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ABSTRACT. We study groups of automorphisms and birational transformations
of quasi-projective varieties. Two methods are combined; the first one is based
on p-adic analysis, the second makes use of isoperimetric inequalities and Lang-
Weil estimates. For instance, we show that if SL n(Z) acts faithfully on a com-
plex quasi-projective variety X by birational transformations, then dim(X) ≥
n−1 and X is rational if dim(X) = n−1.
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1. INTRODUCTION

1.1. Automorphisms and birational transformations. Let X be a quasi-pro-
jective variety of dimension d, defined over the field of complex numbers. Let
Aut(X) denote its group of (regular) automorphisms and Bir(X) its group of bi-
rational transformations. A good example is provided by the affine space Ad

C of
dimension d ≥ 2: Its group of automorphisms is “infinite dimensional” and con-
tains elements with a rich dynamical behavior (see [35, 3]); its group of birational
transformations is the Cremona group Crd(C), and is known to be much larger
than Aut(Ad

C).

Date: 2014/2017 (last version, May 2017).
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We present two new arguments that can be combined to study finitely generated
groups acting by automorphims or birational transformations: They lead to new
constraints on groups of birational transformations, in any dimension.

The first argument is based on p-adic analysis and may be viewed as an ex-
tension of two classical strategies from a linear to a non-linear context. The first
strategy appeared in the proof of the theorem of Skolem, Mahler, and Lech, which
says that the zeros of a linear recurrence sequence occur along a finite union of
arithmetic progressions. This method plays now a central role in arithmetic dy-
namics (see [7, 6, 54]). The second strategy has been developed by Bass, Milnor,
and Serre when they obtained rigidity results for finite dimensional linear rep-
resentations of SL n(Z) as a corollary of the congruence subgroup property (see
[1, 61]). Here, we combine these strategies for nonlinear actions of finitely gener-
ated groups of birational transformations.

Our second argument makes use of isoperimetric inequalities from geometric
group theory and of the Lang-Weil estimates from diophantine geometry. We now
list the main results that follow from the combination of those arguments.

1.2. Actions of SL n(Z). Consider the group SL n(Z) of n×n matrices with inte-
ger entries and determinant 1. Let Γ be a finite index subgroup of SL n(Z); it acts
by linear projective transformations on the projective space Pn−1

C , and the kernel
of the homomorphism Γ→ PGL n(C) contains at most 2 elements. The following
result shows that Γ does not act faithfully on any smaller variety.

Theorem A. Let Γ be a finite index subgroup of SL n(Z). Let X be an irreducible,
complex, quasi-projective variety. If Γ embeds into Aut(X), then dimC(X) ≥
n−1. If dimC(X) = n−1 there is an isomorphism τ : X→ Pn−1

C which conjugates
the action of Γ on X to a linear projective action on Pn−1

C .

Let k and k′ be fields of characteristic 0. Every field of characteristic 0 which is
generated by finitely many elements embeds into C. Since finite index subgroups
of SL n(Z) are finitely generated, Theorem A implies: (1) The group SL n(Z) em-
beds into Aut(Ad

k) if and only if d ≥ n; (2) if Aut(Ad
k) embeds into Aut(Ad′

k′) (as
abstract groups) then d ≤ d′. Previous proofs of Assertion (2) assumed k to be
equal to C (see [28, 44]).

1.3. Lattices in simple Lie groups. Theorem A may be extended in two direc-
tions, replacing SL n(Z) by more general lattices, and looking at actions by bira-
tional transformations instead of automorphisms. Let S be an absolutely almost
simple linear algebraic group which is defined over Q; fix an embedding of S in
GL n (over Q). The Q-rank of S is the maximal dimension of a Zariski-closed
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subgroup of S that is diagonalizable over Q; the R-rank of S is the maximal di-
mension of a Zariski-closed subgroup that is diagonalizable over R. The subgroup
S(Z) is a lattice in S(R); it is co-compact if and only if the Q-rank of S vanishes
(see [8]).

Theorem B. Let X be an irreducible complex projective variety. Let S ⊂ GL n be
a linear algebraic group, over the field of rational numbers Q. Assume that S is
absolutely almost simple, and that the lattice S(Z) is not co-compact in S(R). If
a finite index subgroup of S(Z) embeds into Bir(X), then dimC(X)≥ rankR(S). If
dim(X) = rankR(S)≥ 2, then SR is R-isogeneous to SL dim(X)+1,R.

As a corollary, the Cremona group Crd(k) does not embed into Crd′(k′) if k and
k′ have characteristic 0 and d > d′.

Remark 1.1. If rankR(S)≥ 2, every lattice Γ of S(R) is almost simple: Its normal
subgroups are finite and central, or co-finite (see § 4.2 and 8.1). Thus, the assump-
tion “Γ embeds into Bir(X)” can be replaced by “there is a homomorphism from
Γ to Bir(X) with infinite image”. Using the Margulis arithmeticity theorem, one
can replace S by any simple real Lie group H with rankR(H) ≥ 2, and S(Z) by
any non-uniform lattice of H in the statement of Theorem B.

Remark 1.2. The statement of Theorem B concerns non-uniform lattices because
the proof makes use of the congruence subgroup property, and the congruence
kernel is known to be finite for all those lattices. There are also uniform lattices
for which this property is known and the same proof applies (for instance for all
lattices in Q-anisotropic spin groups for quadratic forms in m ≥ 5 variables with
real rank ≥ 2, see [42, 63]).

Remark 1.3. The main theorems of [11, 18] extend Theorem B to all types of
lattices (including co-compact lattices) in simple real Lie groups but assume that
the action is by regular automorphisms on a compact kähler manifold. When X is
compact, Aut(X) is a complex Lie group: It may have infinitely many connected
components, but its dimension is finite. The techniques of [11, 18] do not apply to
arbitrary quasi-projective varieties (for instance to X = Ad

C) and to groups of bi-
rational transformations. See [17, 13, 27] for groups of birational transformations
of surfaces.

Example 1.4. There is a lattice in SO 1,9(R) which acts faithfully on a rational
surface by regular automorphisms: This is due to Coble (see [16], § 3.4). A
similar phenomenon holds for general Enriques surfaces (see [22]). Thus, lattices
in simple Lie groups of large dimension may act faithfully on small dimensional
varieties.
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1.4. Finite fields and Hrushovski’s theorem. Let Γ be a finite index subgroup
of S(Z), where S is as in Theorem B. To prove Theorems A and B, we first change
the field of definition, replacing C by the field of p-adic numbers Qp for some
large prime number p; indeed, since the ring generated by the coefficients of the
formulae defining the variety X and the generators of the group Γ ⊂ Bir(X) is
finitely generated, we may embed this ring in Zp for some large prime p.

Then, we prove that there exists a finite extension K of Qp and a p-adic polydisk
in X(K) which is invariant under the action of a finite index subgroup Γ′ of Γ, and
on which Γ′ acts by Tate analytic diffeomorphisms. Those polydisks correspond
to periodic orbits for the action of Γ on X(F), where F is the residue field of
the non-archimedian field K. Thus, an important step toward Theorem B is the
existence of pairs (m,Γ′), where m is in X(F), Γ′ is a finite index subgroup of
Γ, and all elements of Γ′ are well-defined at m and fix m (no element of Γ′ has
an indeterminacy at m). For cyclic groups of transformations, this follows from
a theorem of Hrushovski (see [40]). Here, we combine the Lang-Weil estimates
with isoperimetric inequalities from geometric group theory: The existence of the
pair (m,Γ′) is obtained for groups with Kazhdan Property (T) in Theorems 7.10
and 7.13; the argument applies also to other types of groups (see Section 7.2.5).

Once such invariant polydisks are constructed, several corollaries easily follow
(see § 7.4.2). For instance, we get:

Theorem C. If a discrete group Λ with Kazhdan Property (T) acts faithfully by
birational transformations on a complex projective variety X, the group Λ is resid-
ually finite and contains a torsion-free, finite index subgroup.

1.5. The p-adic method. When an invariant p-adic polydisk is constructed, a
theorem of Bell and Poonen provides a tool to extend the action of every element
γ in our group into a Tate analytic action of the additive group Zp. When Γ has
finite index in S(Z), as in Theorem B, and rankR(S) ≥ 2, this may be combined
with the congruence subgroup property: We prove that the action of the lattice
extends to an action of a finite index subgroup of the p-adic group S(Zp) by Tate
analytic transformations (Theorem 2.11). Thus, starting with a countable group of
birational transformations, we end up with an analytic action of a p-adic Lie group
to which Lie theory may be applied. This is how Theorems A and B are proven;
our strategy applies also to actions of other discrete groups, such as the mapping
class group of a closed surface of genus g, or the group of outer automorphisms
of a free group (see Section 6 and [2]). Let us state a sample result.

Given a group Γ, let ma(Γ) be the smallest dimension of a complex irreducible
variety on which some finite index subgroup of Γ acts faithfully by automor-
phisms. Let Mod(g) be the mapping class group of a closed orientable surface



ALGEBRAIC ACTIONS AND p-ADIC ANALYSIS 5

of genus g. It is known that ma(Mod(g)) ≤ 6g− 6 for all g ≥ 2 (see § 6.1), and
that ma(Mod(1)) = 1 (because a finite index subgroup of GL 2(Z) embeds into
PGL 2(C)).

Theorem D. If Mod(g) acts faithfully on a complex variety X by automorphisms,
then dim(X)≥ 2g−1. Thus, 2g−1≤ma(Mod(g))≤ 6g−6 for every g≥ 2.

1.6. Margulis super-rigidity and Zimmer program. Let Γ be a lattice in a sim-
ple real Lie group S, with rankR(S)≥ 2. According to the Margulis super-rigidity
theorem, unbounded linear representations of the discrete group Γ “come from”
linear algebraic representations of the group S itself. As a byproduct, the small-
est dimension of a faithful linear representation of Γ coincides with the smallest
dimension of a faithful linear representation of S (see [50]).

The Zimmer program asks for an extension of this type of rigidity results to
non-linear actions of Γ, for instance to actions of Γ by diffeomorphisms on com-
pact manifolds (see [66, 67], and the recent survey [33]). Theorems A and B are
instances of Zimmer program in the context of algebraic geometry.

When Γ= SL n(Z) or Sp 2n(Z), Bass, Milnor and Serre obtained a super-rigidity
theorem from their solution of the congruence subgroup problem (see [1], § 16,
and [61]). Our proofs of Theorems A and B may be considered as extensions of
their argument to the context of non-linear actions by algebraic transformations.

1.7. Notation. To specify the field (or ring) of definition K of an algebraic variety
(or scheme) X , we use the notation XK . If K′ is an extension of K, X(K′) is the set
of K′-points of X . The group of automorphisms (resp. birational transformations)
of X which are defined over K′ is denoted Aut(XK′) (resp. Bir(XK′)).

1.8. Acknowledgement. Thanks to Yves de Cornulier, Julie Déserti, Philippe
Gille, Sébastien Gouezel, Vincent Guirardel, and Peter Sarnak for interesting dis-
cussions related to this article. We thank the referees for numerous insightful re-
marks, and in particular for their suggestions regarding Sections 2.4, 6 and 7. This
work was supported by the ANR project BirPol and the foundation Del Duca from
the French Academy of Sciences, and the Institute for Advanced Study, Princeton.

2. TATE ANALYTIC DIFFEOMORPHISMS OF THE p-ADIC POLYDISK

In this section, we introduce the group of Tate analytic diffeomorphisms of
the unit polydisk U = Zd

p, describe its topology, and study its finite dimensional
subgroups. The main result of this section is Theorem 2.11.

2.1. Tate analytic diffeomorphisms.
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2.1.1. The Tate algebra (see [58], § 6). Let p be a prime number. Let K be
a field of characteristic 0 which is complete with respect to an absolute value | · |
satisfying |p|= 1/p; such an absolute value is automatically ultrametric (see [43],
Ex. 2 and 3 Chap. I.2). Good examples to keep in mind are the fields of p-adic
numbers Qp and its finite extensions. Let R be the valuation ring of K, i.e. the
subset of K defined by R = {x ∈ K; |x| ≤ 1}; in the vector space Kd , the unit
polydisk is the subset Rd .

Fix a positive integer d, and consider the ring R[x] = R[x1, ...,xd] of polynomial
functions in d variables with coefficients in R. For f in R[x], define the norm ‖ f ‖
to be the supremum of the absolute values of the coefficients of f :

‖ f ‖= sup
I
|aI| (2.1)

where f =∑I=(i1,...,id) aIxI . By definition, the Tate algebra R〈x〉 is the completion
of R[x] with respect to the norm ‖ · ‖. The Tate algebra coincides with the set of
formal power series f = ∑I aIxI , I ∈ Zd

+, converging (absolutely) on the closed
unit polydisk Rd . Moreover, the absolute convergence is equivalent to |aI| → 0 as
‖ I ‖→ ∞.

For f and g in R〈x〉 and c in R+, the notation f ∈ pcR〈x〉 means ‖ f ‖≤ |p|c
and the notation

f ≡ g (mod pc) (2.2)

means ‖ f −g ‖≤ |p|c; we then extend such notations component-wise to (R〈x〉)m

for all m ≥ 1. For instance, with d = 2, the polynomial mapping f (x) = (x1 +

p,x2 + px1x2) satisfies f ≡ id (mod p), where id(x) = x is the identity.

2.1.2. Tate diffeomorphisms. Denote by U the unit polydisk of dimension d, that
is U = Rd . For x and y in U, the distance dist(x,y) is defined by dist(x,y) =
maxi |xi− yi|, where the xi and yi are the coordinates of x and y in Rd . The non-
archimedean triangle inequality implies that |h(y)| ≤ 1 for every h in R〈x〉 and
y ∈ U. Consequently, every element g in R〈x〉d determines a Tate analytic map
g : U→U.

If g = (g1, . . . ,gd) is an element of R〈x〉d , the norm ‖ g ‖ is defined as the
maximum of the norms ‖ gi ‖ (see Equation (2.1)); one has

‖ g ‖≤ 1 and dist(g(x),g(y))≤‖ g ‖ dist(x,y), (2.3)

so that g is 1-Lipschitz.
For indeterminates x=(x1, . . . ,xd) and y=(y1, . . . ,ym), the composition R〈y〉×

R〈x〉m→ R〈x〉 is well defined, and hence coordinatewise we obtain

R〈y〉n×R〈x〉m→ R〈x〉n.
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In particular, with m = n = d, we get a semigroup R〈x〉d . The group of (Tate) ana-
lytic diffeomorphisms of U is the group of invertible elements in this semigroup;
we denote it by Diffan(U). Elements of Diffan(U) are transformations f : U→U
given by

f (x) = ( f1, . . . , fd)(x)
where each fi is in R〈x〉 and f has an inverse f−1 : U→U that is also defined by
power series in the Tate algebra. The distance between two Tate analytic diffeo-
morphisms f and g is defined as ‖ f −g ‖; by the following Lemma, this endows
Diffan(U) with the structure of a topological group.

Lemma 2.1. Let f , g, and h be elements of R〈x〉d .

(1) ‖ g◦ f ‖≤‖ g ‖;
(2) if f is an element of Diffan(U) then ‖ g◦ f ‖=‖ g ‖;
(3) ‖ g◦ (id+h)−g ‖≤‖ h ‖;
(4) ‖ f−1− id ‖=‖ f − id ‖ if f is a Tate analytic diffeomorphism.

Proof. Let s ∈ R and c > 0 satisfy |p|c = |s|=‖ g ‖. Then (1/s)g is an element of
R〈x〉d . It follows that (1/s)g◦ f is an element of R〈x〉d too, and that ‖ g◦ f ‖≤ |p|c.
This proves Assertion (1). The second assertion follows because g = (g◦ f )◦ f−1.
To prove Assertion (3), write h = (h1,h2, . . . ,hd) where each hi satisfies ‖ hi ‖≤‖
h ‖. Then g◦ (id+h) takes the form

g◦ (id+h) = g+A1(h)+∑
i≥2

Ai(h)

where each Ai is a homogeneous polynomial in (x1, . . . ,xd) of degree i with coef-
ficients in R. Assertion (3) follows. For Assertion (4), assume that f is an analytic
diffeomorphism and apply Assertion (2): ‖ f−1− id ‖=‖ id− f ‖. �

This lemma easily implies the following proposition.

Proposition 2.2. For every real number c > 0, the subgroup of all elements f ∈
Diffan(U) with f ≡ id (mod pc) is a normal subgroup of Diffan(U).

Proof of Proposition 2.2. Set Dc = { f ∈Diffan(U); ‖ f − id ‖≤ |p|c}. If f is an
element of Dc, so is f−1 (Lemma 2.1, Assertion (4)). Similarly, Dc is stable under
composition because

‖ g◦ f − id ‖=‖ (g◦ f − f )+( f − id) ‖≤max(‖ (g− id)◦ f ‖,‖ f − id ‖)

and Lemma 2.1 shows that both terms are bounded from above by |p|c if f and g
are in Dc. Thus Dc is a subgroup of Diffan(U). If g is an element of Dc and f is
an element of Diffan(U), one has

‖ f−1 ◦g◦ f − id ‖=‖ ( f−1 ◦g− f−1)◦ f ‖=‖ f−1 ◦g− f−1 ‖ .
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But Assertion (3) in Lemma 2.1 shows that

‖ f−1 ◦g− f−1 ‖=‖ f−1 ◦ (id+g− id)− f−1 ‖≤‖ g− id ‖≤ |p|c.

