v1, . . . , vN) 7→ ({u1, . . . , uN}, {v1, . . . , vN}).
Consider the morphism µN : AN

C × AN
C → AN

C defined by

(u1, . . . , uN ; v1, . . . , vN) 7→ (u1v1, . . . , uNvN).

Let ΓµN be the graph of µN in (AN
C × AN

C ) × AN
C . Set ΓN = (q2 ×

q1)(ΓµN ) ⊆ X × (AN
C /SN). Since q2 × q1 is finite, ΓN is an irreducible

closed subvariety of X × (AN
C /SN). We view it as a correspondence

between X and AN
C /SN .

Let π1 : X × (AN
C /SN) → X and π2 : X × (AN

C /SN) → (AN
C /SN)

be the first and the second projection. Then π1|ΓN
is a finite mor-

phism of degree N !. For every x ∈ X, the image of x under ΓN is
ΓN(x) := π2(ΓN ∩ π−1

1 (x)). For a general x ∈ X(C), ΓN(x) has N !
points. Similarly, for every y ∈ AN

C /SN , the preimage of y under ΓN is
Γ−1
N (y) := π1(ΓN ∩ π−1

2 (y)).

Lemma 8.8. For every a = {a1, . . . , aN} ∈ (AN
C /SN)(C) with ai 6=

0, i = 1, . . . , N , Γ−1
N (a) is irreducible and of dimension N .

Proof. Consider the actions of g ∈ SN on AN
C × AN

C by

g.(u1, . . . , uN ; v1, . . . , vN) = (ug(1), . . . , ug(N); vg(1), . . . , vg(N))

and on AN
C by g.(z1, . . . , zN) = (zg(1), . . . , zg(N)). Then we have

q1(g.x) = q1(x), q2(g.x) = q2(x).
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Since

Γ−1
N (a) = q2(µ−1

N (q−1
1 ({a1, . . . , aN})))

and

q−1
1 ({a1, . . . , aN}) = {g.(a1, . . . , aN)| g ∈ SN},

we get Γ−1
N (a) = q2(µ−1

N ((a1, . . . , aN))). Since µ−1
N ((a1, . . . , aN)) is de-

fined by uivi = ai, i = 1, . . . , N , it is isomorphic to (A1\{0})N , which is
irreducible. Since q2 is finite, Γ−1

N (a) is irreducible of dimension N. �

For a = {a1, . . . , aN} ∈ RN
>0/SN ⊆ (AN

C /SN)(R), we have

Γ−1
N (a)(R) = Γ−1

N (a) ∩X(R) = ∪g∈SN
VN,g(a)

where

VN,g(a) = q2({(u1, . . . , uN ;u1, . . . , uN) ∈ C2N | uiug(i) = ai, 1 ≤ i ≤ N})

= {({u1, . . . , uN}, {u1, . . . , uN}) ∈ R(X)(R)| uiug(i) = ai, 1 ≤ i ≤ N}
We note that, if g1, g2 ∈ SN are conjugate, then VN,g1(a) = VN,g2(a).

For every g ∈ SN , it can be uniquely written as a product of disjoint
cycles, i.e. there is a partition {1, . . . , N} = tsi=1Ii such that g =
σ1 · · ·σs where σi acts trivially outside Ii and transitively on Ii. Set

ZN,g(a) := {(u1, . . . , uN ;u1, . . . , uN) ∈ C2N | uiug(i) = ai, i = 1, . . . , N},

then VN,g(a) = q2(ZN,g(a)).

For i = 1, . . . , s, set mi := #Ii and write Ii = {j1, . . . , jmi
} with

σ(jn) = jn+1, here the index n is viewed in Z/miZ. We define Zi, i =
1, . . . , s as follows:

(E0) : If mi is even and
∑mi

n=1(−1)n log ajn 6= 0, Zi := ∅.
(E1) : If mi is even and

∑mi

n=1(−1)n log ajn = 0, then Zi is the

set of points taking forms (U,U) ∈ CIi × CIi where

U = (rj1e
iθ, a1r

−1
j1
eiθ, a2a

−1
1 rj1e

iθ, . . . , ajmi−1a
−1
jmi−2

. . . a1r
−1
ji
eiθ)

for some rj1 ∈ R>0 and θ ∈ R. Hence Zi ' R>0 × (R/Z).
(O) : If mi is odd, then Zi is the set of points taking forms
(U,U) ∈ CIi × CIi where

U = (rj1e
iθ, . . . , rjmi

eiθ), rjn =

(
mi−1∏
l=0

a
(−1)l

jn+l

)1/2

for some θ ∈ R. Hence Zi ' R/Z.
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Easy to show that

ZN,g(a) =
s∏
i=1

Zi.

