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Abstract. We prove several rigidity results on multiplier and length spec-
trum. For example, we show that for every non-exceptional rational map
f : P1(C) → P1(C) of degree d ≥ 2, the Q-vector space generated by the
characteristic exponents (that are not −∞) of periodic points of f has infinite
dimension. This answers a stronger version of a question of Levy and Tucker.
Our result can also be seen as a generalization of recent results of Ji-Xie and of
Huguin which proved Milnor’s conjecture about rational maps having integer
multipliers. We also get a characterization of postcritically finite maps by using
its length spectrum. Finally as an application of our result, we get a new proof
of the Zariski dense orbit conjecture for endomorphisms on (P1)N , N ≥ 1.
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1. Introduction

Let f : P1 → P1 be a rational map over C of degree d ≥ 2. Our aim is to study
the Q-vector space spanned by the characteristic exponents of periodic points of
a rational map on P1(C) and prove some rigidity results.

1.1. Multiplier, length and characteristic exponent. Let z0 ∈ P1(C) be a
periodic point of f with exact period n. Define nf (z0) := n be this period. We
write n(z0) for simplicity when the map f is clear. The multiplier ρf (z0) of f at
z0 is defined to be the differential dfn(z0) ∈ C. We write ρ(z0) for simplicity when
the map f is clear. The length of f at z0 is the norm |ρf (z0)|. The multiplier and
the length are invariant under conjugacy. The characteristic exponent of f at z0

is defined to be χf (z0) := n−1log|ρf (z0)|.
Denote by Per(f)(C) the set of all periodic points in P1(C) of f and define

Per∗(f)(C) := {z0 ∈ Per(f)(C) : ρf (z0) 6= 0}. When the base field C is clear, we
also write Per(f) and Per∗(f) for simplicity.
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The Lyapunov exponent (of the maximal entropy measure) of f is defined by

Lf :=

∫
P1(C)

log|df |dµf ,

where µf is the unique maximal entropy measure, and the norm of the differential
is computed with respect to the spherical metric.

1.2. Exceptional maps. In complex dynamics, the exceptional maps defined
below are often considered as exceptional examples among all rational maps. We
may view them as rational maps on P1(C) related to algebraic groups.

Definition 1.1. Let f : P1 → P1 be an endomorphism over C of degree d ≥ 2.

• It is called Lattès if it is semi-conjugate to an endomorphism on an elliptic
curve. Further it is called flexible Lattès if it is semi-conjugate to the
multiplication by an integer n on an elliptic curve for some |n| ≥ 2.
Otherwise, it is called rigid Lattès.
• We say that f is of monomial type if it semi-conjugate to the map z 7→ zn

on P1 for some integer n with |n| ≥ 2.
• We call f exceptional if it is Lattès or of monomial type. An endo-

morphism f is exceptional if and only if some iterate fk is exceptional
(k ∈ Z>0).

1.3. Statement of the main results. We fix an embedding of the algebraic
closure Q of Q in C and identify Q as a subfield of C, hence any number field is
a subfield of C. Denote the usual absolute value on C by | · |.

Our first result shows that the definition field of a non-flexible Lattès rational
map is determined by its length spectrum.

Theorem 1.2. Let f : P1
C → P1

C be a rational map of degree at least 2. Assume
that f is not a flexible Lattès map and for every x ∈ Per(f)(C), |ρf (x)| ∈ Q.

Then f is defined over Q.

In Theorem 2.1, we indeed proved a more general version of Theorem 1.2,
in which Q can be replaced to any algebraically closed subfield of C which is
invariant under the complex conjugation.

McMullen’s rigidity of multiplier spectrum [McM87] with a standard spread
out argument implies that, for a rational map f of degree at least 2 which is
not flexible Lattès, if its multipliers at periodic points are all algebraic, then f
is defined over Q. Theorem 1.2 is a generalization of this result from multiplier
spectrum to length spectrum (which contains less information). The rigidity of
length spectrum was proved in [JX23b, Theorem 1.5]. However, the spread out
argument does not apply directly in this case as the length spectrum map (and its
square) is not algebraic on the moduli space of rational maps. Indeed as shown
in [JX23b, Section 8.1], its square is not even real algebraic. In Section 2.3,
we introduce a way to do the spread out argument respecting the real structure
using Weil restriction. Another difficulty in the length spectrum case is the lack
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of noetherianity for semi-algebraic subsets. We overcome this difficulty using the
notion of admissible subsets introduced in [JX23b].

The following two results concern the Q-vector space spanned by the charac-
teristic exponents of periodic points.

Theorem 1.3. Let f : P1(C) → P1(C) be a rational map of degree d ≥ 2.
Suppose that f is not exceptional. Then the Q-vector space generated by {χf (z) :
z ∈ Per∗(f)} in R has infinite dimension.