Thus, Dc is a normal subgroup. �

Lemma 2.3. Let f be an element of Diffan(U). If f (x)≡ id (mod pc), with c≥ 1,
and pN divides l, then the l-th iterate of f satisfies f l(x) ≡ id (mod pc+N). In
particular, if f ≡ id (mod p), then f p` ≡ id (mod p`).

Proof. Write f (x) = x+ sr(x) where r is in R〈x〉d and s ∈ R satisfies |s| ≤ |p|c.
Then

f ◦ f (x) = x+ sr(x)+ sr(x+ sr(x))
= x+2sr(x)+ s2u2(x)

for some u2 ∈ R〈x〉d . After k iterations one gets f k(x) = x+ ksr(x)+ s2uk(x),
with uk ∈ R〈x〉d . Taking k = p, we obain

f p(x) = x+ psr(x)+ s2up(x)
≡ x (mod pc+1)

because c≥ 1. Then, f p2
(x)≡ x (mod pc+2) and f pN

(x)≡ x (mod pc+N). �

2.2. From cyclic groups to p-adic flows.

2.2.1. From cyclic groups to R-flows. The following theorem is due to Bell and
to Poonen (see [54], as well as [7] Lemma 4.2, and [6] Theorem 3.3).

Theorem 2.4. Let f be an element of R〈x〉d with f ≡ id (mod pc) for some real
number c > 1/(p− 1). Then f is a Tate diffeomorphism of U = Rd and there
exists a unique Tate analytic map Φ : U×R→U such that

(1) Φ(x,n) = f n(x) for all n ∈ Z;
(2) Φ(x, t + s) = Φ(Φ(x,s), t) for all t, s in R;
(3) Φ : t ∈ R 7→Φ(·, t) is a continuous homomorphism from the abelian group

(R,+) to the group of Tate diffeomorphisms Diffan(U);
(4) Φ(x, t)≡ x (mod pc−1/(p−1)) for all t ∈ R.

We shall refer to this theorem as the “Bell-Poonen theorem”, or “Bell-Poonen
extension theorem”. An analytic map Φ : U×R→U which defines an action of
the group (R,+) will be called an R-flow, or simply a flow. See below, in § 2.2.2,
how it is viewed as the flow of an analytic vector field. A flow Φ will be considered
either as an analytic action Φ : U×R→ U of the abelian group (R,+), or as a
morphism Φ : t ∈ R 7→Φt = Φ(·, t)∈Diffan(U); we use the same vocabulary (and
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the same letter Φ) for the two maps. The Bell-Poonen theorem implies that every
element f of R〈x〉d with f ≡ id (mod p2) is included in an analytic R-flow.

Corollary 2.5. Let f be an element of R〈x〉d with f ≡ id (mod pc) for some real
number c > 1/(p−1). Then f is a Tate diffeomorphism of U = Rd , and if f has
finite order in Diffan(U), then f = id.

To prove it, assume that f has order k ≥ 1 and apply the Bell-Poonen theorem.
For every x ∈U, the analytic curve t 7→Φ(x, t)−x vanishes on the infinite set Zk;
hence, it vanishes identically, f (x) = Φ(x,1) = x for all x ∈U, and f = id.

Remark 2.6. Theorem 2.4 is not stated as such in [54]. Poonen constructs a Tate
analytic map Φ : U ×R→ U which satisfies Property (1) for n ≥ 0; his proof
implies also Properties (3) and (4). We now deduce Property (1) for n ∈ Z. We
already know that the relation Φ(x,n+ 1) = f ◦Φ(x,n) holds for every integer
n≥ 0. Thus, for every x in U, the two Tate analytic functions t 7→Φ(x, t +1) and
t 7→ f ◦Φ(x, t) coincide on Z+, hence on R by the isolated zero principle. This
implies Φ(x, t + 1) = f ◦Φ(x, t) in R〈x, t〉d . Take t = −1 to deduce that f is an
analytic diffeomorphism of U and f−1 = Φ(·,−1). Then, by induction, one gets
Φ(x,n) = f n(x) for all n ∈ Z. Property (2) follows from (1) for s and t in Z, and
then for all values of s and t in R by the isolated zero principle.

2.2.2. Flows and Tate analytic vector fields. Consider the Lie algebra Θ(U) of
vector fields X = ∑

d
i=1 ui(x)∂i where each ui is an element of the Tate algebra

R〈x〉. The Lie bracket with a vector field Y = ∑i vi(x)∂i is given by

[X,Y] =
d

∑
j=1

w j(x)∂ j, with w j =
d

∑
i=1

(
ui

∂v j

∂xi
− vi

∂u j

∂xi

)
.

Lemma 2.7. Let Φ : U×R→U be an element of R〈x, t〉d that defines an analytic
flow. Then X =

(
∂Φ

∂t

)
|t=0

is an analytic vector field. It is preserved by Φt: For all

t ∈ R, (Φt)∗X = X. Moreover, X(x0) = 0 if and only if Φt(x0) = x0 for all t ∈ R.

The analyticity and Φt-invariance are easily obtained. Let us show that X(x0) =

0 if and only if x0 is a fixed point of Φt for all t. Indeed, if X vanishes at x0,
then X vanishes along the curve Φ(x0, t), t ∈ R, because X is Φt-invariant. Thus,
∂tΦ(x0, t) = 0 for all t, and the result follows.

Corollary 2.8. If f is an element of Diffan(U) with f ≡ id (mod pc) for some
c > 1/(p−1), then f is given by the flow Φ f , at time t = 1, of a unique analytic
vector field X f . The zeros of X f are the fixed points of f .

Two such diffeomorphisms f and g commute if and only if [X f ,Xg] = 0.
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Proof. The first assertion follows directly from Lemma 2.7 and the Bell-Poonen
theorem (Theorem 2.4). Let us prove the second assertion. If X f commute to Xg,
then Φ f and Φg commute too, meaning that Φ f (Φg(x, t),s) = Φg(Φ f (x,s), t) for
every pair (s, t) ∈ R×R. Taking (s, t) = (1,1) we obtain f ◦g = g◦ f . If f and g
commute, then Φ f (Φg(x,n),m) = f m ◦gn = Φg(Φ f (x,m),n) for every pair (m,n)
of integers, and the principle of isolated zeros implies that the flows Φ f and Φg

commute; hence, [X f ,Xg] = 0. �

2.3. A pro-p structure. Recall that a pro-p group is a topological group G
which is a compact Hausdorff space, with a basis of neighborhoods of the neutral
element 1G generated by subgroups of index a (finite) power of p. In such a group,
the index of every open normal subgroup is a power of p. We refer to [29] for a
good introduction to pro-p groups.

In this subsection, we assume that K is a finite extension of Qp. The residue
field, i.e. the quotient of R by its maximal ideal mK = {x ∈ K; |x|< 1}, is a finite
field of characteristic p. It has q elements, with q a power of p, and the number of
elements of the ring R/mk

K is a power of p for every k. We also fix an element π

that generates the ideal mK .

2.3.1. Action modulo mk
K . Recall that U denotes the polydisk Rd . Let f be an el-

ement of Diffan(U). Its reduction modulo mk
K is a polynomial transformation with

coefficients aI in the finite ring R/mk
K; it determines a permutation of the finite set

(R/mk
K)

d . Thus, for each k≥ 1, reduction modulo mk
K provides a homomorphism

θk : Diffan(U)→ Perm((R/mk
K)

d) into the group of permutations of the finite set
(R/mk

K)
d .

Another way to look at the same action is as follows. Each element of Diffan(U)

acts isometrically on U with respect to the distance dist(x,y) (see § 2.1.2); in
particular, for every radius r, Diffan(U) acts by permutations on the set of balls
of U of radius r. Since the set of balls of radius |π|−k is in bijection with the set
(R/mk

K)
d , the action of Diffan(U) on this set of balls may be identified with its

action on (R/mk
K)

d after reduction modulo mk
K .

As a consequence, an element f of Diffan(U) is the identity if and only if
dist( f (x),x) ≤ |π|k for all x and all k, if and only if its image in the group of
permutations of (R/mk

K)
d is trivial for all k.

2.3.2. A pro-p completion. Given a positive integer r, define Diffan(U)r as the
subgroup of Diffan(U) whose elements are equal to the identity modulo pr.
For r = 1, we set

D = Diffan(U)1 = { f ∈ Diffan(U) ; f ≡ id (mod p)}. (2.4)
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By definition, f is an element of D if it can be written f = id+ ph where h is
in R〈x〉d . Thus, D acts trivially on (R/pR)d (here, pR = m`

K with |π`| = 1/p for
some `).

Now we show that the image θ`m(D) in Perm((R/pmR)d) is a finite p-group.
Indeed, by Lemma 2.3, for any f ∈ D, we have f pm−1 ≡ id (mod pm). Thus f pm−1

acts trivially on (R/pmR)d . It follows that the order of every element in θ`m(D) is
a power of p. Since θ`m(D) is a finite group, Sylow’s theorem implies that θ`m(D)

is a p-group.
We endow the finite groups Perm((R/pmR)d) with the discrete topology, and

we denote by D̂ the inverse limit of the p-groups θ`m(D) ⊂ Perm((R/pmR)d); D̂
is a pro-p group: It is the closure of the image of D in ∏m Perm((R/pmR)d) by
the diagonal embedding (θ`m)m≥1. We denote by T the topology of D̂ (resp. the
induced topology on D); the kernels of the homomorphisms θ`m form a basis of
neighborhoods of the identity for this topology.

Since the action on (R/pmR)d is the action on the set of balls of radius p−m in
U, the Tate topology is finer than the topology T : The identity map f 7→ f is a
continuous homomorphism with respect to the Tate topology on the source, and
the topology T on the target; we shall denote this continuous injective homomor-
phism by

f ∈ D 7→ f̂ ∈ D̂.

Remark 2.9. Fix a prime p and consider the field K = Qp, with valuation ring
R = Zp. Assume that the dimension d is 2. The sequence of polynomial automor-
phisms of the affine plane defined by hn(x,y) = (x,y+ p(x+ x2 + x3 + · · ·+ xn))

determines a sequence of elements of D. No subsequence of (hn) converges in
the Tate topology, but in the compact group D̂ one can extract a converging sub-
sequence. A better example is provided by the sequence gn(x,y) = (x,y+ sn(x))
with sn(x) = xn(xpn−pn−1−1). This sequence converges towards the identity in D̂
because sn vanishes on Z/pnZ, but does not converge in D for the Tate topology.

2.4. Extension theorem.

2.4.1. Analytic groups (see [46], § IV, or [29, 59] and [10] Chapter III). Let G be
a topological group. We say that G is a p-adic analytic group if there is a structure
of p-adic analytic manifold on G which is compatible with the topology of G and
the group structure: The group law (x,y) ∈ G×G 7→ xy−1 is p-adic analytic (see
[29], Chapter 8). If such a structure exists, it is unique (see [29], Chapter 9). The
dimension dim(G) is the dimension of G as a p-adic manifold.
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If G is a compact, p-adic analytic group, then G contains a finite index, open,
normal subgroup G0 which is a (uniform) pro-p group. Moreover, G0 embeds
continuously in GL d(Zp) for some d (see [29], Chapters 7 and 8).

Let g be an element of the pro-p group G. The homomorphism ϕ : m ∈ Z 7→
gm ∈ G extends automatically to the pro-p completion of Z, i.e. to a continuous
homomorphism of pro-p groups

ϕ : Zp→ G.

For simplicity, we denote ϕ(t) by gt for t in Zp (see [29], Proposition 1.28, for
embeddings of Zp into pro-p groups).

Lemma 2.10. Let G be a p-adic analytic pro-p group of dimension s = dim(G).
Let Γ be a dense subgroup of G. There exist an integer r ≥ s and elements γ1, ...,
γr in Γ such that the map π : (Zp)

r→G, π(t1, . . . , tr) = (γ1)
t1 · · ·(γr)

tr , satisfies the
following properties:

(1) π is a surjective, p-adic analytic map;
(2) the restriction of π to {(ti) | t j = 0 if j > s} is a local diffeomorphism

onto its image;
(3) as l runs over the set of positive integers, the sets π((plZp)

r) form a basis
of neighborhoods of the neutral element in G.

Proof. Let g be the Lie algebra of G; as a finite dimensional Qp-vector space,
g coincides with the tangent space of G at the neutral element 1G. There are
finite index open subgroups H of G for which the exponential map defines a p-
adic analytic diffeomorphism from a neighborhood of the origin in g(Zp) onto the
group H itself (see the notion of standard subgroups in [10, 29]). Let H be such a
subgroup.

Since Γ is dense in G its intersection with H is dense in H. Each αi ∈ Γ∩H
corresponds to a tangent vector νi ∈ g such that exp(tνi) = αt

i for t ∈ Zp. Since Γ

is dense in H, the subspace of g generated by all the νi is equal to g. Thus, one
can find elements α1, ..., αs of Γ, with s = dim(G), such that the νi generate g.
Then, the map π : (Zp)

d → H defined by

π(t1, . . . , ts) = exp(t1ν1) · · ·exp(tsνs) = α
t1
1 · · ·α

ts
s

is analytic and, by the p-adic inverse function theorem, it determines a local ana-
lytic diffeomorphism from a neighborhood of 0 in g to a neighborhood V of 1G.
The group G can then be covered by a finite number of translates h jV , j = 1, . . .,
s′. Since Γ is dense, one can find elements β j in Γ with β

−1
j h j ∈ V . The lemma

follows if one sets r = s+ s′, γi = αi for 1≤ i≤ s, and γi = βi−s, s≤ i≤ r. �
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2.4.2. Actions by Tate analytic diffeomorphisms. Let G be a compact p-adic an-
alytic group. Let Γ be a finitely generated subgroup of G. We say that G is a
virtual pro-p completion of Γ if there exists a finite index subgroup Γ0 of Γ such
that (1) the closure of Γ0 in G is an open pro-p subgroup G0 of G, and (2) G0

coincides with the pro-p completion of Γ0. Note that, by compactness of G, the
group G0 has finite index in G. A good example to keep in mind is Γ = SL n(Z) in
G = SL n(Zp) (see §4.2.3 below).

We now study homomorphisms from Γ to the group Diffan(U). Thus, in this
paragraph, the same prime number p plays two roles since it appears in the defi-
nition of the pro-p structure of G, and of the Tate topology on Diffan(U).

Theorem 2.11. Let G be a compact, p-adic analytic group. Let Γ be a finitely
generated subgroup of G. Assume that G is a virtual pro-p completion of Γ.

Let Φ : Γ→ Diffan(U)1 be a homomorphism into the group of Tate analytic
diffeomorphisms of U which are equal to the identity modulo p. Then, there exists
a finite index subgroup Γ0 of Γ for which Φ|Γ0 extends to the closure G0 = Γ0 ⊂G
as a continuous homomorphism

Φ : G0→ Diffan(U)1

such that the action G0×U→U given by (g,x) 7→Φ(g)(x) is analytic.

Denote Diffan(U)1 by D, as in Equation (2.4). Recall from §2.3.2 that D em-
beds continuously into the pro-p group D̂. Let Γ0 be a finite index subgroup of Γ

whose closure G0 in G is the pro-p completion of Γ0. We obtain:

(1) The homomorphism Γ0 → D̂ extends uniquely into a continuous homo-
morphism Φ̂ from G0 = Γ0 to D̂.

Then, the following property is automatically satisfied.

(2) Let f be an element of D. By the Bell-Poonen extension theorem (The-
orem 2.4), the homomorphism t ∈ Z 7→ f t extends to a continuous mor-
phism Zp → D via a Tate analytic flow. If f̂ denotes the image of f in
D̂, then n 7→ ( f̂ )n is a homomorphism from Z to the pro-p group D̂; as
such, it extends canonically to the pro-p completion Zp, giving rise to a
homomorphism t ∈ Zp 7→ ( f̂ )t ∈ D̂. These two extensions are compatible:
(̂ f t) = ( f̂ )t for all t in Zp.

Thus, given any one-parameter subgroup Z of Γ, we already know how to ex-
tend Φ : Z ⊂ Γ→ D into Φ : Zp ⊂ G0→ D in a way that is compatible with the
extension Φ̂ : G0→ D̂.

For simplicity, we now denote Γ0 and G0 by Γ and G.
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Lemma 2.12. Let (αn) be a sequence of elements of Γ that converges towards 1G

in G. Then Φ(αn) converges towards the identity in Diffan(U).

Proof. Write αn = π(t1(n), . . . , tr(n)) = (γ1)
t1(n) · · ·(γr)

tr(n), where π and the γi are
given by Lemma 2.10 and the ti(n) are in Zp. Since αn converges towards 1G,
we may assume, by Lemma 2.10, that each (ti(n)) converges towards 0 in Zp

as n goes to +∞. By the Bell-Poonen theorem (Theorem 2.4), each fi := Φ(γi)

gives rise to a flow t 7→ f t
i , t in Zp; moreover, ‖ f t

i − id ‖≤ pm if |t| < pm (apply
Lemma 2.3 and the last assertion in the Bell-Poonen theorem). Thus, the lemma
follows from Lemma 2.1 and the equality

Φ(αn) = f t1(n)
1 · · · f tr(n)

r . (2.5)

To prove this equality, one only needs to check it in the group D̂ because D embeds
into D̂. But in D̂, the equality holds trivially because the homomorphism Γ0→ D̂
extends to G0 continuously (apply Properties (1) and (2) above). �

Lemma 2.13. If (αm)m≥1 is a sequence of elements of Γ that converges towards
an element α∞ of G, then Φ(αm) converges to an element of Diffan(U) which
depends only on α∞.