Let e0(g), e1(g) and o(g) be the number of i fall into the cases (E0), (E1)
and (O) respectively. Then ZN,g(a) = ∅ if e0(g) > 0, otherwise

ZN,g(a) ' Re1(g)
>0 × (R/Z)e1(g)+o(g).

Lemma 8.9. We have VN,id(a) = ν−1
N (a) and it is Zariski dense in

Γ−1
N (a).

Proof. It is clear that VN,id(a) = ν−1
N (a). By Lemma 8.8, Γ−1

N (a) is
irreducible and of dimension N . Since ZN,id(a) ' (R/Z)N , VN,id(a) =
q2(ZN,id(a)) is of dimension N . Then it is Zariski dense in Γ−1

N (a). �

Proof of Proposition 8.7. By Lemma 8.9, ν−1
N (a) = VN,id(a) is Zariski

closed if and only if VN,g(a) ⊆ VN,id(a) for every g ∈ SN .
The case N = 1 is trivial. If N = 2 and a1 6= a2, then e0(g) > 0 for

g ∈ S2 \ {id}. Hence VN,id(a) is Zariski closed. If there is i 6= j with
ai = aj, let g := (i, j) ∈ SN . Then

ZN,g(a) ' R>0 × (R/Z)N−1

which is not compact. Since q2 is finite, q2(ZN,g(a)) is closed but not
compact. Hence it does not contained in VN,id(a).

Now we may assume that N ≥ 3 and ai 6= aj for every i 6= j. We
may assume that a1 > a2 > a3 and a1 = max{ai, i = 1, . . . , N}. Then
for every ({u1, . . . , uN}, {u1, . . . , uN}) ∈ VN,id(a) We have

max{|ui|, i = 1, . . . , N} = a
1/2
1 .

Pick g = (1, 2, 3) ∈ SN . Then ZN,id(a) 6= ∅ and for every point
(u1, . . . , uN ;u1, . . . , uN) ∈ ZN,g(a), we have

max{|ui|, i = 1, . . . , N} ≥ |u2| = (a1a2a
−1
3 )1/2 > a

1/2
1 .

Since VN,id(a) = q2(ZN,id(a)), VN,g(a) ∩ VN,id(a) = ∅. Hence VN,id(a) is
not Zariski closed. �

8.1.3. The example. In this section, we focus on the first length spec-
trum map L1 : Rat2(C)→ R3

>0/S3. We view Rat2(C) as a real algebraic
variety via identifying Rat2(C) with R(Rat2)(R)

Theorem 8.10. For a ∈ (1,
√

2), L−1
1 ({a, a, a}) is not real algebraic

in Rat2(C).
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Proof. We follows the notations in Section 8.1.2.

Recall the first multiplier spectrum map s1 : Rat2(C)→ (A3/S3)(C).
Then L−1

1 ({a, a, a}) = s−1
1 (ν−1

3 ({a2, a2, a2})). Set b := {a2, a2, a2}. Since
s1 factors through the moduli space M2(C), there is a morphism
[s1] : M2(C) → (A3/S3)(C) such that [s1] ◦ Ψ2 = s1. It was proved
by Milnor[Mil93] that [s1] is an isomorphism to its image M (see
also [Sil12, Theorem 2.4.5]). Moreover, by [Sil12, Theorem 2.4.5 and
Lemma 2.4.6], M = q1(Y0) and R(M) = q2(R(Y0)), where

Y0 = {(z1, z2, z3) ∈ C3| z1z2z3 = z1 +z2 +z3−2, z1z2 6= 1}∪{(1, 1, z3)}.
Set Y := {(z1, z2, z3) ∈ C3| z1z2z3 = z1 + z2 + z3 − 2} which is

the Zariski closure of Y0. The Zariski closure of R(M) in R(A3
C/S3) is

q2(R(Y )).

Lemma 8.11. The intersection q2(R(Y ))∩ Γ−1
3 (b) is irreducible of di-

mension 1.