Theorem 1.4. Let f : P1(C)→ P1(C) be a rational map of degree d ≥ 2. Assume
that there exists a number field K such that

(1.1) ∀z0 ∈ Per(f), ∃n = n(z0) ∈ Z>0, |ρf (z0)|n ∈ K.
Then f is exceptional.

Finitely many nonzero elements z1, . . . , zN in a commutative ring R are called
multiplicatively independent if for all triples (m1, . . . ,mN) of integers, zm1

1 · · · z
mN
N =

1 if and only if m1 = · · · = mN = 0. A sequence (zn)∞n=1 in R \ {0} is called
multiplicatively independent if any its finite subsequence is multiplicatively in-
dependent. Theorem 1.3 immediately implies the existence of infinitely many
multipliers for a non-exceptional f whose absolute values are multiplicatively
independent.

Corollary 1.5. Let f : P1(C) → P1(C) be a rational map of degree d ≥ 2.
Suppose that f is not exceptional. Then there exists a sequence (xj)

∞
j=1 in Per∗(f)

such that the sequence (|ρf (xj)|)∞j=1 is multiplicatively independent in R.

1.4. Motivations and previous results.

Milnor’s conjecture. Milnor [Mil06] has showed that an exceptional rational map
f : P1(C)→ P1(C) of degree d ≥ 2 must have all its multipliers of periodic points
in the ring of integers OK for some imaginary quadratic number field K, and in
fact in Z when f is not a rigid Lattès map. Milnor conjectured that the converse
is also true. Milnor’s conjecture was recently proved by Ji and Xie:

Theorem 1.6 ([JX23b, Theorem 1.13]). Let f : P1(C) → P1(C) be a rational
map of degree d ≥ 2. Assume that there exists an imaginary quadratic field K
such that all multipliers of f belong to OK. Then f is exceptional.

See also [BGHR22] for a different proof. Recently Huguin generalized the above
result using different approach:

Theorem 1.7 ([Hug23, Theorem 7]). Let f : P1(C)→ P1(C) be a rational map of
degree d ≥ 2. Assume that there exists a number field K such that all multipliers
of f belong to K. Then f is exceptional.

Since our assumption (1.1) in Theorem 1.4 is weaker than that of Theorem 1.7,
Theorem 1.4 is a generalization of Theorem 1.7. Indeed our assumption (1.1) is
even weaker than the condition that there is a number field K such that

(1.2) ∀z0 ∈ Per(f), ∃n ∈ Z>0, (ρf (z0))n ∈ K.
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A question of Levy and Tucker. On the other hand, in the 2014 AIM workshop
Postcritically Finite Maps In Complex And Arithmetic Dynamics, Levy [Lev14]
and Tucker [Tuc14] asked the following question independently:

Question 1.8. Let f : P1(C) → P1(C) be a non-exceptional rational map of
degree d ≥ 2 and let S be the set of all multipliers of periodic points of f . Take
the subgroup of C∗ generated by S \ {0}. Is that true that the rank of this group
is infinite?

It is not hard to see that our Corollary 1.5 gives a positive answer to (a gener-
alized version of) Levy and Tucker’s question.

1.5. Sketch of the proofs. We have explained the proof of Theorem 1.2 before.
Here we explain the proofs of Theorem 1.3 and Theorem 1.4.

We first give the idea of the proof of Theorem 1.4. We argue by contradiction
and suppose that f is not exceptional. The first step is to reduce to the case where
f is defined over Q. This can be done using our Theorem 1.2. After enlarging
K, we may assume that f is defined over K. In the second step, we combine
the arithmetic equidistribution theorem with a result of Zdunik [Zdu14] on the
Lyapunov exponent to get a contradiction. This argument is inspired by Huguin’s
proof of Theorem 1.7. Not like the case of Theorem 1.7, we can not apply the
equidistribution theorem to the one dimensional dynamical system f : P1 → P1

directly. Our idea is to consider the two dimensional endomorphism F := f × f
on P1 × P1 instead. More precisely, applying a result of Zdunik [Zdu14], we get
a sequence (xn)∞n=1 of distinct periodic points such that

lim
n→+∞

χf (xn) = a > Lf .

Consider the endomorphism F := f ×f on P1×P1 and Γ := {pn = (zn, zn)}
Zar
⊆

P1 × P1. By [GTZ11], the Dynamical Manin-Mumford conjecture holds for F .
Hence we may assume that Γ is F -invariant.

Let νn be the discrete probability measure equally supported at the union of
Galois orbits of iterates of pn under F . Then νn converges weakly to the canonical
measure µ on Γ with respect to F by an equidistribution-type theorem (Theorem
3.1), which is a reformulation of [Yua08, Theorem 3.1], see Section 3 for details.
Applying νn → µ to the continuous test functions max{log|det(dF )|, A} (A ∈ R)
and letting A→ −∞, we get

2a ≤
∫

log|det(dF )|dµ,

which is impossible since the right hand side equals to 2Lf < 2a by a direct
computation.