Proof. Since (αm) converges, αm ◦ α
−1
m′ converges towards the neutral element

1G as m and m′ go to +∞. Consequently, Lemma 2.12 shows that the sequence
(Φ(αm)) is a Cauchy sequence in Diffan(U), hence a convergent sequence.1 The
limit depends only on α∞, not on the sequence (αm) (if another sequence (α′m)

converges toward α∞, consider the sequence α1, α′1, α2, α′2, ...). �

We can now prove Theorem 2.11. Lemmas 2.12 and 2.13 show that Φ extends,
in a unique way, to a continuous homomorphism Φ : G → D. Moreover, this
extension coincides with Bell-Poonen extensions Zp → D along one parameter
subgroups of G generated by elements of Γ. According to Lemma 2.10, one can
find s elements γ1, ..., γs of Γ, with s = dim(G), such that the map

(t1, . . . , ts) 7→ π(t1, . . . , td) = γ
t1
1 · · ·γ

ts
s

determines an analytic diffeomorphism from a neighborhood of 0 in Zs
p to a neigh-

borhood of the identity in G. By the Bell-Poonen theorem, the map

(t1, . . . , ts,x) ∈ (Zp)
s×U 7→Φ(γ1)

t1 ◦ · · · ◦Φ(γs)
ts(x)

is analytic. Thus, the action of G on U determined by Φ is analytic. This con-
cludes the proof of Theorem 2.11.

1Write Φ(αm ◦α
−1
m′ ) = id + εm,m′ where εm,m′ is equivalent to the constant map 0 in R〈x〉d

modulo |p|k(m,m′), with k(m,m′) that goes to +∞ as m and m′ do. Then, apply Lemma 2.1.
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3. GOOD MODELS, p-ADIC INTEGERS, AND INVARIANT POLYDISKS

Start with an irreducible complex variety X of dimension d, a finitely generated
group Γ, and a homomorphism ρ : Γ→ Bir(X). First, we explain how to replace
the field C, or any algebraically closed field k of characteristic 0, by the ring of
p-adic integers Zp, for some prime p, the variety X by a variety XZp which is
defined over Zp, and the homomorphism ρ by a homomorphism into Bir(XZp).

In a second step, we look for a polydisk U ' Zd
p in XZp(Qp) which is invariant

under the action of Γ in order to apply the Bell-Poonen extension theorem (Theo-
rem 2.4) on U. This is easy when ρ(Γ) is contained in Aut(X), but much harder
when Γ acts by birational transformations; Section 7 addresses this problem.

3.1. From complex to p-adic coefficients: Good models. Let k be an alge-
braically closed field of characteristic 0. Let X = Xk be a quasi-projective variety
defined over k, for instance X = Ad , the affine space. Let Γ be a subgroup of
Bir(Xk) with a finite, symmetric set of generators S = {γ1, . . . ,γs}.

3.1.1. From complex to p-adic coefficients. Fix an embedding of X into a projec-
tive space PN

k and write
X = Z(a)\Z(b)

where a and b are two homogeneous ideals in k[x0, . . . ,xN ] and Z(a) denotes the
zero-set of the ideal a. Choose generators (Fi)1≤i≤a and (G j)1≤ j≤b for a and b

respectively.
Let C be a finitely generated Q-algebra containing the set B of all coefficients of

the Fi, the G j, and the polynomial formulas defining the generators γk ∈ S; more
precisely, each γk is defined by ratios of regular functions on affine open subsets
Vl = X \Wl and one includes the coefficients of the formulas for these regular
functions and for the defining equations of the Zariski closed subsets Wl . One can
view X and Γ as defined over Spec(C).

Lemma 3.1 (see [47], §4 and 5, and [7], Lemma 3.1). Let L be a finitely generated
extension of Q and B be a finite subset of L. The set of primes p for which there
exists an embedding of L into Qp that maps B into Zp has positive density among
the set of all primes.

By positive density, we mean that there exist ε> 0 and N0 > 0 such that, among
the first N primes, the proportion of primes p that satisfy the statement is bounded
from below by ε if N ≥ N0.

Apply this lemma to the fraction field L = Frac(C) and the set B of coefficients.
This provides an odd prime p and an embedding ι : L → Qp with ι(B) ⊂ Zp.
Applying ι to the coefficients of the formulas that define X and the elements of Γ,
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we obtain what will be called a “model of the pair (X ,Γ) over Zp”; in particular,
Γ embeds into Bir(XZp), or in Aut(XZp) if Γ is initially a subgroup of Aut(Xk).
The following paragraphs clarify this idea.

3.1.2. Good models. Let R be an integral domain. Let XR and YR be separated
and reduced schemes of finite type defined over R. Assume, moreover, that the
morphism XR→ Spec(R) is dominant on every irreducible component of XR. Let
U and V be two dense open subsets of XR. Two morphisms of R-schemes f : U→
YR and g : V →YR are equivalent if they coïncide on some dense open subset W of
U ∩V ; rational maps f : XR 99K YR are equivalence classes for this relation ([39,
7.1.]). For any rational map f , there is a maximal open subset Dom( f ) ⊂ XR on
which f induces a morphism: If a morphism V → YR is in the equivalence class
of f , then V is contained in Dom( f ). This open subset Dom( f ) is the domain of
definition of f ([39, 7.2.]); its complement is the indeterminacy locus Ind( f ).

A rational map f is birational if there is a rational map g : YR 99K XR such that
g ◦ f = Id and f ◦ g = Id. The group of birational transformations f : XR 99K
XR is denoted Bir(XR); the group of regular automorphisms is denoted Aut(XR).
Consider a birational map f : X 99K Y and denote by g the inverse map f−1. The
domains of definition Dom( f ) and Dom(g) are dense open subsets of X and Y
respectively, for the Zariski topology. Then, set UR, f = ( f|Dom( f ))

−1(Dom(g)).
Since f is birational, UR, f is open and dense in X . The restriction of f to this
open subset is an open immersion of UR, f into Y ; indeed, f (UR, f ) is the open set
(g|Dom(g))

−1(UR, f ) and g is a morphism on f (UR, f ) such that g◦ f = Id. Moreover,
UR, f is the largest open subset of X on which f is locally, for the Zariski topology,
an open immersion. In what follows, we denote by BR, f the complement of UR, f

in XR: this nowhere dense Zariski closed subset is the set of bad points; on its
complement, f is an open immersion.

For y ∈ Spec(R), denote by Xy the reduced fiber of XR above y. If Xy∩BR, f is
nowhere dense in Xy, then f induces a birational transformation fy : Xy 99K Xy; we
have Ind( fy)⊂ Xy∩BR, f , and this inclusion may be strict.

If η is the generic point of Spec(R), we can always restrict f to Xη. This
map f 7→ fη determines an isomorphism of groups i : Bir(XR)→ Bir(Xη). More
precisely, let K be the fraction field of the integral domain R; let XR be a separated
and reduced scheme over R; assume that XR is of finite type over R, and that the
morphism XR→ Spec(R) is dominant on every irreducible component of XR; then,
the map i : Bir(XR)→ Bir(XK) is bijective. Indeed, i is injective because XR is of
finite type over R and the map XR → Spec(R) is dominant on every irreducible
component of XR. It is surjective, because fη can be defined on a dense affine
open subset U = Spec(R[x1, . . . ,xm]/I) of XR by polynomial functions Gi with
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coefficients in K. There is an element d of R such that the functions dGi have
coefficients in R; then, fη extends as a morphism on Spec(R[1/d,x1, . . . ,xm]/I)).
(see § 9.1 for details)

Let k be an algebraically closed field of characteristic 0. Let Xk be an irre-
ducible variety which is defined over k. Let Γ be a subgroup of Bir(Xk) (resp.
Aut(Xk)). Let R be a subring of k. We say that the pair (X ,Γ) is defined over
R if there is a separated, reduced, irreducible scheme XR over R for which the
structure morphism XR→ Spec(R) is dominant, and an embedding Γ→ Bir(XR)

(resp. in Aut(XR)) such that both Xk and Γ are obtained from XR by base change:
Xk = XR×Spec(R) Spec(k) and similarly for all elements f ∈ Γ.

Let p be a prime number. A model for the pair (X ,Γ) over the ring Zp is
given by the following data. First, a ring R ⊂ k on which X and Γ are defined,
and an embedding ι : R→ Zp. Then, an irreducible scheme XZp over Zp and an
embedding ρ : Γ→ Bir(XZp) (resp. in Aut(XZp)) such that

(i) XZp ' XR×Spec(R) Spec(Zp) is the base change of XR and ρ( f ) is the base
change of f ∈ Bir(XR) for every f in Γ.

A good model for the pair (X ,Γ) over the ring Zp is a model such that

(ii) the special fiber XFp of XZp → Spec(Zp) is absolutely reduced and irre-
ducible and its dimension is

dimFp(XFp) = dimQp

(
XZp×Spec(R) Spec(Qp)

)
(iii) ∀ f ∈ Γ, the special fiber XFp is not contained in BZp,ρ( f ).

If K is a finite extension of Qp and OK is its valuation ring, one can also introduce
the notion of good models over OK . The following is proven in the Appendix.

Proposition 3.2. Let X be an irreducible complex projective variety, and Γ be a
finitely generated subgroup of Bir(X) (resp. of Aut(X)). Then, there exist infinitely
many primes p≥ 3 such that the pair (X ,Γ) has a good model over Zp.

3.2. From birational transformations to local analytic diffeomorphisms.

3.2.1. Automorphisms and invariant polydisks. Now, for simplicity, assume that
X is the affine space Ad . Let p be an odd prime number, and let Γ be a sub-
group of Aut(Ad

Zp
); all elements of Γ are polynomial automorphisms of the affine

space defined by formulas with coefficients in Zp. Reduction modulo p provides
a homomorphism from Γ to the group Aut(Ad

Fp
): Every automorphism f ∈ Γ de-

termines an automorphism f of the affine space with coefficients in Fp. One can
also reduce modulo p2, p3, ...

If R0 is a finite ring, then Ad(R0) and GL d(R0) are both finite. Therefore, the
automorphisms f ∈Γ with f (m)=m (mod p2) and d fm = Id (mod p) for all points
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m in Ad(Zp) form a finite index subgroup Γ0 of Γ. Every element of Γ0 can be
written

f (x) = p2A0 +(Id+ pB1)(x)+ ∑
k≥2

Ak(x)

where A0 is a point with coordinates in Zp, B1 is a d×d matrix with coefficients
in Zp, and ∑k≥2 Ak(x) is a finite sum of higher degree homogeneous terms with
coefficients in Zp. Rescaling, one gets

p−1 f (px) = pA0 +(Id+ pB1)(x)+ ∑
k≥2

pk−1Ak(x).

Thus, the Bell-Poonen extension theorem (Theorem 2.4) applies to p−1 f (px) be-
cause p≥ 3.

A similar argument applies to automorphism groups Γ of any quasi-projective
variety X of dimension d. One first replaces Qp by a finite extension K to assure
the existence of at least one point m in X(R/mK) (with R the valuation ring of K).
Then, the stabilizer of m modulo mK is a finite index subgroup, because X(R/mK)

is a finite set; this group fixes a polydisk in X(K) and the Bell-Poonen theorem
can be applied to a smaller, finite index subgroup. This provides the following
statement, the proof of which is given in [6] (Propositions 4.4 and 2.2), when the
group Γ is cyclic. Propositions 3.2 and 3.4 are inspired by [6] and also imply this
statement.

Proposition 3.3 (see [6]). Let XZp be a quasi-projective variety defined over Zp

and let Γ be a subgroup of Aut(XZp). There exists a finite extension K of Qp,
a finite index subgroup Γ0 of Γ, and an analytic diffeomorphism ϕ from the unit
polydisk U = Rd ⊂ Kd to an open subset V of X(K) such that V is Γ0-invariant
and the action of Γ0 on V is conjugate, via ϕ, to a subgroup of Diffan(U)1.

Combining this result with Proposition 3.2, we get: If a finitely generated group
Γ admits a faithful action by automorphisms on some irreducible d-dimensional
complex variety, there is a finite index subgroup Γ0 in Γ, a prime p, and a finite
extension K of Qp such that Γ0 admits a faithful action by Tate analytic diffeo-
morphisms on a polydisk U ⊂ Kd . This will be used as a first step in the proofs
of Theorems A and D.

3.2.2. Birational transformations and invariant polydisks. Let us now deal with
invariant polydisks for groups of birational transformations. Let XZp be a pro-
jective variety defined over Zp and let Γ be a subgroup of Bir(XZp) with a finite
symmetric set of generators S. Let XFp be the special fiber of XZp . We assume
that the special fiber is not contained in BZp,s for any s ∈ S; this implies that XFp is
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not contained in BZp,g for every g∈ Γ. By restriction, we obtain a homomorphism
Γ→ Bir(XFp). These assumptions are satisfied by good models.

Let K be a finite extension of Qp, OK be the valuation ring of K, and F the
residue field of OK; by definition, F = OK/mK where mK is the maximal ideal of
OK . Denote by | · |p the p-adic norm on K, normalized by |p|p = 1/p. Set

XOK = XZp×Spec(Zp) Spec(OK).

The generic fiber XZp ×Spec(Zp) Spec(K) is denoted by XK , and the special fiber
is XF = XZp×Spec(Zp) Spec(F). Denote by r : XK(K)→ XF(F) = X(F) the reduc-
tion map. Let x be a smooth point in X(F) and V be the open subset of XK(K)

consisting of points z satisfying r(z) = x.

Proposition 3.4 (see also [6], Proposition 2.2). There exists an analytic diffeomor-
phism ϕ from the unit polydisk U = (OK)

d to the open subset V of XK(K) such
that, for every f ∈ Bir(XOK) with x /∈ BOK , f and f (x) = x, the set V is f -invariant
and the action of f on V is conjugate, via ϕ, to a Tate analytic diffeomorphism
on U. Thus, if Γ⊂ Bir(XZp) satisfies

(i) x is not contained in any of the sets BOK , f (for f ∈ Γ),
(ii) f (x) = x (for every f in Γ),

then V is Γ-invariant and ϕ conjugates the action of Γ on V to a group of analytic
diffeormorphisms of the polydisk U.

Thus, once a good model has been constructed, the existence of an invariant
polydisk on which the action is analytic is equivalent to the existence of a smooth
fixed point x ∈ XF(F) in the complement of the bad loci BOK , f , f in Γ. Periodic
orbits correspond to polydisks which are invariant by finite index subgroups. This
will be used to prove Theorems B and C.

We shall prove this proposition in the Appendix. Note that Proposition 3.4,
Proposition 3.2, and the rescaling argument of Section 3.2.1 provide a proof of
Proposition 3.3.

4. REGULAR ACTIONS OF SL n(Z) ON QUASI-PROJECTIVE VARIETIES

In this section, we prove the first assertion of Theorem A together with one of
its corollaries. Thus, our goal is the following statement.

Theorem 4.1. Let n≥ 2 be an integer. Let Γ be a finite index subgroup of SL n(Z).
If Γ embeds into the group of automorphisms of a complex quasi-projective variety
X, then dim(X)≥ n−1; if X is a complex affine space, then dim(X)≥ n.
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4.1. Dimension 1. When dimC(X) = 1, the group of automorphisms of X is iso-
morphic to PGL 2(C) if X is the projective line and is virtually solvable otherwise.
On the other hand, every finite index subgroup of SL n(Z) contains a non-abelian
free group if n ≥ 2 (see [24], Chapter 1). Theorems A and 4.1 follow from these
remarks when n = 2 or dim(X) = 1. In what follows, we assume dimC(X) ≥ 2
and n≥ 3.

4.2. Congruence subgroups of SL n(Z); see [1, 61].

4.2.1. Normal subgroups. Let Γ be a finite index subgroup of SL n(Z). For n≥ 3,
the group Γ is a lattice in the higher rank almost simple Lie group SL n(R). For
such a lattice, every normal subgroup is either finite and central, or co-finite. In
particular, the derived subgroup [Γ,Γ] has finite index in Γ.

4.2.2. Strong approximation. For any n≥ 2 and m≥ 1, denote by Γm and Γ∗m the
following subgroups of SL n(Z):

Γm = {B ∈ SL n(Z) | B≡ Id (mod m)},
Γ
∗
m = {B ∈ SL n(Z) | ∃a ∈ Z, B≡ aId (mod m)}.

By definition, Γm is the principal congruence subgroup of level m.
Let p be a prime number. The closure of Γm in SL n(Zp) is the finite index,

open subgroup of matrices which are equal to Id modulo m; thus, if m = pur with
r ∧ p = 1, the closure of Γm in SL n(Qp) coincides with the open subgroup of
matrices M ∈ SL n(Zp) which are equal to Id modulo pu.

The strong approximation theorem states that the image of SL n(Z) is dense in
the product ΠpSL n(Zp) (product over all prime numbers). If Γ has finite index in
SL n(Z), its closure in ΠpSL n(Zp) is a finite index subgroup; it contains almost
all SL n(Zp).

4.2.3. Congruence subgroup property. A deep property that we shall use is the
congruence subgroup property, which holds for n ≥ 3. It asserts that every finite
index subgroup Γ of SL n(Z) contains a principal congruence subgroup Γm; if Γ is
normal, there exists a unique integer m with Γm ⊂ Γ ⊂ Γ∗m. We shall come back
to this property in Section 8.1 for more general algebraic groups (the congruence
subgroup property is not known in full generality for co-compact lattices).