Proof. Observe that (q2(R(Y )) ∩ Γ−1
3 (b))⊗R C = q2(Z) where Z is the

closed subset of R(A3
C) ⊗R C = A3

C × A3
C = SpecC[u1, u2, u3, v1, v2, v3]

defined by the following equations:

(i) u1u2u3 = u1 + u2 + u3 − 2;
(ii) v1v2v3 = v1 + v2 + v3 − 2;

(iii) u1v1 = a;
(iv) u2v2 = a;
(v) u3v3 = a.

Using symmetric polynomials, one may write

R(A3
C/S3)⊗R C = A3

C/S3 × A3
C/S3

as
A3

C × A3
C = SpecC[x, y, z, x′, y′, z′]

and in this coordinate, q2 is given by x 7→ u1 + u2 + u3, y 7→ u1u2 +
u1u3 +u2u3, z 7→ u1u2u3, x′ 7→ v1 + v2 + v3, y′ 7→ v1v2 + v1v3 + v2v3 and
z′ 7→ v1v2v3. One may compute that q2(Z) is defined by the following
equations:

(i) z 6= 0;
(ii) x = z + 2;

(iii) y = (2z + a3)/a;
(iv) x′ = a3/z + 2;
(v) y′ = a2(z + 2)/z;

(vi) z′ = a3/z.

Then it is irreducible of dimension 1 since it is parametrized by a single
variable z. �
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ThenR(M)∩Γ−1
3 (b) is irreducible, and if this intersection is nonempty,

it is of dimension 1. We note that

ν−1
3 (b) = M ∩ q2(Z3,id(b)).

Let g = (1, 2) ∈ S3. We have

M ∩ (q2(Z3,id(b)) ∪ q2(Z3,g(b))) ⊆ (R(M) ∩ Γ−1
3 (b))(R).

Lemma 8.12. Both M ∩ q2(Z3,id(b)) and M ∩ q2(Z3,g(b)) are infinite
and M ∩ q2(Z3,g(b)) 6⊆M ∩ q2(Z3,id(b)).

Proof. Since q2 is finite, we only need to show that Y0 ∩ Z3,id(b) and
Y ∩ Z3,g(b) are infinite and M ∩ q2(Z3,g(b)) 6⊆M ∩ q2(Z3,id(b)).

Since a > 1, one may compute that Y0∩Z3,id(b) = Y ∩Z3,id(b) and it
is the set of points (u1, u2, u3) ∈ C3 satisfying the following equations:

(8.1) u1u2u3 = u1 + u2 + u3 − 2 and |u1| = |u2| = |u3| = a.

Consider the function F : [0, π]2 → [0,+∞) given by

F : (θ1, θ2) 7→
∣∣∣∣a(eiθ1 + eiθ2)− 2

a3ei(θ1+θ2) − a

∣∣∣∣ .
Since a > 1, it is well-defined and continuous. We have

F (0, 0) = |(2a− 2)/(a3 − a)| = 2

a(a+ 1)
< 1

and

F (π, π) = |(−2a− 2)/(a3 − a)| = 2

a(a− 1)
> 1.

There is β ∈ (0, π/2) such that for every α ∈ [0, β], we have

F (0, α) < 1 and F (π − α, π) > 1.

Hence for every α ∈ [0, β], there is θ(α) ∈ [0, π − α] such that

F (θ(α), θ(α) + α) = 1.

One may check that

u1 = aeiθ(α), u2 = aeiθ(α)+α, u3 = a
a(eiθ(α) + eiθ(α)+α)− 2

a3ei(2θ(α)+α) − a
, α ∈ [0, β]

are infinitely many distinct solutions of (8.1). So Y0∩Z3,id(b) is infinite.

Since a > 1, one may compute that Y0 ∩Z3,g(b) = Y ∩Z3,g(b) and it
is the set of points (u1, u2, u3) ∈ C3 satisfying the following equations:

(8.2) u1u2u3 = u1 + u2 + u3 − 2 and u1u2 = |u3|2 = a2.
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Consider the function G : R>0 × [0, π]→ [0,+∞) given by

G : (r, θ) 7→
∣∣∣∣a(r + 1/r)eiθ − 2

a3e2iθ − a

∣∣∣∣ .
Since a > 1, it is well-defined and continuous. We note that G(1, θ) =
F (θ, θ) for θ ∈ [0, π]. So G(1, 0) < 1 and G(1, π) > 1. There is R > 1
such that for every r ∈ [1, R], G(r, 0) < 1 and G(r, π) > 1. Then for
every r ∈ [1, R], there is θr ∈ [0, π] such that G(r, θr) = 1.

One may check that

u1(r) = areiθr , u2(r) = ar−1eiθr , u3(r) = a
a(r + 1/r)eiθr − 2

a3e2iθr − a
, r ∈ [1, R]

are infinitely many distinct solutions of (8.1). So Y0 ∩ Z3,g(b) is infi-
nite. Moreover, if r > 1, then max{|u1(r)|, |u2(r)|, |u3(r)|} = ar > a,
so {u1(r), u2(r), u3(r)} ∈ (M ∩ q2(Z3,g(b))) \ (M ∩ q2(Z3,id(b))). This
concludes the proof. �

Since M ∩ q2(Z3,id(b)) is infinite and dimR(M) ∩ Γ−1
3 (b) = 1, the

Zariski closure of M ∩ q2(Z3,id(b)) in R(M) is R(M) ∩ Γ−1
3 (b) but

M ∩ q2(Z3,id(b)) ( (R(M) ∩ Γ−1
3 (b))(R). So L−1

1 ({a, a, a}) = s−1
1 (M ∩

q2(Z3,id(b))) is Zariski dense in R(s1)−1(R(M)∩Γ−1
3 (b)), where R(s1) :

R(Rat2)→ R(M) is induced by s1. Since M ∩ q2(Z3,id(b)) ( (R(M) ∩
Γ−1

3 (b))(R) and M is the image of s1, L−1
1 ({a, a, a}) ( R(s1)−1(R(M)∩

Γ−1
3 (b)). This concludes the proof. �

8.2. Images of algebraic subsets under étale morphisms. Let X
be a variety over R. A closed subset V of X(R) is called admissible if
there is a morphism f : Y → X of real algebraic varieties and a Zariski
closed subset V ′ ⊆ Y such that V = f(V ′(R)) and f is étale at every
point in V ′(R).

Every algebraic subset of X(R) is admissible.

Remark 8.13. Denote by J the non-étale locus for f in V . We have
J ∩V (R) = ∅. Since we may replace V by V \J , in the above definition
we may further assume that f is étale.

Remark 8.14. Let Y be a Zariski closed subset of X. Since étale
morphisms are preserved under base changes, if V is admissible as a
subset of X(R), it is admissible as a subset of Y (R).

Remark 8.15. An admissible subset is semialgebraic. So it has finitely
many connected components.

Proposition 8.16. Let V1, V2 be two admissible closed subsets of X(R).
Then V1 ∩ V2 is admissible.
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Proof. There is a morphism fi : Yi → X, i = 1, 2 of algebraic varieties
and a Zariski closed subset V ′i ⊆ Yi such that Vi = f(V ′i (R)) and fi is
étale. Then the fiber product f : Y1 ×X Y2 → X is étale. Since

V1 ∩ V2 = f1(V ′1(R)) ∩ f2(V ′2(R)) = f((V ′1 ×X V ′2)(R)),

V1 ∩ V2 is admissible. �

The key result in this section is the following, which shows that
admissible subsets satisfy the descending chain condition.

Theorem 8.17. Let Vn, n ≥ 0 be a sequence of decreasing admissible
subsets of X(R). Then there is N ≥ 0 such that Vn = VN for all n ≥ N.

We need the following lemma.

Lemma 8.18. Let V be an admissible closed subset of X(R). Assume
that X and V

zar
are smooth. Then V is a finite union of connected

components of V
zar

(R).

Proof. Since V
zar

is smooth, different irreducible components of V
zar

do not meet. So we may assume that V
zar

is irreducible of dimension
d. Hence V

zar
(R) is smooth, it is of dimension d everywhere.

There is a morphism f : Y → X of algebraic varieties and a Zariski
closed subset V ′ ⊆ Y such that V = f(V ′(R)) and f is étale at every

point in V ′(R). After replacing V ′ by V ′(R)
zar

, we may assume that
V ′(R) is Zariski dense in V ′.

For x ∈ V , there is y ∈ V ′(R) such that V ′(R) has dimension d
at y. Since f is étale, f−1(V

zar
(R)) is smooth and of dimension d.