Another way to state the congruence subgroup and strong approximation prop-
erties is to say that the profinite completion of SL n(Z) coincides with the prod-
uct ΠpSL n(Zp). If Γ has finite index in SL n(Z), its profinite completion is a
product ΠqGq ⊂ ΠqSL n(Zq) where each Gq has finite index in SL n(Zq), and
Gq = SL n(Zq) for almost all primes q.
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Remark 4.2. Fix n ≥ 3. For every prime number q, the group SL n(Zq) is a
perfect group, because it is generated by the elementary matrices ei j(r), r ∈ Zq,
and every elementary matrix is a commutator. Thus, every homomorphism from
SL n(Zq) to a p-group is trivial, because every p-group is nilpotent. Thus, the
pro-p completion of SL n(Zq) is trivial.

Before stating the following lemma, recall that the concept of virtual pro-p
completion is introduced in Section 2.4.2.

Lemma 4.3. Let n be an integer ≥ 3. Let Γ be a finite index subgroup of SL n(Z).
Let Γm be a principal congruence subgroup contained in Γ. If p divides the integer
m, the pro-p completion of Γm coincides with its closure in SL n(Zp). Therefore,
SL n(Zp) is a virtual pro-p completion of its subgroup Γ.

Proof. Fix a positive integer m such that Γ contains Γm and p divides m. The
profinite completion of Γm coincides with the product ΠqGq, where Gq is the
closure of Γm in SL n(Zq). If m = pur with p∧ r = 1, then Gp is the open, pro-p
subgroup of SL n(Zp) defined by Gp = {B ∈ SL n(Zp)| B ≡ Id (mod pu)}. If q
does not divide m, Gq is equal to SL n(Zq). If q 6= p and q divides m, the group Gq

is an open subgroup of the pro-q group {B ∈ SL n(Zq)| B ≡ Id (mod q)}. Thus,
if q 6= p, the pro-p completion of Gq is trivial; and the pro-p completion of Γm

coincides with its closure Gp in SL n(Zp). �

4.3. Extension, algebraic groups, and Lie algebras. Given an analytic diffeo-
morphism f of the unit polydisk U, its jacobian determinant is an analytic func-
tion which is defined by Jac( f )(x) = det(d fx), where d fx denotes the differential
of f at x. One says that the jacobian determinant of f is identically equal to 1 if
Jac( f ) is the constant function 1. In the following theorem, p is an odd prime,
and K and R are as in Section 2.1.1.

Theorem 4.4. Let n≥ 3 be an integer. Let Γ be a finite index subgroup of SL n(Z).
Let U be the unit polydisk Rd , for some d ≥ 1. Let Φ : Γ → Diffan(U) be a
homomorphism such that f (x)≡ x (mod p) for all f in Φ(Γ). If the image of Φ is
infinite, then n−1≤ d. If, moreover, the jacobian determinant is identically equal
to 1 for all f in Φ(Γ), then n≤ d.

Remark 4.5. All proper sub-algebras of sln(Qp) have co-dimension ≥ n−1, and
there are two conjugacy classes of algebraic subgroups of co-dimension n− 1 in
SL n,Qp for n ≥ 3: The stabilizer of a point in the projective space Pn−1(Qp),
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and the stabilizer of a hyperplane in that space (see [9], Chapter 5, and Sec-
tion 8.2 below). These conjugacy classes are exchanged by the outer automor-
phism θ : A 7→ tA−1. When n = 2, θ is an inner automorphism and there is only
one conjugacy class.

Proof. According to Lemma 4.3 and Theorem 2.11, SL n(Zp) is a virtual pro-p
completion of Γ, and there is a principal congruence subgroup Γm ⊂ Γ such that
Φ extends as an analytic homomorphism Φ : G→ Diffan(U)1 from the group Γm

to its pro-p completion G = Γm ⊂ SL n(Zp). The differential dΦId provides a
homomorphism of Lie algebras

dΦId : sln(Qp)→Θ(U),

where Θ(U) is the algebra of analytic vector fields on U. If the image of Φ

is infinite, its kernel is a finite central subgroup of Γ (see § 4.2); hence, there are
infinite order elements in Φ(Γ). The vector field corresponding to such an element
does not vanish identically; thus, dΦId is a non-trivial homomorphism. Since
sln(Qp) is a simple Lie algebra, dΦId is an embedding. Pick w in sln(Qp)\{0}.
Since dΦId is an embedding, there is a point o in U such that dΦId(w)(o) 6=
0. The subset of elements v ∈ sln(Qp) such that dΦId(v)(o) = 0 constitutes a
proper subalgebra pΦ of sln(Qp) of co-dimension at most d. Thus, d ≥ n− 1 by
Remark 4.5.

Let us now assume d = n−1. Consider the parabolic subgroup P0 of SL n which
is defined as the stabilizer of the point m0 = [1 : 0 : 0 . . . : 0] in the projective
space Pn−1. Assume, first, that pΦ coincides with the Lie algebra p0 of P0. The
quotient of sln by p0 can be identified with the tangent space Tm0Pn−1 of Pn−1

at m0, and to the tangent space of U at the fixed point o. The group P0 contains
the diagonal matrices with diagonal coefficients a11 = a and aii = b for 2≤ i≤ n,
where a and b satisfy the relation abn−1 = 1, and those diagonal matrices act by
multiplication by b/a on Tm0Pn−1. Thus there are elements g in G fixing the point
o in U and acting by non-trivial scalar multiplications on the tangent space T0U;
such elements have jacobian determinant 6= 1. Since Γ is dense in G, and both Φ

and Jac are continuous, there are elements f in Γ with Jac( f ) 6= 1. This concludes
the proof of the theorem when pΦ = p0, or more generally when pΦ is conjugate
to p0. If pΦ is not conjugate to p0, we replace Φ by Φ ◦θ and apply Remark 4.5
to conclude (note that the outer automorphism θ preserves Γm and induces an
analytic automorphism of G). �

4.4. Embeddings of SL n(Z) in Aut(X) or Aut(Ad
C). We may now prove Theo-

rem 4.1. According to Section 4.1 we assume n≥ 3. Let d be the dimension of X
and Ψ : Γ→ Aut(X) be a homomorphism with infinite image.
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According to Section 3.1 and Proposition 3.3, one can find a prime p ≥ 3, a
model of (X ,Γ) over a finite extension K of Qp, a finite index subgroup Γ′ of
Γ, and a polydisk U ' Rd in X(K) such that U is invariant under the action of
Γ′ and the action of Γ′ on U is given by a homomorphism Φ : Γ′→ Diffan(U)1.
Theorem 4.4 implies dim(X)≥ n−1.

Assume now that X is the affine space Ad
C. If f is an automorphism of Ad

C, its
jacobian determinant Jac( f ) is constant because Jac( f ) is a polynomial function
on Ad(C) that does not vanish. Thus, Jac(·) provides a homomorphism from Γ to
(C∗, ·); since the derived group [Γ,Γ] has finite index in Γ (see Section 4.2.1), one
may assume that Jac(Φ(γ)) = 1 for all γ ∈ Γ′. Then, Theorem 4.4 implies d ≥ n.

5. ACTIONS OF SL n(Z) IN DIMENSION n−1

In this paragraph, we pursue the study of algebraic actions of finite index sub-
groups of SL n(Z) on quasi-projective varieties X of dimension d, and complete
the proof of Theorem A. The notation and main properties are the same as in Sec-
tion 4, but with two differences: We study both regular and birational actions; we
add a constraint on the dimension of X , which corresponds to the limit case in the
inequality d ≥ n−1 of Theorem 4.1. Thus

(i) Γ is a finite index subgroup of SL n(Z),
(ii) XC is a complex, irreducible, quasi-projective variety of dimension d =

n−1,
(iii) Γ embeds into Aut(XC) (resp. in Bir(XC)),
(iv) there is a finite extension K of Qp, and a model of (X ,Γ) over the valuation

ring R of K, together with a polydisk U in X(K) which is Γ invariant, and
on which Γ acts by analytic diffeomorphisms, as in Proposition 3.3: This
gives a homomorphism Φ : Γ→ Diffan(U)1.

Theorem 5.1. Under the above four hypotheses (i) – (iv), there exists an isomor-
phism τ : X → Pd

C (resp. a birational map τ : X 99K Pd
C), from X to the projective

space of dimension d = n− 1 and a homomorphism ρ : Γ→ PGL n(C) such that
τ◦ γ = ρ(γ)◦ τ for every γ in Γ.

Theorem A follows from Theorem 4.1, Proposition 3.3, and Theorem 5.1.

Remark 5.2. When Γ acts by birational transformations on X , the existence of a
Γ-invariant polydisk U in X(K) on which Γ acts by analytic diffeomorphisms (in
particular, U does not contain any indeterminacy point of Γ) may look as a strong
hypothesis. We shall obtain such polydisks in Section 7.3
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5.1. Extension. We apply Lemma 4.3 and Theorem 2.11 to the analytic action of
Γ on U. Thus, there exists a principal congruence subgroup Γm ⊂ Γ, such that the
homomorphism Φ from Γm to Diffan(U)1 extends as an analytic homomorphism
Φ from the p-adic analytic group G = Γm ⊂ SL n(Zp) to Diffan(U)1.

5.2. Stabilizer of the origin in U. Let P0 be the subgroup of SL n(Qp) which
fixes the point m0 = [1: 0 : · · · : 0] in the projective space Pn−1(Qp); it is a max-
imal parabolic subgroup of SL n(Qp). We denote by p0 its Lie algebra, as in the
proof of Theorem 4.4.

Lemma 5.3. There is an element A in SL n(Z) and a point o′ in U with the follow-
ing property. For the homomorphism Φ◦ cA : G→ Diffan(U)1, where cA is either
the conjugacy cA(M) = AMA−1 or its composition with the outer automorphism
θ : M 7→ tM−1, the stabilizer P′ ⊂ G of the point o′ coincides with P0∩G.

Let P⊂G be the stabilizer of the origin o∈U. Since d = n−1, the Lie algebra
p of P has co-dimension n− 1 in g = sln(Qp) and is therefore maximal. Let P̃
be the Zariski closure of P in SL n(Qp). Then, P̃∩G coïncides with P, and P̃
is conjugate to P0 or to θ(P0) in SL n(Qp) (see Remark 4.5). For simplicity, we
assume that P̃ is conjugate to P0; if P̃ is conjugate to θ(P0), one only needs to
replace the action of SL n(Qp) on the projective space by the dual action on the
space of hyperplanes in Pn−1(Qp), or to compose Φ with θ.

To prove the lemma, we make the following remarks.

(1).– There is a point [a] in Pn−1(Qp) such that P̃ is the stabilizer of [a] in
SL n(Qp). One can write [a] = [a1 : . . . : an] with ai in Zp for all 1 ≤ i ≤ n and at
least one |ai| equal to 1.

(2).– There is a matrix B in G such that [B(a)] is in Pn−1(Z). Indeed, G is
the congruence subgroup of SL n(Zp) defined as the group of matrices M with
M ≡ Id (modm); if one picks an element [a′] = [a′1 : . . . : a′n] of Pn−1(Z) with
entries a′i ≡ ai modulo a large power of m, then there is an element B of G that
maps [a] to [a′]. The stabilizer of the point o′ := Φ(B)(0) in the group G is equal
to BPB−1 and coincides with the stabilizer of a point [a′] ∈ Pn−1(Z).

(3).– Then, there exists A in SL n(Z) such that A[a′] = [1 : 0 : · · · : 0]. Composing
Φ with the conjugation cA, the stabilizer of o′ is now equal to P0∩G.

(4).– Being a principal congruence subgroup, Γm is normal in SL n(Z); it is
therefore invariant under the conjugacy cA : M 7→ AMA−1 (and under the auto-
morphism θ). Thus, the homomorphism Φ ◦ cA (resp. Φ ◦ cA) determines a new
homomorphism from Γm (resp. G) to Diffan(U)1 which preserves the polydisk U
and for which the stabilizer of o′ coïncides with P0∩Γm (resp. with P0∩G).
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Let us now apply Lemma 5.3 to rigidify slightly the situation. We conjugate the
action of Γm on U by the translation x 7→ x+o′; then we compose the embedding
of Γm in Aut(X) by the automorphism cA of Γm given by Lemma 5.3 to assume
that the stabilizer of the origin in G is the intersection of G with the parabolic
subgroup P0. Thus, the embedding Γm→ Aut(X) and the coordinates of U have
been modified.

5.3. Local normal form. Consider the subgroup T of G consisting of all matri-
ces (

1 0
t Idn−1

)
where Idn−1 is the identity matrix of size (n− 1)× (n− 1) and t is a “vertical"
vector of size (n− 1) with entries t2, . . . , tn in Zp that are equal to 0 modulo m.
By construction, T is contained in G = Γm. The intersection T ∩P0 is the trivial
subgroup {Idn}.

The group T is an abelian subgroup of G of dimension d = n− 1 that acts
locally freely near the origin of U (if not, this would contradict the maximality of
P0). There are local coordinates (z) = (z2, . . . ,zn) on U near the origin o such that
T acts by Φ(t)(z) = (z2 + t2, . . . ,zn + tn); in these coordinates, the action of the
group G is locally conjugate to the linear projective action of G around the point
m0 = [1 : 0 · · · : 0] in Pn−1(K) (see the proof of Theorem 4.4). Note that the local
coordinate zi may be transcendental; it is not obvious, a priori, that zi extends as an
algebraic (or rational) function on the quasi-projective variety X . We shall prove
that this is indeed the case in the next subsection (see Lemma 5.5)

5.4. Invariant (algebraic) functions. Our goal, in this subsection, is to prove
Lemma 5.5. Consider the one-parameter unipotent subgroup E12 of P whose ele-
ments have the form

e12(s) =
(

1 s
0 Idn−1

)
with s = (s,0, . . . ,0), s in Zp, and s≡ 0 modulo m. Let α12 = e12(s), s ∈ Z\{0},
be a non-trivial element of E12∩Γm. By construction, the analytic diffeomorphism
Φ(α12) of U transforms the local coordinate z2 into z2

1+sz2
, and the set {z2 = 0} is,

locally, the set of fixed points of Φ(α12). Since Φ(α12) is the restriction to U of a
birational transformation of X , the hypersurface {z2 = 0} is the intersection of an
algebraic hypersurface of X with a neighborhood of 0 in U.

Let α21 = e21(t) be a non-trivial element of T ∩Γm corresponding to the vector
t = (t,0, . . . ,0) (with t 6= 0 and t ≡ 0 modulo m). Then Φ(α21)

` acts on U and
transports the hypersurface {z2 = 0} to the hypersurface {z2 = t`}. Since {z2 =



ALGEBRAIC ACTIONS AND p-ADIC ANALYSIS 26

0} is algebraic and Φ(α21) is in Aut(X) (resp. in Bir(X) when the action is by
birational transformations), the hypersurfaces {z2 = t`} are all algebraic.

Denote by T2 the subgroup of T whose elements are defined by vectors of type
t=(0, t3, . . . , tn). The action of Φ(T2) on U preserves the local coordinate z2 and is
locally free on each level set {z2 = cst}. Thus, every non-trivial element of T2∩Γm

fixes infinitely many algebraic hypersurfaces in X , whose local equations are z2 =

`t, ` ∈ Z; moreover, the orbits of T2∩Γ are Zariski dense in these hypersurfaces.

Lemma 5.4. Let X be an irreducible quasi-projective variety, defined over an
algebraically closed field K of characteristic 0. Let A be a group of birational
transformations of X. If A preserves infinitely many hypersurfaces of X, then A
preserves a non-constant rational function ϕ ∈ K(X), meaning that ϕ◦a = ϕ for
every a in A.

This lemma corresponds to Theorem B of [12]: Theorem B is stated for a single
transformation g but applies to groups of birational transformations, as one easily
checks. Let us apply it to the group T2. From the Stein factorization theorem,
we may assume that the general fibers of the function τ2 := ϕ are irreducible
hypersurfaces of X . Since the action of T2 on the hypersurfaces {z2 = t`} is locally
free, these hypersurfaces coincide locally with the fibers of τ2. Thus, there is a
complete curve YK and a rational function τ2 : XK 99K YK , both defined over the
algebraic closure of K, such that

• τ2 is invariant under the action of T2∩Γ, meaning that τ2◦β = τ2 for every
β in T2∩Γ;
• the general hypersurface {τ2 = cst} is irreducible;
• the local analytic coordinate z2 is, locally, a function of τ2: There is an

analytic one-variable function φ2 such that z2 = φ2 ◦ τ2 on U.