Hence V ′ coincides with f−1(V
zar

) in some Zariski open neighborhood
of y. So V ′(R) is smooth at y. It follows that f maps some Euclidean
neighborhood of y in V ′(R) to some Euclidean neighborhood of x in
V

zar
(R). This shows that V is open in V

zar
(R). Then V is a finite union

of connected components of V
zar

(R). �

Proof of Theorem 8.17. We do the proof by induction on dimX. When
dimX = 0, Theorem 8.17 is trivial.

There is N ≥ 0 such that Vn
zar

are the same for n ≥ N. After remov-
ing Vn, n = 1, . . . , N , we may assume that Vn

zar
, n ≥ 0 are the same va-

riety. After replacing X by this variety, we may assume that Vn
zar

= X
for all n ≥ 0. Let X0, X1 be the smooth and singular part of X. We
only need to show that both Vn ∩X0(R), n ≥ 0 and Vn ∩X1(R), n ≥ 0
are stable for n large. Since dimX1 < dimX, Vn ∩ X1(R), n ≥ 0 is
stable for n large by the induction hypothesis. Since X0 is smooth, by
Lemma 8.18, every Vn is a union of connected components of X0(R).
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Since X0(R) has at most finitely many connected components, we con-
clude the proof. �

Remark 8.19. Theorem 8.17 does not hold for general semialgebraic
subsets. The following example shows that it does not hold even for
images of algebraic subsets under finite morphisms. For n ≥ 0, set
Zn := [n,∞) ⊆ A1(R). They are the images of A1(R) under the finite
morphisms z 7→ z2 + n, n ≥ 0. We have Zn+1 ⊂ Zn but ∩n≥0Zn = ∅.

Let d ≥ 2. We now view Ratd(C) as a real variety and study the
locus in it with given length spectrum. For n ≥ 1, s = 1, . . . , Nn and
a ∈ Rs/Ss, let Λs

n(a) be the subset of t ∈ Ratd(C) such that a ⊆ Ln(t)
i.e. fnt has a subset of fixed points counting with multiplicity, such that
the set of norms of multipliers of these fixed points equals to a. It is a
closed subset in Ratd(C).

Remark 8.20. This notion generalizes the notion Λn(a). When s =
Nn, we get Λn(a) = Λs

n(a).

Pick (a1, . . . , as) ∈ Rs representing a ∈ [0,+∞)s/Ss, we have

Λs
n(a) = φsn(|λsn|−1(a1, . . . , as)).

Even though |λsn| is not real algebraic, its square |λsn|2 is real al-
gebraic. So |λsn|−1(a1, . . . , as) = (|λsn|2)−1(a2

1, . . . , a
2
s) is real algebraic.

Hence Λs
n(a) is semialgebraic. Moreover, if ai 6= 1 for every i = 1, . . . , s,

|λsn|−1(a1, . . . , as) ⊆ (λsn)−1((A1 \ {1})s).
So φsn is étale along |λsn|−1(a1, . . . , as). This shows the following fact.

Proposition 8.21. For a ∈ ([0,+∞) \ {1})s/Ss, Λs
n(a) is admissible.

8.3. Length spectrum. Let f be an endomorphism of P1(C) of degree
d ≥ 2. Recall that the length spectrum L(f) = {L(f)n, n ≥ 1} of f is
a sequence of finite multisets, where L(f)n := Ln(f) is the multiset of
norms of multipliers of all fixed points of fn. In particular, L(f) is a
multiset of positive real numbers of cardinality dn+1. For every n ≥ 0,
let RL(f)n be the sub-multiset of L(f)n consisting of all elements > 1.
We call RL(f) := {RL(f)n, n ≥ 1} the repelling length spectrum of f
and RL∗(f) := {RL∗(f)n := RL(f)n!, n ≥ 1} the main repelling length
spectrum of f . We have dn + 1 ≥ |RL(f)n| ≥ dn + 1 −M for some
M ≥ 0. It is clear that the difference dn! + 1− |RL∗(f)n| is increasing
and bounded.

Let Ω be the set of sequences An, n ≥ 0 of multisets consisting of real
numbers of norm strictly larger than 1 satisfying |An| ≤ dn! + 1 and
for every a ∈ An with multiplicity m, an+1 ∈ An+1 with multiplicity at
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least m. For A,B ∈ Ω, we write A ⊆ B if An ⊆ Bn for every n ≥ 0.
An element A = (An) ∈ Ω is called big if dn! + 1 − |An| is bounded.
For every endomorphism f of P1(C) of degree d, we have RL∗(f) ∈ Ω
and it is big.