The transformation Φ(α12) transforms z2 into z2
1+sz2

for some s 6= 0. Thus, it
permutes the level sets of the algebraic function τ2. We deduce that the birational
transformation α12 of X induces an infinite order automorphism of YK fixing the
point τ2({z2 = 0}). This implies that YK is a projective line: There is an isomor-
phism from YK to P1

K that maps the point τ2({t2 = 0}) to the point [0 : 1]. We now
fix an affine coordinate z on P1

K for which this point is z = 0.
The iterates Φ(α12)

` of Φ(α12) transform the coordinate z2 into z2
1+`sz2

. Thus,
if ` = pn, one sees that the sequences of hypersurfaces Φ(α+`

12 )({z2 = c}) and
Φ(α−`12 )({z2 = c}) converge to the fixed hypersurface {z2 = 0} as n goes to +∞,
for every c ∈ K with small absolute value. This implies that the automorphism of
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P1
K induced by α12 is a parabolic transformation, acting by

z 7→ z
1+ s′z

(5.1)

for some s′. Changing the affine coordinate z of P1
K into εz with ε = s′/s (hence

the function τ2 into ετ2 and φ2(x) into φ2(x/ε)), one may assume that s′= s. Then,
both τ2 and z2 satisfy the same transformation rule under Φ(α12):

τ2 ◦Φ(α12) =
τ2

1+ sτ2
, z2 ◦Φ(α12) =

z2

1+ sz2
. (5.2)

We deduce that the function φ2 commutes with the linear projective transformation
z 7→ z/(1+ sz):

∀` ∈ Z, φ2

(
z

1+ `sz

)
=

φ2(z)
1+ `sφ2(z)

. (5.3)

By construction φ2 is analytic (in a neighborhood of 0) and maps 0 to 0. Changing
φ2(z) into φ2(z/(1+uz)) for a well-chosen u 6= 0, one may assume that φ2(x0)= x0

for some x0 6= 0. If one applies the functional equation (5.3) with ` ≡ 0 modulo
sufficiently large powers of p, then the sequence x` = x0/(1+ `sx0) stays in the
domain of definition of φ2 and φ2(x`) = x` for all `; thus, φ2 is the identity: φ2(z) =
z. In particular, the local coordinate z2 extends to a global rational function τ2

on X .
If one applies the same strategy for i = 2,3, . . .n, one gets d = n− 1 rational

functions τi on X . These functions are local coordinates near the origin of U. And
from Section 5.3, we know that these coordinates provide a local conjugacy from
the action of G on U to the linear projective action of G near [1 : 0 : . . . : 0] in
Pn−1

K . This concludes the proof of the following lemma.

Lemma 5.5. Each local analytic function zi, i = 2, . . . ,n, extends to a global ra-
tional function τi 99K XK → K. Altogether, they define a rational map

τ : XK 99K P
n−1
K , τ(x) = [1 : τ2(x) : . . . : τn(x)].

This rational map τ is dominant. It is equivariant with respect to the action of Γm

on X and the action of Γm⊂ SL n(Z) on Pn−1
K by linear projective transformations.

5.5. Conclusion, in the case of regular actions. We now assume that Γ acts by
automorphisms on the quasi-projective variety X ; the case of birational transfor-
mations is dealt with in the next subsection.

Lemma 5.6. Let τ : XK 99K P
n−1
K be a rational map which is equivariant with

respect to an action of Γm on XK by automorphisms and the linear projective
action of Γm ⊂ SL n(K) on Pn−1

K . Then, XK is a projective variety, and the Γm-
equivariant rational map τ is an isomorphism.
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Proof. Assume that XK is normal and fix a compactification XK of XK . Via its
embedding into Aut(XK), the group Γm acts by automorphisms on XK and by
birational transformations on XK .

The image of Γm in PGL n(K) =Aut(Pn−1
K ) is a Zariski-dense subgroup Γ′m (this

is a simple instance of the Borel density theorem).
Let Ind(τ) be the indeterminacy set of τ. Its intersection with XK is a Γm-

invariant algebraic subset, because Γm acts by automorphisms on both X and Pn−1
K .

Its total transform under τ is a Γ′m-invariant locally closed subset of Pn−1
K . But all

such subsets are either empty or equal to Pn−1
K because Γ′m is Zariski-dense in

PGL n(K). Thus, Ind(τ) does not intersect XK .
The image of XK by τ is a constructible Γ′m-invariant subset of Pn−1

K ; as such,
it must be equal to Pn−1

K because Γ′m is Zariski-dense in PGL n(K). Similarly,
the total transform of the boundary XK \ XK is empty. Thus, XK is complete,
and τ determines a morphism from XK to Pn−1

K . The critical locus of τ is a Γ′m-
invariant subset of Pn−1

K of positive co-dimension: It is therefore empty, and τ is
an isomorphism because Pn−1

K is simply connected.
If XK is not normal, replace it by its normalization X̃K , and lift the action of Γm

on XK to an action by automorphisms on X̃K . We deduce that X̃K is isomorphic to
the projective space and the action of Γm on X̃K does not preserve any non-empty
Zariski closed subset; thus, the normalization X̃K → XK is an isomorphism. This
proves the lemma. �

Apply this lemma to the rational map τ given by Lemma 5.5. Since XK is iso-
morphic to the projective space Pn−1

K , the complex variety XC is also isomorphic
to Pn−1

C . Since the action of Γ on X is an action by automorphisms, it is given by
an embedding of Γ into PGL n(C). This concludes the proof of Theorem 5.1, and
of Theorem A.

5.6. Conclusion, in the case of birational actions. Let us now assume that X is
projective and Γ acts by birational transformations on X .

Lemma 5.7. The equivariant rational mapping τ : XK 99K P
n−1
K is birational.

Proof. By construction, τ is rational and dominant; changing X in a birationally
equivalent variety, we assume that X is normal and τ is a regular morphism. The
elements γ of Γm satisfy

τ◦ γX = γPn−1 ◦ τ

where γX denotes the birational action of γ on XK and γPn−1 corresponds to the
linear projective action on Pn−1

K .
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We may assume that X is normal. Embed X in some projective space PN , and
consider the linear system of hyperplane sections H of X . Fix an element γ of Γm,
and intersect X with n−1 hyperplanes to get an irreducible curve C⊂ X that does
not intersect the indeterminacy set of γ. The image of C by γX is an irreducible
curve (γX)∗C, which satisfies τ∗((γX)∗(C)) = (γPn−1)∗τ∗(C). The degree of the
curve (γPn−1)∗τ∗(C) is equal to the degree of τ∗(C) because γPn−1 is a regular
automorphism of the projective space; in particular, it does not depend on γ. This
implies that the degree of the curve (γX)∗C in X ⊂ PN is bounded by an integer
D(τ) that does not depend on γ. As a consequence, the degrees of the formulas
defining the elements γX of Γm in Bir(XK) are uniformly bounded. The following
result shows that Γm is “regularizable" (see [65] and the references in [15]).

Theorem 5.8 (Weil regularization theorem). Let M be a projective variety, defined
over an algebraically closed field. Let Λ be a subgroup of Bir(M). If there is a
uniform upper bound on the degrees of the elements of Λ, then there exists a
birational map ε : M 99K M′ and a finite index subgroup Λ′ of Λ such that ε ◦
Λ ◦ ε−1 is a subgroup of Aut(M) and ε ◦Λ′ ◦ ε−1 is a subgroup of the connected
component of the identity Aut(M)0 in Aut(M).

In our context, this result shows that, after conjugacy by a birational map
ε : X 99K X ′, Γm becomes a group of automorphisms of X ′. Lemma 5.6 shows
that the rational map τ ◦ ε−1 : X ′K 99K P

n−1
K is an isomorphism which conjugates

the action of Γm on X ′K to the linear projective action on Pn−1
K . In particular, τ is a

birational map. �

Thus, τ is a birational conjugacy between the action of Γm on X and the action
of Γm by linear projective transformations on the projective space.

Lemma 5.9. The action of τ◦Γ◦ τ−1 on Pn−1
K is an action by automorphisms.

Proof. The group Γm is a normal, finite index subgroup of Γ. Its image Γ′m in
PGL n(K) is Zariski dense. Let γ be an element of Γ, and let γPn−1 denote the bira-
tional transformation τ ◦ γX ◦ τ−1; we have γPn−1Γ′m = Γ′mγPn−1 . Since Γ′m acts by
automorphisms on Pn−1

K , it fixes the indeterminacy set of γPn−1 , and this indeter-
minacy set must be empty because Γ′m is Zariski dense in PGL n(K). This shows
that γPn−1 has no indeterminacy point and that τ◦Γ◦ τ−1 ⊂ PGL n(K). �

The existence of such a conjugacy τ : XK 99K P
n−1
K implies also the existence of

a conjugacy XC 99K Pn−1
C over the field of complex numbers. This concludes the

proof of Theorem 5.1.
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6. MAPPING CLASS GROUPS AND NILPOTENT GROUPS

To describe another application of the p-adic method, we study the actions by
automorphisms of the mapping class groups Mod(g) and of nilpotent groups.

6.1. Mapping class groups. Recall from Section 1.5 that ma(Γ) is the smallest
dimension of a complex irreducible variety X on which some finite index subgroup
of Γ acts faithfully by automorphisms.

Remark 6.1. Assume that Γ0 is a finite index subgroup of Γ, and that Γ0 acts
faithfully on a complex irreducible variety X . Let us show that Γ acts faithfully
on the disjoint union of n copies of X . Indeed, Γ acts faithfully on the quotient
Γ×Γ0 X of Γ×X by the action of Γ0 defined by h ·(g,x) = (gh−1,hx); and Γ×Γ0 X
is a disjoint union of [Γ : Γ0] copies of X .

Thus, ma(Γ) is bounded from below by the smallest dimension of a complex
variety X on which Γ acts faithfully by regular automorphisms (the dimension of
X is the largest dimension of its irreducible components). The following example
shows that this inequality may be strict.

Example 6.2. Consider the direct product H of two non-abelian free groups F`

and F`′ . Since PGL 2(C) contains a free group, H acts faithfully on the disjoint
union of two projective lines. But H does not act faithfully by automorphisms on
an irreducible curve.

Theorem 6.3 (Theorem D). If Mod(g) acts faithfully on a (not necessarily irre-
ducible) complex variety X by automorphisms, then dim(X) ≥ 2g−1. The mini-
mal dimension ma(Mod(g)) satisfies 2g−1≤ma(Mod(g))≤ 6g−6 for all g≥ 2.

Remark 6.4. We shall need the following fact because X is not assumed to be
irreducible: In Mod(g), the intersection of two infinite normal subgroups is infi-
nite. Indeed, if N is an infinite normal subgroup of Mod(g), then N contains two
pseudo-Anosov elements a and b that generate a free group (see [41], Theorem
2). If M is another normal subgroup containing a pseudo-Anosov element h, then
[w,h] = whw−1h−1 is an element of N∩M for every w ∈ N. By a theorem of Mc-
Carthy [51], the centralizer of a pseudo-Anosov element is virtually cyclic. Thus,
N∩M is infinite.

Proof. The upper bound ma(Mod(g))≤ 6g−6 is well-known; it comes from the
action of Mod(g) on the character variety parametrizing conjugacy classes of rep-
resentations of the fundamental group of the surface of genus g in SL 2, an affine
variety of dimension 6g− 6. This action is faithful for g ≥ 3 (see [49], Theo-
rem 9.15, and [2], Theorem 4.2). For g = 2, the kernel of the action of Mod(2)
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on the character variety is the order 2 subgroup generated by the hyperelliptic
involution. From [2], Theorem 4.3, or [32], Theorem 6.8, Mod(g) is virtually
torsion-free. Consequently, Mod(2) contains a finite index torsion-free subgroup;
this subgroup acts faithfully on the character variety.

FIGURE 1. Simple closed loops on the surface of genus g.

We now fix a finite index subgroup Γ of Mod(g), and we assume that Γ acts
faithfully on a complex quasi-projective variety X of dimension d (note that X is
not assumed to be irreducible). Our goal is to obtain the lower bound d ≥ 2g−1.
We identify Γ with its image in Aut(X). Since Mod(g) is virtually torsion-free,
there is a finite index, torsion-free subgroup in Γ; we now replace Γ by such a
group.

The group Γ permutes the irreducible components of X ; let Γ′ be the kernel of
this action by permutations. Denote by Xi the irreducible components of X , and
by Γ′i the kernel of the action of Γ′ on Xi. The intersection of the Γ′i is trivial. Since
Γ is torsion-free, either Γ′i is trivial, or Γ′i is infinite. Since the intersection of two
infinite normal subgroups of Mod(g) is infinite (Remark 6.4), at least one of the
Γ′i is trivial, and the action of Γ′ on Xi is faithful. We replace Γ by its finite index
subgroup Γ′ and the variety X by such a component Xi. Thus, in what follows, Γ

acts faithfully on the irreducible variety X .
We need to show that d = dim(X) ≥ 2g− 1. Apply Proposition 3.2 to obtain

a prime number p ≥ 3 and a good model of the pair (X ,Γ) over Zp. Then, apply
Proposition 3.3. We obtain a finite extension K of Qp, an analytic polydisk U ⊂
X(K), and a finite index subgroup Γ′′ of Γ that preserves U: The action of Γ′′

on U is given by an embedding Γ′′ into Diffan(U)1, the group of Tate analytic
diffeomorphisms which are equal to Id modulo p (see Section 2.3.2). Again, we
replace Γ by this finite index subgroup Γ′′. Then, the conclusion follows from the
following lemma. �

Lemma 6.5. Let p be an odd prime and K be a finite extension of Qp. If a finite
index subgroup Γ of Mod(g) embeds in Diffan(U)1, with U ' Od

K an analytic
polydisk of dimension d, then d ≥ 2g−1.
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Proof. Elements of Γ give Tate analytic diffeomorphisms of U which are equal
to the identity modulo p. Since p ≥ 3, we can apply the Bell-Poonen theorem to
every element of Γ (take c = 1 in Theorem 2.4). In particular, each element γ ∈ Γ

determines a Tate analytic vector field Xγ on U; and if γ and γ′ commute, then so
do the corresponding vector fields (Corollary 2.8).

Denote by Tαi and Tβi , i = 1, . . . ,g, the Dehn twists along the simple closed
loops which are depicted on Figure 1. There exists an integer m ≥ 1 such that
the twists T m

αi
and T m

βi
are all in Γ. Observe that the g twists T m

αi
commute. For

x ∈U, denote by s(x) the dimension of the K-vector space spanned by the tangent
vectors XT m

αi
(x), 1≤ i≤ g; let s be the maximum of s(x), for x in U.

There exists a smaller polydisk V ⊂ U and a subset S of {1, . . . ,g} such that
|S| = s and the XT m

α j
(x), j ∈ S, are linearly independent at every point x of V .

Denote by X j the vector field XT m
α j

for j in S. Each XT m
αi

,1≤ i≤ g, can be written
in a unique way as a sum

XT m
αi
= ∑

j∈S
Fi, jX j (6.1)

where the Fi, j’s are analytic functions on V . Since [XT m
αl
,XT m

α j
] = 0 for every pair

of indices l ∈ {1, . . .g} and j ∈ S, we obtain

XkFi, j = 0 (6.2)

for all i ∈ {1, . . . ,g} and j, k ∈ S.
Suppose that S 6= {1, . . . ,g}, and pick an index r in {1, . . . ,g}\S. Observe that

T m
βr

does not commute to T m
αr

but commutes to the other T m
αi

; hence [XT m
βr
,X j] = 0

for every j ∈ S. Assume by contradiction that, for every x in V , XT m
βr
(x) is a linear

combination of the X j(x), j ∈ S, and write XT m
βr
= ∑ j∈S G jX j where the G j’s are

analytic functions on U. The commutation rules imply XiG j = 0 for all indices i
and j in S; thus, Equations (6.1) and (6.2) lead to

• XT m
αl

G j = 0 for all indices l ∈ {1, . . .g};
• [XT m

αr
,XT m

βr
] = 0.

Thus, by Corollary 2.8, T m
βr

commutes to T m
αr

, a contradiction. This means that
there exists a smaller polydisk W ⊂ V ⊂U on which the vector fields {XT m

βr
}∪

{X j, j ∈ S} are everywhere linearly independent. Now we add r to S and set
Xr := XT m

βr
.

Use that the T m
βi

commute, and commute to the T m
α j

for i 6= j, and repeat this
argument to end up with a set Xi, i ∈ S = {1, . . . ,g}, of vector fields which are
linearly independent on a smaller polydisk; these vector fields correspond to ele-
ments of type T m

α j
or T m

βi
, for a disjoint set of curves α j and βi; we denote by Λ
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this set of curves. Each index s ∈ S = {1, . . . ,g} correspond to a unique curve αs

or βs in Λ; the vector field Xs is determined by T m
αs

or T m
βs

.
In what follows, we fix an element Φ of the mapping class group which maps

this non-separating set of disjoint curves Λ to α1, α2, . . ., αg. Then, denote by γ′i
and δ′i the images of the curves γi and δi by Φ−1 (see Figure 1); these curves are
disjoint from the g curves of Λ.

Consider the curves γ′1 and δ′1, and fix an integer m> 0 such that the Dehn twists
T m

γ′1
and T m

δ′1
generate a free subgroup of Γ (see Theorem 3.14 in [32]). These twists

commute to the T m
ν for all curves ν ∈ Λ. If, on some polydisk P ⊂U, the vector

fields Y1 and Z1 corresponding to T m
γ′1

and T m
δ′1

are combinations Y1 = ∑H jXi,
Z1 = ∑H ′jXi, then T m

γ′1
and T m

δ′1
commute on that polydisk, and then they commute

everywhere, a contradiction. Thus, one can add a vector field Y1 (or Z1) to our list
of generically independent vector fields. Playing the same game with the curves
γ′k and δ′k for 2≤ k ≤ g−1, we end up with 2g−1 vectors fields, and deduce that
dim(U)≥ 2g−1. �

The group Out(F2n+s−1) contains a copy of Mod(n,s), the mapping class group
of the surface of genus n with s ≥ 1 punctures. The proof of Theorem D also
shows that 2n− 1 ≤ ma(Mod(n,1)) ≤ ma(Out(F2n)) (with s = 1) and that 2n−
1 ≤ ma(Mod(n,2)) ≤ ma(Out(F2n+1)) (with s = 2). Thus, we obtain m− 2 ≤
ma(Out(Fm)) for all m≥ 2.

6.2. Nilpotent groups. Let H be a group. Define H(1) = [H,H], the derived
subgroup of H, generated by all commutators aba−1b−1 with a and b in H, and
then inductively H(r) = [H(r−1),H(r−1)]. The first integer r ≥ 1 such that H(r)

is trivial is called the derived length of H; such an r exists if and only if H is
solvable. This integer is denoted by dl(H), and similar notations are used for Lie
algebras. Then, define the virtual derived length of H by

vdl(H) = min{dl(H ′) | H ′ is a finite index subgroup of H}.