For A ⊆ RL∗(f), by induction, we can show that there is a sequence
of sub-multisets Pn ⊆ Fixn!(f), n ≥ 1 (here we view Fixn!(f) as a mul-
tiset of cardinal dn! + 1) such that Pn ⊆ Pn+1 and An = {|dfn!(x)|| x ∈
Pn}. Such P := (Pn) is called a realization of A, which may not be
unique. Further assume that A is big, then for every realization of A,
|Fixn!(f) \ Pn| is bounded. It follows that Per (f) \ (∪n≥0Pn) is finite.

Let A ∈ Ω. Define Λ(A) := ∩n≥1Λ
|An|
n! (An), which is the locus of

t ∈ Ratd satisfying A ⊆ RL∗(ft). It is clear that Λ
|An|
n! (An), n ≥ 1 is

decreasing, and by Proposition 8.21, each of them is admissible. Hence
by Theorem 8.17 we get the following result.

Proposition 8.22. There is N(A) ≥ 0 such that

Λ(A) = Λ
|AN(A)|
N(A)! (AN(A)),

which is admissible.

Let γ ' [0, 1] be a real analytic curve in Ratd(C), we view γ×P1(C)
as a subset of Ratd(C)× P1(C). Let fγ be the restriction of fRatd(C) to
γ×P1(C). For every n-periodic point x = (t, y) ∈ γ×P1(C), let γnx be
the connected component of

(γ × P1(C)) ∩ Ratd(C)[n] = φ−1
n (γ)

containing x.

Remark 8.23. If x is repelling for ft, then φn is étale at (t, x), hence
it induces an isomorphism from some neighborhood of (x, t) in γnx to
its image in γ.

Moreover, if |λn|(γnx ) ⊆ (1,+∞), then φn is étale along γnx , in par-
ticular φn|γnx : γnx → γ is a covering map. Since γ is simply connected,
φn|γnx : γnx → γ is an isomorphism. If n|m, then γnx ⊆ γmx . On the other
hand, for every (u, y) ∈ γnx , the multiplicity of y in Fix(fmu ) is 1. So γmx
coincide with γnx in a neighborhood of y. Hence γmx = γnx . This implies
that every y ∈ γx has the same minimal period and for every period l
of y, γly = γnx .

Lemma 8.24. Fix A ∈ Ω. Assume that for every t ∈ γ, A ⊆ RL∗(ft).
Then there is a realization P of A for f0, such that the following holds:
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(i) For every x ∈ ∪n≥0Pn, γm(0,x) does not depend on the choice of

period m of x. We denote by γx = γm(0,x) for some (then every)

period m of x. Then φm|γx : γx → γ is a homeomorphism and
it is étale along γx. In particular, for different points x, γx are
disjoint.

(ii) For every x ∈ ∪n≥0Pn, with a period m, |λm| is a constant on
γx.

Proof. For every n ≥ 1, let Bn be the subset of Fix(fn0 ) such that |λn|
is a constant > 1 on γn(0,x). If x ∈ Bn for some n ≥ 1, by Remark 8.23,
x ∈ Bm for every period m of x and γx := γm(0,x) does not depend on

the choice of period m. Moreover, φm|γx : γx → γ is a homeomorphism
and it is étale along γx. In particular for for different points x, γx are
disjoint.

It is clear that B = (Bn!) realize an element C ∈ Ω. We only need
to show that A ⊆ C. Let a be an element in An of multiplicity l ≥ 1.
Then for every t ∈ γ, since |a| > 1, |λn!|−1(a) ∩ φ−1

n! (t) contains at
least l distinct points. Let x1, . . . , xs be the elements in x ∈ Bn! with
λn!((0, x)) = a. We only need to show that s ≥ l. For every i = 1, . . . , s,
γxi is a connected component of φ−1

n! (γ). Set Z := φ−1
n! (γ) \ ∪si=1γxi . If

s < l, then for every t ∈ γ, Z ∩ |λn!|−1(a) ∩ φ−1
n! (t) has at least one

point. So there is y ∈ Z such that γn!
z ∩ |λn!|−1(a) is infinite. Since

both γn!
z and |λn!|−1(a) are real analytic in γ ×P1(C), γn!

z ⊆ |λn!|−1(a).
By Remark 8.23, γn!

z meets φ−1
n! (0) at some point (0, x) for some x ∈ Bn.