Theorem 6.6. Let H be a finitely generated nilpotent group. If H acts faith-
fully by automorphisms on an irreducible complex quasi-projective variety X, then
vdl(H)≤ dim(X). Thus ma(H)≥ vdl(H).

Let us sketch the proof. Let d be the dimension of X . Apply Proposition 3.2
and Proposition 3.3: There is a finite index subgroup H0 of H and a polydisk U '
Zp

d ⊂ X(Zp) such that the action of H0 on X(Zp) preserves the polydisk U and
determines an embedding of H0 in Diffan(U)1. Consider the Lie algebra h which
is generated by the vector fields X f , for f in H0⊂Diffan(U)1. Corollary 2.8 shows
that the derived length of h is equal to the derived length of H0. To conclude, apply
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the following lemma, the proof of which is the same as in [15], Proposition 3.9,
or [30], Theorem 1.1.

Lemma 6.7. Let h be a nilpotent Lie algebra of Tate analytic vector fields on a
polydisk U. Then, dl(h)≤ dim(U).

7. PERIODIC ORBITS AND INVARIANT POLYDISKS

Our goal is to produce invariant p-adic polydisks for some groups of birational
transformations of a projective variety defined over a finite extension K of Qp.
This is closely related to the existence of "good" periodic orbits for groups of
birational transformations defined over finite fields; in a first time, we focus on
the construction of such orbits.

7.1. Property (τ∞) and linear isoperimetric inequalities. In this section, we
introduce Property (τ∞), which may be viewed as a weak form of Kazhdan Prop-
erty (T) (see [25]), and we relate this property to linear isoperimetric inequalities.
Then, we prove that Property (τ∞) is equivalent to Property (FM), introduced in
[36, 21].

In what follows, Γ will be a group with a finite symmetric set of generators S
(the symmetry means that s ∈ S if and only if s−1 ∈ S). If h is an element of Γ,
|h|S denotes the length of h with respect to S; by definition, |h|S is the minimum
of the integers m≥ 0 such that h is a product of m elements of S.

7.1.1. Quotients and Schreier graphs. Given a subgroup R of Γ, consider the
quotient space Γ/R. The group Γ acts on Γ/R by left translations: Given h in
Γ, we denote by Lh the translation gR 7→ hgR. Denote by `2(Γ/R) the space of
`2-functions on Γ/R, i.e. functions ϕ : Γ/R→ C which are square integrable:

‖ ϕ ‖2
`2(Γ/R):= ∑

ω∈Γ/R
|ϕ(ω)|2 < ∞.

The action of Γ on Γ/R by left translations determines a unitary representation
g 7→ L∗g−1 of Γ on `2(Γ/R), where L∗g−1ϕ := ϕ◦Lg−1 .

The Schreier graph GR is defined as follows: The set of vertices of GR is G0
R =

Γ/R; two vertices g1R and g2R ∈ Γ/R are joined by an edge if and only if there
exists s ∈ S satisfying g2R = sg1R. When R = {e}, GR is the Cayley graph G :=
G{e} of Γ. Those graphs depend on the choice of the generating set S.

Remark 7.1. If the distance between gR and g′R in the graph GR is δ, then
dist(Lh(gR),Lh(g′R)) is at most δ+ 2|h|S. When R is a normal subgroup of Γ,
then Γ also acts on the right, gR→ gRh = ghR, and this right action is by isome-
tries.



ALGEBRAIC ACTIONS AND p-ADIC ANALYSIS 35

Let Ω be a finite subset of Γ/R. Denote by χΩ : Γ/R→{0,1} the characteristic
function of Ω, i.e. χΩ(x) = 1 if and only if x ∈ Ω. Since Ω is finite, χΩ is square
integrable. An element x ∈ Ω is in the boundary ∂Ω of Ω if and only if there
exists an element y of (Γ/R) \Ω which is connected to x by an edge of GR; in
other words, x∈ ∂Ω if and only if x∈Ω and there exists s∈ S such that Ls(x) 6∈Ω,
if and only if χΩ(x) = 1 and there exists s ∈ S such that (L∗s χΩ)(x) = 0. Thus, we
have

‖χΩ−L∗s (χΩ)‖2
`2(Γ/R) = ∑

x∈Γ/R
(χΩ(x)−χΩ(Lsx))2 ≤ ∑

x∈∪s∈S(Ω4s−1(Ω))

12

and hence
‖χΩ−L∗s (χΩ)‖2

`2(Γ/R) ≤ 2|S||∂Ω|. (7.1)

The Cheeger constant of the Schreier graph GR is the infimum

h(GR) = inf
Ω

|∂Ω|
|Ω|

where Ω describes the non-empty finite subsets of Γ/R with |Ω| ≤ |Γ/R|/2 (this
constraint is void when Γ/R is infinite).

7.1.2. Uniform, linear isoperimetric inequalities and Property (τ∞). Let Γ be a
group with a finite, symmetric set of generators S. The group Γ has Property (τ∞)

if there exists a constant ε = ε(Γ,S) > 0 such that, for every subgroup R ⊂ Γ of
infinite index and every function ξ ∈ `2(Γ/R), there exists an element s ∈ S such
that ‖ ξ−L∗s ξ ‖≥ ε ‖ ξ ‖. Property (τ∞) does not depend on S, even if the constant
ε does (this follows from Proposition 7.3 below); thus, we refer to Property (τ∞)

as a property of the (finitely generated) group Γ, and not of the pair (Γ,S).

Proposition 7.2. Let Γ be a group with a finite, symmetric set of generators S.
Then, Γ has Property (τ∞) if and only if there is a positive constant h∞ such that
h(GR)≥ h∞ > 0 for every subgroup R of Γ of infinite index.

In fact, h(GR)≥ ε2/(2|S|) if Γ satisfies Property (τ∞) with constant ε for S.

Proof. Assume that Γ/R is infinite. Consider the unitary action of Γ on `2(Γ/R)
by left translations. For every finite set Ω ⊆ Γ/R, the characteristic function χΩ

is an element of `2(Γ/R) and Property (τ∞) implies the existence of an element
s ∈ S such that

‖χΩ−L∗s χΩ‖`2(Γ/R) ≥ ε‖χΩ‖`2(Γ/R) = ε|Ω|1/2.

From Inequality (7.1), we deduce (2|S||∂Ω|)1/2 ≥ ε|Ω|1/2. Hence, h(GR) ≥ h∞

for h∞ = ε2/(2|S|).
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The other implication may be obtained as in Hulanicki’s characterization of
amenability (see [48], Theorems 3.1.5 and 4.3.2). We do not prove it because it is
not used in this article. �

7.1.3. Other classical properties and examples. We now compare Property (τ∞)

to other classical properties.

• A group Γ has Property (τ) if there exists a constant ε > 0 such that, for every
finite index normal subgroup R ⊂ Γ, and for every function ξ : Γ/R→ C which
is `2-orthogonal to the constant functions, there exists a generator s in S such that
‖ ξ−L∗s ξ ‖≥ ε ‖ ξ ‖ (see [48]). In [5], Bekka and Olivier study Property (T`p), for
p 6= 2, and show that this property is equivalent to the conjonction of Property (τ)

and Property (τ∞). In particular, Property (T`p) implies Property (τ∞).

• In [21], Cornulier introduces Property (FM). Let us describe this property in
the case of a discrete group Γ. A discrete Γ-set is, by definition, an action of Γ on
a discrete set X . A mean on X (or more precisely on `∞(X)), is a linear functional
m : `∞(X)→ R that satisfies m(1) = 1 and m(ξ) ≥ 0 for every bounded function
ξ : X → R+. A mean is Γ-invariant if its values on ξ and ξ◦ γ−1 are equal for all
ξ ∈ `∞(X) and γ ∈ Γ. One says that Γ has Property (FM) if every discrete Γ-set
with a Γ-invariant mean contains a finite Γ-orbit. From [21], we get the following:

Proposition 7.3. Discrete groups with Property (FM) are finitely generated. Prop-
erty (FM) is equivalent to Property (τ∞).

Thus, we could have started with Property (FM), without assuming Γ to be
finitely generated, and then deduce Property (τ∞), which is really the definition
we use in the sequel.

Proof. The first assertion is contained in Proposition 5.6 of [21]. Remark 5.16
of [21] shows that Property (FM) implies Property (τ∞). The argument is the
following. Assume that there is a sequence of infinite quotient spaces Yn = Γ/Rn

and functions ξn ∈ `2(Yn) of norm 1 such that ‖ ξn−L∗s ξn ‖≤ 1/n. Consider the
discrete Γ-set X which is obtained as the disjoint union of the Yn, and extend
each ξn as a function on X by ξn(y) = 0 if y ∈ X \Yn. The linear maps mn(ξ) =

∑x ξn(x)2ξ(x) define a sequence of means on X . By compactness of the set of
means, a subsequence (mni) converges towards a mean m∞; by construction, m∞

is Γ-invariant. But X does not contain any finite orbit. Thus (FM) implies (τ∞).
In the opposite direction, assume that Γ has Property (τ∞) but does not have

Property (FM). Then, there exists a discrete Γ-set X , which is a disjoint union of
infinite orbits Yi = Γ/Ri and which supports an invariant mean m. The existence
of m implies that `2(X) contains a sequence of almost invariant vectors ξn (see
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[21] Lemma 5.9, and [4], Appendix G.3): ξn has norm 1 and ‖ ξn−L∗s ξn ‖≤ 1/n
for all s in the generating set S. To obtain a contradiction, decompose ξn as an
orthogonal sum ξn = ∑ξn,i, where each ξn,i is the restriction of ξn to the orbit Yi.
Since Γ/Ri is infinite, there exists a generator sn,i such that ‖ ξn,i−L∗sn,i

ξn,i ‖2≥ ε2

(with ε the constant provided by Property (τ∞)). Hence, there is a generator sn

such that ‖ ξn−L∗sn
ξn ‖2≥ ε2/|S|. We get a contradiction when n2 > |S|/ε2. �

• A discrete group Γ has Kazhdan Property (T) if every action of Γ on a Hilbert
space H by affine isometries has a fixed point (see [25], Chapters 1 and 4). Such a
group is automatically finitely generated and, given a finite system of generators,
the following equivalent definition of Kazhdan Property (T) will be more useful
to us. A finitely generated group Γ has Kazhdan Property (T) if for any finite
symmetric set of generators S, there exists an ε > 0, with the following property:
Given any unitary representation ρ of Γ on a Hilbert space H , either there exists
v ∈H \{0} such that ρ(Γ) ·v = v, or, for every v ∈H , there exists s ∈ S such that

‖v−ρ(s) · v‖ ≥ ε‖v‖.

Such a positive number ε is called a Kazhdan constant for the pair (Γ,S). Thus,
Property (τ∞) turns out to be a weak form of Property (T), in which one only
considers the unitary representations `2(Y ), where Y is a set on which Γ acts
transitively. We obtain:

Proposition 7.4. If Γ satisfies Kazhdan Property (T) with constant ε for the gen-
erating set S, then it satisfies the uniform linear isoperimetric inequality |∂Ω| ≥
(ε2/2|S|)|Ω| in all its infinite quotients Γ/R.

Example 7.5. Let Γ be a non-amenable group with no infinite proper subgroup.
Then Γ has Property (τ∞) (see [5], Proposition 15 and Example 17, or [36], §4.C).
Let Γ be an irreducible lattice in SO(n,2)×SO(n+1,1), for some n≥ 3. Then Γ

does not have Property (T), but has Property (τ∞) (see [5], Example 14, and [21],
Example 1.14 for a related construction).

7.2. Finite orbits and finite index subgroups. Let X be an absolutely irreducible
projective variety of dimension d defined over a finite field F. Let Γ be a group
with a finite symmetric set of generators S. Assume that the group Γ embeds into
the group Bir(XF) and identify Γ with its image in Bir(XF).

7.2.1. The escaping set E. Let U be a Zariski open subset of X defined over
F such that for every s ∈ S, the map s|U : U → X is a morphism and an open
immersion. Such a set exists because S is finite: For U , take the complement of
all the proper subsets Bs, for s in S, where Bs is defined as in Section 3.1.2.
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Remark 7.6. One may want to shrink U in certain situations. For instance, given
an element f of the group Γ, with f 6= Id, one may remove the set of fixed points
of f from X , and take U ⊂ X \{ f (x) = x}. Or one can remove the singular locus
of X from U .

By construction, the co-dimension of the Zariski closed set X \U is at least one.
Let E ⊆U be the subset of points that may escape U when one applies one of the
generators:

E :=
⋃
s∈S

s−1(X \U) (7.2)

where s−1(X \U) is the total transform of the Zariski closed set X \U . This
escaping set E is a proper, Zariski closed subset of U .

7.2.2. Lang-Weil estimates (see [45]). By Lang-Weil estimates, there exists a
positive constant cU such that, given any finite field extension F′ of F, the number
of points in U(F′) satisfies:

|F′|d− cU |F′|d−1/2 ≤ |U(F′)| ≤ |F′|d + cU |F′|d−1/2 (7.3)

where d = dimU = dimX . (the constant cU does not depend on F′.)
Similarly,

|E(F′)| ≤ bE |F′|d−1 + cE |F′|d−3/2 (7.4)

where bE is the number of absolutely irreducible (d−1)-dimensional components
of E; the constants bE and cE depend on E but not on F′.

7.2.3. Regular stabilizers. Fix a finite extension F′ of the field F. Given a point
x ∈ U(F′), one associates a subgroup Rx of Γ which will be called the regular
stabilizer of x. To define it, we proceed as follows. Let (e,g1, · · · ,gl) be a path in
the Cayley graph G , and denote by si+1 the element of S such that gi+1 = si+1gi,
1≤ i≤ l−1. The path (e,g1, · · · ,gl) is a regular path if

(i) s1 is well-defined at x0 := x and maps x0 to a point x1 ∈U ;
(ii) for all i≤ l−1, si+1 maps xi to a point xi+1 ∈U . (since xi is in U , si+1 is

well-defined at xi.)

Thus the notion of regular path depends on the starting point x. By definition, the
regular orbit of x is the set of all points gl(x) for all regular paths (e,g1, · · · ,gl).
The regular orbit of x may intersect the escaping set E; when it does, we simply
do not apply an element of S that would make it leave U .

Definition 7.7. An element g ∈ Γ is a regular stabilizer of x ∈ U(F′) if there
exists a regular path (e,g1, · · · ,gl) in G such that (i) gl = g and (ii) gl(x) = x. The
set of all regular stabilizers is the regular stabilizer of x, and is denoted by Rx.
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Lemma 7.8. The regular stabilizer Rx is a subgroup of Γ.

Proof. Given g and h in Rx, and regular paths (e,g1, · · · ,gl) and (e,h1, · · · ,hl′) in
Γ satisfying properties (i) and (ii) of Definition 7.7 for g and h respectively, one
can define a new regular path (e,h1, · · · ,hl′,g1hl′, · · · ,glhl′) which fixes x; thus,
g ◦ h is an element of Rx. Similarly, write gi+1 = si+1gi, si+1 ∈ S, x0 = x, and
xi+1 = si+1(xi) for 0 ≤ i ≤ l− 1. By construction of U and symmetry of S, si+1

is a regular automorphism from a neighborhood of xi to a neighborhood of xi+1;
hence s−1

i+1 is well-defined at xi+1. One can therefore reverse the regular path and
get a path (e,s−1

l ,s−1
l−1 ◦s−1

l , · · · ,g−1) which starts at xl and ends at x0. In our case,
xl = x = x0, and we conclude that g−1 is an element of Rx. �

This proof shows that we can concatenate and reverse regular paths. The eval-
uation map evx takes a regular path (e,g1, · · · ,gl) and gives a point

evx(e,g1, · · · ,gl) = gl(x).

We shall say that an element g ∈ Γ is very well-defined at x ∈U(F′) if there is a
regular path from e to gl = g. For such an element, the image evx(e,g1, · · · ,gl) =

gl(x) = g(x) does not depend on the choice of the regular path joining e to g. As a
consequence, the evaluation map is defined on the set of elements of Γ which are
very well-defined at x, and maps it into the set U(F′). The preimage of x is the
regular stabilizer. The image is the regular orbit of x.

7.2.4. The subsets Ωx ⊆ Γ/Rx. Fix a point x ∈U(F′). Given an element g ∈ Γ

which is very well-defined at x, one gets a point g(x) ∈ U , as well as a vertex
[g] := gRx in the graph of cosets GRx for the regular stabilizer Rx of x. We define
Ωx ⊆ Γ/Rx to be the set of all such vertices [g]. The evaluation map determines a
map evx : Ωx→U(F′) (we make use of the same notation for simplicity).

Proposition 7.9. Let F′ be a finite extension of F. Let x be a point of U(F′). The
subset Ωx ⊆ Γ/Rx satisfies the following properties:

(1) Ωx contains [e];
(2) Ωx is connected: For every [g] ∈Ωx there is a path in GRx , corresponding

to a regular path (e,g1, · · · ,gl) in Γ, which connects [e] to [g] in Ωx;
(3) the evaluation map evx : [g] 7→ g(x) is well-defined (because Rx stabilizes

x) and is an injective map evx : Ωx → U(F′), the image of which is the
regular orbit of x;

(4) Ωx is a finite set, with |Ωx| ≤ |U(F′)|.

Proof. All we have to prove is that evx is injective. If g(x) = h(x) with two regular
paths (e,g1, · · · ,gl = g) and (e,h1, · · · ,hl′ = h), one can reverse the path from
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e to hl′ = h and get a regular path that maps x to h−1 ◦ g(x) = x; this means
h−1 ◦g ∈ Rx. �

Thus one gets a parametrization of the regular orbit of x ∈U(F′) by the set Ωx.
An element [g] ∈ Ωx is a boundary point of Ωx in the graph GRx if and only if
there is a generator s ∈ S such that [sg] 6∈ Ωx; this means that s is not a regular
automorphism from a neighborhood of g(x) to its image s(x): g(x) escapes from
U when one applies s, and therefore g(x) ∈ E(F′). Since the evaluation map is
injective, one gets

|∂Ωx|= |evx(∂Ωx)|= |Ex(F′)|
where Ex(F′) is the subset of E(F′) which is equal to evx(∂Ωx).

Since regular orbits are disjoint, the sets Ex(F′) and Ey(F′) are disjoint as soon
as x and y are not in the same regular orbit. Being finite, U(F′) is a union of
finitely many disjoint regular orbits. Fixing a set {x1, · · · ,xm} of representatives
of these regular orbits, we obtain

U(F′) =
m⊔

i=1

evxi(Ωxi).

Let us now assume that Γ has Property (τ∞); thus, by Proposition 7.2, Γ satisfies
a uniform linear isoperimetric inequality

|∂Ω| ≥ ε2

2|S|
|Ω|

in all its infinite Schreier graphs GR. Suppose that Rx has infinite index in Γ for
every x ∈U(F′). Then

|U(F′)|=
m

∑
i=1
|evxi(Ωxi)|=

m

∑
i=1
|Ωxi|

≤
m

∑
i=1

2|S|
ε2 |∂Ωxi|=

m

∑
i=1

2|S|
ε2 |Exi(F

′)| ≤ 2|S|
ε2 |E(F

′)|.

Then the Lang-Weil estimates stated in Equations (7.3) and (7.4) imply that

|F′|d ≤ cU |F′|d−1/2 +
2|S|
ε2

(
bE |F′|d−1 + cE |F′|d−3/2

)
.

Thus, if the degree of the extension is large enough (for instance if |F′|1/2 ≥
cU + 2|S|(bE + cE)/ε2), one gets a contradiction. This provides a proof of the
following theorem.

Theorem 7.10. Let X be an absolutely irreducible projective variety defined over
a finite field F. Let Γ be a subgroup of Bir(XF) with Property (τ∞) and S be a finite
symmetric set of generators of Γ. Let U be a non-trivial, Zariski open subset of
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X such that for every s ∈ S, the map s|U : U → X is an open immersion. If F′ is a
finite extension of F and |F′| is large enough, there exists a point x in U(F′) such
that the regular stabilizer Rx of x is a finite index subgroup of Γ.

7.2.5. Abelian groups. Let α ≥ 1 be a real number. Say that a graph G satisfies
an isoperimetric inequality of type α if there is a constant c > 0 such that

|∂Ω|α ≥ c|Ω| (7.5)

for every finite subset Ω of G . Let d ≥ 2 be an integer. The Cayley graph of the
group Zd satisfies an isoperimetric inequality of type d/(d−1) for any finite sym-
metric set of generators; the isoperimetric inequality satisfied in Proposition 7.2 is
of linear type (i.e. α = 1). If G satisfies an isoperimetric inequality of type α, for
some constant c > 0, it satisfies the isoperimetric inequality of type β for every
β≥ α with the same constant c.

Given a group Γ, with a finite symmetric set of generators S, denote by B(r) the
ball of radius r in the Cayley graph G = G(Γ,S). The number of vertices in B(r)
is denoted by |B(r)|. Then, define the function ΦS by

ΦS(t) = min{r | t ≤ |B(r)|}

(as in Section 1, page 295, of [23]). For instance, if Γ is a free abelian group
of rank d, and S is any finite symmetric set of generators, one can find a subset
S′ of S such that S′ forms a basis of the vector space Γ⊗Z Q. The set S′ has d
elements; thus, the ball of radius r in G(Γ,S) contains at least (1+2r)d elements.
This implies that ΦS(t)≤ t1/d . Coulhon and Saloff-Coste proved in [23], that

|∂Ω|
|Ω|
≥ 1

8|S|ΦS(2|Ω|)
for every non-empty finite subset of a group Γ. We shall use this inequality to give
a short proof of the following lemma, which provides a uniform constant cS for
the isoperimetric inequality in quotients of abelian groups.

Lemma 7.11. Let A be a free abelian group of rank k > 1, and let S be a finite
symmetric set of generators of A. Fix an integer l < k; set q = k− l and cS =

(16|S|)−(q−1)/q. Then, given any subgroup R of A of rank at most l, and any finite
subset Ω of the Cayley graph G(A/R,S), we have

|∂Ω|q/q−1 ≥ cS|Ω|.

Proof. The group R is contained in a subgroup T of A such that A/T is a free
abelian group of rank at least q. In the group A/T , with the set of generators
given by the projection of S, the function ΦS satisfies ΦS(t)≤ t1/q. The projection
A/R→ A/T maps the ball of radius r in the Cayley graph G(A/R,S) onto the ball
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of the same radius in G(A/T,S). Thus, the function ΦS for A/R satisfies the same
inequality ΦS(t)≤ t1/q. This implies

|∂Ω| ≥ (8|S|)−12−1/q|Ω|(q−1)/q.

and the result follows. �

Theorem 7.12. Let X be a projective variety, defined over a finite field F, and let d
be its dimension. Let A be a free abelian group of rank k < ∞, acting by birational
transformations on X (defined over F). Then, there exists a finite extension F′ of
F, a point x in X(F′), and a subgroup R of A such that the rank of R is≥ k−d and
every element of R is defined at the point x and fixes it.

Proof. Changing F in a finite extension, X in one of its irreducible components,
and A in a finite index subgroup, we may assume that X is absolutely irreducible.
Fix an algebraic closure F of F. We may assume that d is positive, since otherwise
X is just one point. We fix a system of generators for A and an open subset U of X
such that, on U , every generator restricts to an open immersion s|U : U → X (see
§ 7.2.1). Assume by contradiction that the regular stabilizer Rx of every point of
X(F) has rank at most l, with l < k− d. Denote by α the ratio q/(q− 1) with
q = k− l > d; we have 1 < α < d/(d− 1). Let F′ be a finite extension of F and
{xi} a set of representatives of the regular orbits of U(F′). From Assertion (3) of
Proposition 7.9, we obtain

|∂Ωxi|= |evxi(∂Ωxi)|= |Exi(F
′)|

and Lemma 7.11 provides a constant c > 0 such that

|U(F′)|= ∑ |Ωxi|=≤ c∑
i
|∂Ωxi|α = c∑

i
|Exi(F

′)|α ≤ c

(
∑

i
|Exi(F

′)|

)α

.

From Lang-Weil estimates, one derives

|F′|d ≤ cU |F′|d−1/2 + cst
(

bE |F′|d−1 + cE |F′|d−3/2
)α

.

This provides a contradiction if |F′| is large because (d−1)α < d. �

7.3. Invariant polydisks for groups with Property (τ∞). Let XQp be an abso-
lutely irreducible projective variety. Assume that X is defined over Zp, that Γ is a
finitely generated subgroup of Bir(XZp) with a finite symmetric set of generators S,
and that (XZp,Γ) is a good model over Zp.

Theorem 7.13. Assume that Γ has Property (τ∞). There exist a finite extension
K of Qp, a finite index subgroup Γ0 of Γ, and a Tate analytic diffeomorphism ϕ

from the unit polydisk U = (OK)
d ⊂ Kd to an open subset V of X(K) such that
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V is Γ0-invariant and the action of Γ0 on V is conjugate, via ϕ, to a subgroup
of Diffan(U). Moreover, one can choose this polydisk in the complement of any
given proper Zariski closed subset of the generic fiber.

The following proof constructs Γ0 as a regular stabilizer Rx.

Proof. Given g ∈ Bir(XZp), recall that BZp,g denotes the complement of the points
of XZp around which g is an open immersion (see Section 3.1.2). Since (XZp,Γ)

is a good model over Zp, the singular locus of the scheme XZp and the sets BZp,g,
for g in S, have co-dimension ≥ 1 in XZp and in the special fiber too (see (ii) and
(iii) in Section 3.1.2). Denote by Sing(XZp) the singular locus of XZp , and set

UZp := XZp \
(

Sing(XZp)
⋃

(∪s∈SBZp,s)
)
.

Let XFp be the special fiber. By assumption, UZp ∩XFp is a non-empty Zariski
open subset of XFp; let U be any open subset of UZp ∩ XFp (for instance, take
for U the complement of a given divisor). Observe that for any s ∈ S, the map
s|UZp

: UZp → XZp is an open immersion; hence, s|U : U → XFp is also an open
immersion.

By Theorem 7.10, there exists a finite field extension F′ of Fp and a point x in
U(F′) such that the regular stabilizer Rx of x is a finite index subgroup of Γ. Let
K be a finite extension of Qp whose residue field is F′.

Every element g of Rx is a regular morphism on a neighborhood of x and fixes x.
Denote by W the set of K-points y in XK whose specialization in the special fiber
XF′ coincides with x. By Proposition 3.4, one can find an analytic diffeomorphism
ϕ from the unit polydisk U = (OK)

d ⊂ Kd to an open subset V ⊂W such that
V is Rx-invariant and the action of Rx on V is conjugate, via ϕ, to a subgroup of
Diffan(U). �

Similarly, Theorem 7.12 provides invariant polydisks for subgroups of rank
l ≥ k−dim(X) when Γ is a free abelian group of rank k.

7.4. Groups of birational transformations and finite index subgroups.

7.4.1. Groups of birational transformations. A group Γ is linear over the field k
if Γ is isomorphic to a subgroup of GL n(k) for some n ≥ 1 (see [24]). Similarly,
a group Γ is a group of birational transformations over the field k if Γ is iso-
morphic to a subgroup of Bir(Xk) for some algebraic variety defined over k. One
may also say that Γ is a group of birational transformations in dimension n over k
(resp. in characteristic p) if Γ embeds in Bir(X) for some algebraic variety X of
dimension ≤ n which is defined over k (resp. over a field of characteristic p).
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Example 7.14. Linear groups over k are groups of birational transformations
over k. Subgroups and direct products of groups of birational transformations
over k are also groups of birational transformations over k. Every finite group is
a group of automorphisms of some complex irreducible curve (see [37], Theorem
6’). The modular group Mod(g) of a closed, orientable surface of genus g≥ 3 and
the group Out(Fg) are groups of birational transformations in dimension ≤ 6g
over C, but Out(Fg) is not a linear group if g≥ 4 (see Section 6 and [49, 34]).

7.4.2. Malcev and Selberg properties. In characteristic 0, linear groups satisfy
Malcev and Selberg properties: Every finitely generated linear group is resid-
ually finite and contains a torsion-free, finite index subgroup. One does not
know whether groups of birational transformations share the same properties (see
[14, 20]). The following result implies Theorem C of the Introduction.

Theorem 7.15. Let Γ be a discrete group with Property (τ∞). If Γ is a group of
birational transformations over a field k of characteristic 0, then Γ is residually
finite and contains a torsion-free, finite index subgroup.

Proof. Since Γ has Property (τ∞), it is finitely generated (see Section 7.1 and
Proposition 7.3); fix a finite symmetric set of generators S for Γ, and an embedding
of Γ in the group of birational transformations of a smooth projective variety X
(over an algebraically closed field k of characteristic 0). Pick an element f in
Γ \ {Id} and denote by Fix( f ) the proper Zariski closed set of fixed points of f ;
more precisely, Fix( f ) ⊂ X is defined as the Zariski closure of the subset of the
domain of definition of f defined by the equation f (z) = z. By Proposition 3.2,
one can find a prime number p ≥ 3, and a good model Γ ⊂ Bir(XZp) for (X ,Γ),
such that the special fiber XFp of XZp is not contained in Fix( f ).

Choose a Zariski open subset U of XFp which is contained in the complement of
Fix( f ) and of the sets BZp,s, for s ∈ S. We now apply Theorem 7.10. Since Γ has
Property (τ∞), one can find an extension F′ of the residue field Fp, and a point x in
U(F′), for which the regular stabilizer Rx has finite index in Γ. By construction,
Rx does not contain f . This shows that Γ is residually finite.

Let U be the polydisk (OK)
d . To prove the second assertion, keep the same

notation and apply Theorem 7.13. This provides an Rx-invariant subset V and an
analytic diffeomorphism ϕ : U → V such that, after conjugacy by ϕ, Rx acts by
Tate analytic diffeomorphisms on U. Then, there exists a finite index subgroup
R′x of Rx, such that every element g in R′x corresponds to a power series

g(z) = A0 +A1(z)+ ∑
k≥2

Ak(z)
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where each Ai is homogeneous of degree i, A0 is 0 modulo p2 and A1 is the identity
modulo p. After conjugation by z 7→ pz, the Bell-Poonen theorem (Theorem 2.4)
can be applied to g. Thus, Corollary 2.5 shows that R′x is torsion-free. �

7.4.3. Central extensions and simple groups. Fix two positive integers q and n
with q 6= 1,2,4 and n≥ 2. Consider the group Sp 2n(Z), and the central extension

0→ Z/qZ→ Γ→ Sp 2n(Z)→ 1

which is obtained from the universal cover

0→ Z/qZ→ ˜Sp 2n(R)/qZ→ Sp 2n(R)→ 1

by taking the quotient with respect to the subgroup qZ of the center Z⊂ ˜Sp 2n(R).
Since n ≥ 2, Sp 2n(Z) has Kazhdan Property (T) (see [25]). Since q does not
divide 4, the image of 4Z in the center Z/qZ of Γ is non-trivial and is contained
in every finite index subgroup of Γ (see [26]); consequently, Γ does not contain
any torsion-free finite index subgroup.

Corollary 7.16. The group Sp 2n(Z) is a group of birational transformations over
the field Q but, if n≥ 2, there is a finite cyclic central extension Γ of Sp 2n(Z) that
does not act faithfully by birational transformations in characteristic 0.

In particular, the property “Γ is a group of birational transformations” is not
stable under finite central extensions. Similar examples can be derived from [52]
and [55]. The following corollary shows that the simple groups constructed in
[31, 19] do not act non trivially by birational transformations.

Corollary 7.17. If Γ is an infinite, simple, discrete group with Property (τ∞), and
X is a complex projective variety, every homomorphism Γ→ Bir(X) is trivial.

Proof. A non-trivial homomorphism Γ→ Bir(X) is an embedding because Γ is
simple. If such an embedding exists, Γ contains non-trivial finite index subgroups,
contradicting the simplicity of Γ. �

8. BIRATIONAL ACTIONS OF LATTICES ON QUASI-PROJECTIVE VARIETIES

In this section, we prove Theorem B, and a corollary which concerns birational
actions of the lattice SL n(Z) and its finite index subgroups.

8.1. Lattices in higher rank Lie groups. Let S⊂GL m be an algebraic subgroup
of GL m defined over the field of rational numbers Q (see [9]). We assume that

(i) S is almost R-simple (the Lie algebra gR of S(R) is simple);
(ii) as an algebraic group, S is connected and simply connected (equivalently

S(C) is a simply connected manifold);
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(iii) the real rank of S is greater than 1 (see § 1.3);
(iv) the lattice Γ = S(Z) of S(R) is not co-compact (i.e. rankQ(S)> 0).

We refer to [57], [53], Section 7.4, and [56] for a good introduction to the
following result, and for references to the literature and original contributions.

Theorem 8.1. Let S be an algebraic subgroup of GL m, defined over the field Q,
with the above four properties. Then S(Z) satisfies the strong approximation and
congruence subgroup properties.

This means that the closure of S(Z) has finite index in ΠqS(Zq), and that every
finite index subgroup of S(Z) contains a congruence subgroup {B ∈ S(Z)| B ≡
Id (modm) } for some integer m. In other words, the profinite completion of S(Z)
coincides with a finite index subgroup of ΠqS(Zq).

Lemma 8.2. Let S be an algebraic subgroup of GL m defined over Q, that satisfies
the above four properties. If Γ is a finite index subgroup of S(Z), then S(Zp) is a
virtual pro-p completion of Γ

Proof (see also Section 4.2.3). According to [60] (Theorem 5 and 34, and Corol-
lary to Lemma 64) and to the above Theorem 8.1, there is a prime q0 such that
S(Fq) is a perfect group and S(Z) is dense in S(Zq) for every prime q≥ q0.

Let Γ be a finite index subgroup of S(Z). Let m be a positive integer such that
p divides m, every prime q < q0 divides m, and the congruence subgroup

Γm := {B ∈ S(Z)|B≡ Id (mod m) }

is contained in Γ. Let F be the set of prime divisors of m.
Denote by Gq the closure of Γm in S(Zq); the profinite completion of Γm is

ΠqGq. The first congruence subgroup of S(Zq) is an analytic pro-q group, thus,
if q ∈ F \ {p}, Gq is a pro-q group and every morphism to a p-group is trivial.
Similarly, if q /∈ F , every morphism from Gq = S(Zq) to a p-group factors through
the quotient S(Fq), and is trivial because S(Fq) is perfect. This shows that the pro-
p completion of Γm is Gp, and that S(Zp) is a virtual pro-p completion of Γ. �

8.2. Minimal homogeneous spaces (see [64], p. 187, and [62]). Given a sim-
ple complex Lie algebra s, one denotes by δ(s) the minimal co-dimension of its
proper Lie subalgebras p < s. If S is a complex connected algebraic group with
Lie algebra equal to s, then δ(s) is equal to the minimal dimension δ(S) of a ho-
mogeneous variety V = S/P with dim(V ) > 0. Such a maximal group P is the
stabilizer of a point m ∈ V ; it is a parabolic subgroup of S (see [64], page 187).
If s (resp. S) is defined over a subfield of C, we use the same notation δ(s) (resp.
δ(S)) to denote δ(s⊗C).
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This dimension δ(S) has been computed for all complex, simple and con-
nected algebraic groups (see [62] for instance). The results are summarized in
Table 1, from which one sees that δ(s)≥ rankC(s) with equality if and only if s is
slδ(s)+1(C).