So γn!
z = γx, which is a contradiction. �

8.4. Length spectrum as moduli. Let Ψ : Ratd(C) → Md(C) =
Ratd(C)/PGL 2(C) be the quotient map. Let FLd(C) ⊆ Ratd(C) be
the locus of Lattès maps, which is Zariski closed in Ratd(C). We now
prove Theorem 1.5 via proving the following stronger statement.

Theorem 8.25. If A ∈ Ω is big, then Φ(Λ(A) \ FLd(C)) ⊆ Md is
finite.

Proof. By Proposition 8.22, Λ(A) is admissible in Ratd(C). Hence
Λ(A)\FLd(C) is admissible in Ratd(C)\FLd(C). In particular, Λ(A)\
FLd(C) and Φ(Λ(A) \ FLd(C)) are semialgebraic.

To get a contradiction, assume that Φ(Λ(A) \ FLd(C)) is not finite.
By Nash Curve Selection Lemma [BCR98, Proposition 8.1.13], there is
a real analytic curve γ ' [0, 1] in Λ(A)\FLd(C) whose image inMd is
not a point. Since non-flexible Lattès exceptional endomorphisms are
isolated in the moduli space Md, there is at least one ft that is not
exceptional. Without loss of generality we assume f0 is not exceptional.
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We now apply Lemma 8.24 for γ and A, and follows the notation there.
Set Q := ∪n≥0Pn. Then S := Per (f0) \Q is finite.

Pick any z0 ∈ Q. By the discussion in Example 7.4, there exists a
horseshoe K of f0 containing z0 and K ∩ S = ∅. There is m ≥ 0
such that fm0 (K) = K and fm0 (z0) = z0. By Lemma 6.1, there exits
ε > 0 and a continuous map h : [0, ε]×K → P1(C) such that for each
t ∈ [0, ε]:

(i) Kt := h(t,K) is an expanding set of fmt .
(ii) the map ht := h(t, ·) : K → Kt is a homeomorphism and fmt ◦

ht = ht ◦ fm0 .

For every t ∈ [0, ε] and for every w0 ∈ K satisfying fnm0 (w0) = w0,
we have fnmt (ht(w0)) = ht(w0). It follows that ht(w0) = γw0(t). Since
|λnm| is a constant on γw0 , we get |dfnm0 (w0)| = |dfmnt (ht(w0))|. We
claim that Kt is a CER of ft. We check (ft, Kt) satisfies Definition
7.1: since Kt is expanding by Lemma 6.1, (ii) holds; since topological
exactness and openness preserved by topological conjugacy, by Remark
7.2), (i) and (iii) hold.

Since f0 is not exceptional, by Theorem 1.1, K is a non-linear CER
for f0. By Theorem 7.7, for every fixed t ∈ [0, ε], the conjugacy ht can
be extended to a conformal map ht : U → V where U is a neighbor-
hood of K and V is a neighborhood of Kt. This implies dfm0 (z0) =

dfmt (γz0(t))(= dfmt (ht(z0))) or dfm0 (z0) = dfmt (γz0(t)). Since dfmt (γz0(t))
depends continuously on t, we must have dfm0 (z0) = dfmt (γz0(t)) when
t ∈ [0, ε]. Since γz0 is real analytic, the map t 7→ dfmt (γz0(t)) is real
analytic on γ = [0, 1]. It is a constant on [0, ε], hence it is a constant on
γ. Let n be any period of z0, the above argument shows that (λn|γz0

)m

is a constant, hence λn|γz0
is a constant.

Since our choice of z0 ∈ Q is arbitrary, for every z0 ∈ Q, of period
n, the map t 7→ dfnt (φ(t)) is a constant on [0, 1]. Since S is finite, all
ft have the same multiplier spectrum for periodic points of sufficiently
high period.

The set of all endomorphisms in Ratd(C) with the same multiplier
spectrum of f0 for periodic points with period at least N ≥ 1 is an
algebraic variety. We denote it by VN . There exists N ≥ 1 such that
γ ⊆ VN . Further more there exists an irreducible component X of VN
which contains γ. The irreducible variety X forms a stable family (see
[McM16, Chapter 4]), since the period of attracting cycles are bounded
in VN . The variety X is not isotrivial since Ψ(γ) is not a point. By
Theorem 1.2, γ ⊆ X is contained in the flexible Lattès family, which
is a contradiction. �
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