TABLE 1. Minimal dimensions of faithful representations and
minimal homogeneous spaces.

the its dimension of its dimension of its smal-
Lie algebra dimension minimal representation -lest homogeneous space

slk(C), k ≥ 2 k2−1 k k−1

sok(C), k ≥ 7 k(k−1)/2 k k−2

sp2k(C), k ≥ 2 2k2 + k 2k 2k−1

e6(C) 78 27 14

e7(C) 133 56 27

e8(C) 248 248 57

f4(C) 52 26 15

g2(C) 14 7 5

Remark 8.3. Here are a few comments on Table 1. The inequality δ(s)≥ rankC(s)

may be obtained with the following argument. Choose a maximal torus T in S.
Since S is almost simple, T acts on V = S/P with a finite kernel, hence the isotropy
group in T of a general point of V is finite; thus, dim(V )≥ dim(T ).

The algebra slk(C) has two representations of minimal dimension (the standard
representation on Ck and its dual); likewise, SL k(C) has two minimal homoge-
neous spaces. (The other simple complex Lie algebras have a unique minimal
representation up to isomorphism).

The group SO 5(C) is isogenous to Sp 4(C) and acts on P3 (the space of lines in
the smooth quadric Q⊂ P4 is isomorphic to P3). Similarly, SO 6(C) is isogenous
to SL 4(C) and acts on P3 too.

8.3. Proof of Theorem B. Changing S into a finite cover, and Γ into its pre-image
under the covering homomorphism, we may assume that the semisimple algebraic
group S is simply connected. Identify Γ with its image in Bir(X), and choose a
good p-adic model for (X ,Γ), as in Proposition 3.2.

The group Γ is a lattice in the higher rank, almost simple Lie group S(R). As
such, Γ has Kazhdan Property (T) (see [25], Chapters 2 and 3); hence, it has
Property (τ∞). According to Theorem 7.13, there is a finite index subgroup Γ0
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in Γ, a field extension K of Qp and an analytic polydisk U ⊂ X(K) which is
Γ0-invariant, and on which Γ0 acts by Tate analytic diffeomorphisms.

We also know from Lemma 8.2 that S(Zp) is a virtual pro-p completion of
Γ0. By Theorem 2.11, there exists a finite index subgroup Γ1 of Γ0 such that the
analytic action of Γ1 on the polydisk U extends to an analytic action of its closure
G1 = Γ1, an open subgroup of the p-adic group S(Zp).

Let o be a point of U which is not fixed by G1; the stabilizer of o is a closed
subgroup P of G1: Its Lie algebra determines a subalgebra of s of co-dimension
at most dim(X). If dim(X) < δ(S), then P is a finite index subgroup of G1, and
the action of Γ1 on X factors through a finite group. Thus,

dim(X)≥ δ(S)≥ rankR(S). (8.1)

If dim(X) = rankR(S), then δ(S) = rankR(S) and s= sln with n = dim(X)+1.

Remark 8.4. The inequality (8.1) is stronger than dim(X) ≥ rankR(S). For in-
stance, if Γ is a non-uniform lattice in F4 then Γ does not act faithfully by bira-
tional transformations in dimension ≤ 14.

Corollary 8.5. Let Γ be a finite index subgroup of SL n(Z), with n ≥ 3. If Γ

acts by birational transformations on an irreducible complex projective variety
X, then either the image of Γ in Bir(X) is finite, or dim(X) ≥ n−1. Moreover, if
the image is infinite and dim(X) = n− 1, then X is rational, and the action of Γ

on X is birationally conjugate to a linear projective action of Γ on Pn−1.

Proof. Let Γm be a principal congruence subgroup which is contained in Γ, with
m ≡ 0 (mod3); then Γm is torsion-free. The kernel of the action of Γm on X is
either trivial, or a finite index subgroup, because every infinite normal subgroup
of Γm has finite index. Thus, we may now assume that Γm acts faithfully on X by
birational transformations. Theorem B implies that dim(X) ≥ n− 1. In case of
equality, there is a good, p-adic model of (X ,Γ) such that a finite index subgroup
of Γ preserves a p-adic polydisk and acts by analytic diffeomorphisms on it. Then,
Theorem 5.1 shows that there is a birational, Γ-equivariant mapping τ : X 99K
Pn−1, where the action of Γ on Pn−1 is by linear projective automorphisms. �

9. APPENDIX

9.1. Bir(XR) versus Bir(XK). Let us prove the following fact (not needed in this
paper but useful to keep in mind). Let R be an integral domain, and let K be its
fraction field. Let XR be a separated, reduced scheme of finite type over R. Assume
that the morphism XR→ Spec(R) is dominant on every irreducible component of
XR. Then, the homomorphism i : Bir(XR)→ Bir(XK) is bijective.
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Let X1, . . . , Xr be the irreducible components of XR. For each i = 1, . . . ,r, we
fix a dense, affine, open subset Yi ⊂ Xi \∪ j 6=iX j; replacing XR by tr

i=1Yi, we may
assume Xi to be affine for all i.

9.1.1. First, let us show that i is injective. Let f and g be elements of Bir(XR).
By definition, there are two dense affine open subsets U and V of XR, such that f
and g are represented by morphisms f|U , g|U : U → V . Shrinking them, we may
assume that U = tr

i=1Ui and V = tr
i=1Vi where the Ui and Vi are dense, affine,

open subsets of Xi.

Since XR is of finite type, we may suppose that Ui = Spec(R[x1, . . . ,xm]/Ii) and
V = Spec(R[x1, . . . ,xm]/Ji) where Ii and Ji are prime ideals of R[x1, . . . ,xm] (for
some common m≥ 0). Then f|U and g|U are defined by two homomorphisms

F and G :
r

∏
i=1

R[x1, . . . ,xm]/Ji→
r

∏
i=1

R[x1, . . . ,xm]/Ii.

Then, i( f ) and i(g) are defined by the associated maps FK and GK from
r

∏
i=1

R[x1, . . . ,xm]/Ji⊗R K =
r

∏
i=1

K[x1, . . . ,xm]/Ji

to
r

∏
i=1

R[x1, . . . ,xm]/Ii⊗R K =
r

∏
i=1

K[x1, . . . ,xm]/Ii.

If i( f ) is equal to i(g), then FK = GK . Since the morphisms Ui → Spec(R)
are dominant for all i = 1, . . . ,r, the ring R embeds into the integral domain
R[x1, . . . ,xm]/Ii and K embeds into R[x1, . . . ,xm]/Ii⊗R K = K[x1, . . . ,xm]/Ii. As
a consequence, the homomorphisms ∏

r
i=1 R[x1, . . . ,xm]/Ii→∏

r
i=1 K[x1, . . . ,xm]/Ii

are injective, and so are the homomorphisms ∏
r
i=1 R[x1, . . . ,xm]/Ji→∏

r
i=1 K[x1, . . . ,xm]/Ji.

Thus, we have F = G, and i is injective.

9.1.2. To prove that i is onto, fix f ∈ Bir(XK). There are two dense, affine, open
subsets U ′K and V ′K of XK such that f is represented by a morphism f|U ′K : U ′K→V ′K .
We shall replace U ′K and V ′K by dense, affine, open subsets U and V in XR. First,
set WK = XK rV ′K , and define V ′ ⊂ XR as the complement of the Zariski closure
WK ⊂ XR. Then, choose a dense, affine, open subset V of V ′ ⊂ XR. Changing
V ′K into VK = V ⊗Spec(R) Spec(K), and U ′K in a smaller subset U ′′K , the map fK is
represented by a morphism f|U ′′K : U ′′K → VK . Then, repeat for U ′′K the argument
used for V ′K in order to find a dense, affine, open subset U of XR such that f
restricts to a morphism from UK =U⊗Spec(R) Spec(K) to VK .

Write U = Spec(R[x1, . . . ,xm]/I) and V = Spec(R[x1, . . . ,xm]/J) where I and J
are ideals of R[x1, . . . ,xm]. Then UK = Spec(K[x1, . . . ,xm]/I) and similarly VK =
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Spec(K[x1, . . . ,xm]/J). The morphism f|UK : UK → VK (and therefore fK too) is
defined by a morphism

FK : K[x1, . . . ,xm]/J→ K[x1, . . . ,xm]/I.

Denote by x̄i the image of xi in K[x1, . . . ,xm]/J and by x̄i
′ the image of xi in

K[x1, . . . ,xm]/I. There exists polynomials G1, . . . ,Gm ∈ K[y1, . . . ,ym] such that
FK(x̄i) = Gi(x̄1

′, . . . , x̄m
′). Since K is the fraction field of R, there exists a d ∈

R\{0}, such that dGi ∈ R[y1, . . . ,ym]. Set U ′ := Spec(R[1/d,x1, . . . ,xm]/I) which
is an open subset of U . Then the map

F : R[x1, . . . ,xm]/J→ R[1/d,x1, . . . ,xm]/I

sending x̄i to Gi(x̄ j
′, i = 1, . . . ,m) is well defined. It defines a birational map f ∈

Bir(XR) such that i( f ) = fK . This proves that i is surjective.

9.2. Proof of Proposition 3.2. As explained in Section 3.1, there exists a subring
R of k, which is finitely generated over Z, such that X and the birational transfor-
mations s ∈ S are defined over R. This means that there exists a projective scheme
XR→ Spec(R) such that X = XR×Spec(R) Spec(k). Let π : XR→ Spec(R) be such
a model, with generic fiber XK (K is the fraction field of R).

Lemma 9.1. There exists a nonempty, affine, open subset U of Spec(R) such that

(1) U is of finite type over Spec(Z);
(2) for every point y∈U, the fiber Xy is absolutely irreducible and dimK(y)Xy =

dimK XK , where K(y) is the residue field at y;
(3) for every s ∈ S and every y ∈U, the fiber Xy is not contained in BR,s.

Proof (see Proposition 4.3 in [6]). To prove the lemma, we shall use the following
fact: For any integral affine scheme Spec(A) of finite type over Spec(Z) and any
nonempty open subset V1 of Spec(A), there exists an affine open subset V2 of V1

which is of finite type over Spec(Z). Indeed, we may pick any non-zero element
f ∈ I where I is the ideal of A that defines the closed subset Spec(A) \V and set
U := Spec(A)\{ f = 0}. Then U = Spec(A[1/ f ]) is of finite type over Spec(Z).

Since XK is absolutely irreducible, Proposition 9.7.8 of [38] gives an affine open
subset V of Spec(R) such that Xy is absolutely irreducible for every y∈V . We may
suppose that V is of finite type over Spec(Z). By generic flatness (see [38], Thm.
6.9.1), we may change V in a smaller subset and suppose that the restriction of
π to π−1(V ) is flat. Then, the fiber Xy is absolutely irreducible and of dimension
dimK(y)Xy = dimK XK for every point y ∈V .

For s ∈ S, denote by BK,s the complement of the points in XK around which s is
an open immersion. Observe that BK,s is exactly the generic fiber of π|BR,s : BR,s→
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Spec(R). By generic flatness, there exists a nonempty, affine, open subset Us of V
such that the restriction of π to every irreducible component of π

−1
|BR,s

(Us) is flat.
Let U be the intersection of the open subsets Us, for s in S; then, shrink U to
suppose that U is of finite type over Spec(Z). Since

dimK(y)(BR,s∩Xy) = dimK(BK,s)< dimK XK = dimK(y)Xy

for every s ∈ S and y ∈U , the fiber Xy is not contained in BR,s. �

By Lemma 9.1, we may replace Spec(R) by U and assume that

• for every y ∈ Spec(R), the fiber Xy is absolutely irreducible;
• for every s ∈ S and y ∈ Spec(R), the fiber Xy is not contained in BR,s.

Since R is integral and finitely generated over Z, by Lemma 3.1 there exists
infinitely many primes p≥ 3 such that R can be embedded into Zp. This induces
an embedding Spec(Zp)→ Spec(R). Set XZp := XR×Spec(R) Spec(Zp). All fibers
Xy, for y ∈ Spec(R), are absolutely irreducible and of dimension d; hence, the
special fiber XFp of XZp → Spec(Zp) is absolutely irreducible and of dimension
d = dim(X). Since BZp,s∩XFp ⊂ BR,s ∩XFp for every s ∈ S, the fiber XFp is not
contained in BZp,s. Thus, XZp provides a good model for (X ,Γ).

9.3. From fixed points to invariant polydisks. We now prove Proposition 3.4;
the notations are from Section 3.2.2. Since XOK is projective, there exists an em-
bedding ψ : XOK → PN

OK
defined over OK . On the projective space PN(K), there is

a metric distp, defined by

distp([x0 : · · · : xN ], [y0 : · · · : yN ]) =
maxi 6= j(|xiy j− x jyi|p)

maxi(|xi|p)max j(|y j|p)
for all points [x0 : · · · : xN ], [y0 : · · · : yN ]∈PN(K). Via the embedding ψ|X(K) : XK(K)→
PN

K , distp restricts to a metric distp,ψ on XK(K). This metric does not depend on
the choice of the embedding ψ; thus, we simply write distp instead of distp,ψ.

Lemma 9.2. For w, z ∈ XK(K), distp(w,z) < 1 if and only if the reduction r(w)
and r(z) coincide.

Proof. Set ψ(w) = [x0 : · · · : xN ] and ψ(z) = [y0 : · · · : yN ] where the coordinates xi,
yi are in OK and satisfy maxi |xi|p = maxi |yi|p = 1. Then ψ(r(w)) = [x0 : · · · : xN ]

and ψ(r(z)) = [y0 : · · · : yN ] where xi and yi denote the images of xi and yi in the
residue field F = OK/mK . By definition,

distp([x0 : · · · : xN ], [y0 : · · · : yN ]) = max
i6= j

(|xiy j− x jyi|p).

If r(w) = r(z), we have xi = yi for all indices i; thus

|xiy j− x jyi|p = |(xi− yi)y j− (x j− y j)yi|p < 1
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and distp(w,z)< 1. Now, suppose that r(w) 6= r(z). Assume, first, that there exists
an index i, say i = 0, with xiyi 6= 0. Replacing each x j by x j/x0 and each y j by
y j/y0, we get x0 = y0 = 1. Since r(w) 6= r(z), there exists j ≥ 1 with x j 6= y j. It
follows that

distp(w,z)≥ |x jy0− x0y j|p = |x j− y j|p = 1.

To conclude, suppose that xiyi = 0 for all i ∈ {0, . . . ,N}. Pick two indices i and
j such that xi 6= 0 and y j 6= 0; thus, yi = 0 and x j = 0, and distp(w,z) ≥ |xiy j−
x jyi|p = 1. �

Recall that x is a smooth point in X(F) and V is the open subset of XK(K)

consisting of points z ∈ XK(K) satisfying r(z) = x. With suitable homogeneous
coordinates, x is the point [1 : 0 : · · · : 0] ∈ PN

F . Then the open set V is contained
in the unit polydisk

B := {[1 : z1 : · · · : zN ] | zi ∈ OK for all i = 1, . . . ,N}.

Recall from Section 2.1.1 that a map ϕ from the unit polydisk U =Od
K ⊂Kd to B is

analytic if we can find elements ϕi, 1≤ i≤ N, of the Tate algebra OK〈x1, . . . ,xd〉,
such that ϕ(x1, . . . ,xd) = [1 : ϕ1(x1, . . . ,xd) : · · · : ϕN(x1, . . . ,xd)].

Proposition 9.3. There exists a one to one analytic diffeomorphism ϕ from the
unit polydisk U = (OK)

d ⊂ Kd to V .

Proof. Consider the affine chart AN
OK
→ PN

OK
defined by z0 6= 0. Both x and B are

contained in AN
OK

. Since XOK is smooth at x, we know that there are polynomial
functions G j ∈ OK[z1, . . . ,zN ], 1≤ j ≤ N−d, such that

• X is locally defined by the equations G1 = · · ·= GN−d = 0; in particular,

V = XK(K)∩B = {z ∈ B | Gi(z) = 0, ∀i = 1, . . . ,N−d}.

• The rank of the matrix (∂z jGi(0))i≤N−d, j≤N is N−d, where Gi = Gi mod-
ulo mKOK[z1, . . . ,zN ].

Permuting the coordinates z1, . . . ,zN we may suppose that the determinant of the
matrix (∂z jGi(0))i, j≤N−d is different from 0 in F. Denote by π : B→ (OK)

d the
projection [1 : z1 : · · · : zN ] 7→ (z1, . . . ,zd). By Hensel’s lemma, there exists a unique
analytic diffeomorphism ϕ : (OK)

d → V such that Gi((z,ϕ(z))) = 0 for all i ≤
N−d. �

Let f be a birational map in Bir(XOK) such that x /∈ BOK , f and f (x) = x. Then
f fixes the set V of points z in XK(K) such that r(z) = x, and the action of f on
V is conjugate, via ϕ, to an analytic diffeomorphism on the polydisk U. This
concludes the proof of Proposition 3.4.
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