Next we sketch the proof of Theorem 1.3. According to [DH93], postcritically
finite (PCF) maps are defined over Q in the moduli spaceMd of rational maps of
degree d, except for the family of flexible Lattès maps. So it suffices to consider
the following two cases: 1). f is defined over Q, and 2). f is not PCF. For the
first case the conclusion follows from Theorem 1.4. For the second case, we need
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to develop some new techniques, which are presented in Section 5. In Section 5,
we consider some pseudo linear algebra (which means that the domain may not
be the whole vector space), and the vector space D(k)Q = k∗ ⊗Z Q for a field k
of characteristic zero. We will actually prove a theorem (Theorem 5.6) stronger
than the non-PCF case of Theorem 1.3, see Section 5 and 6 for details. To prove
Theorem 5.6, in Section 6.1 we first deal with the case that f is defined over Q.
A key ingredient in this step is [BGKT12, Lemma 4.1] which is a consequence of
Siegel’s theorem on S-integral points. The existence of a no preperiodic critical
point is essentially used in here. In Section 6.2, we consider the general case and
finish the proof. This is achieved by reducing to the case that f is defined over
Q via an algebraic-geometric argument and techniques in Section 5.

1.6. Applications.

The Zariski-dense orbit Conjecture. By applying Corollary 1.5 we can give a new
proof of a special case of the Zariski-dense orbit conjecture.

Zariski-dense orbit Conjecture (=ZDO). Let k be an algebraically closed
field of characteristic 0. Given an irreducible quasiprojective variety X over k
and a dominant rational self-map f on X. If we have {g ∈ k(X) : g ◦ f = g} = k
where k(X) is the function field of X, then there exists x ∈ X(k) whose forward
orbit under f is well-defined and Zariski-dense in X.

Remark 1.9. The converse of ZDO is easy. For some progressions of ZDO, see
e.g.[ABR11], [AC08], [MS14], [Xie17] and [Xie22].

As an application of Corollary 1.5, we give a new proof of (the most difficult
part of) a special case of ZDO, which was firstly proved in [Xie22, Theorem 1.16].

Theorem 1.10. Let X = P1 × · · · × P1 be the variety of product of N copies
of projective line over an algebraically closed field k of characteristic 0. Suppose
that f : X → X is an endomorphism of form f1× · · · × fN where fj : P1 → P1 is
a non-constant rational map for 1 ≤ j ≤ N . The ZDO holds for X and f .

Remark 1.11. We note that every dominant endomorphism f : (P1)N → (P1)N

over an algebraically closed field k of characteristic zero must be of form f1 ×
· · · × fN , after replacing f by a suitable positive-integer iterate.

The original proof of Theorem 1.10 in [Xie22] relies on the solution of the
(adelic) Zariski dense orbit conjecture on smooth projective surfaces [Xie22, The-
orem 1.15], the notion of adelic topology introduced in [Xie22, Section 3] and a
classification result on invariant subvarieties of f : (P1)N → (P1)N [Xie22, Propo-
sition 9.2] (see also [MS14] and [GNY18]). When n = 2, Pakovich gave another
proof [Pak23] using his classification of invariant curves in P1×P1 and some height
argument. In our new proof, we don’t need the ingredients mentioned above.

A characterization of PCF maps. We also show that one can decide whether a
rational map f : P1(C)→ P1(C) of degree d ≥ 2 is PCF with the information of
its multiplier spectrum or length spectrum on periodic points.
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Theorem 1.12. Let f : P1(C)→ P1(C) be a rational map of degree d ≥ 2. Then
the followings are equivalent:

(1) f is PCF;
(2) ρf (x) ∈ Q for all x ∈ Per(f)(C) and the Q-subspace V = V (f) of R is

of finite dimension, where V is generated over Q by {log|NKx/Q(ρf (x))| : x ∈
Per∗(f)(C)};

(3) |ρf (x)| ∈ Q for all x ∈ Per(f)(C) and the Q-subspace W = W (f) of R is
of finite dimension, where W is generated over Q by {log|NLx/Q(|ρf (x)|)| : x ∈
Per∗(f)(C)}.

Here Kx (resp. Lx) is any number field containing ρf (x) (resp. |ρf (x)|) and
NKx/Q (resp. NLx/Q) is the norm map for the extension Kx/Q (resp. Lx/Q),
i.e. the determinant of the Q-linear transformation induced by multiplication by
ρf (x) (resp. |ρf (x)|).

Clearly, the subspaces V,W above is independent of the choices of the fields
Kx, Lx, respectively.

The proofs of Theorem 1.10 and Theorem 1.12 will be given in Section 6.

Acknowledgement. The second-named author Junyi Xie would like to thank
Thomas Gauthier, Vigny Gabriel, Charles Favre and Serge Cantat for helpful
discussions.

The first-named author would like to thank Beijing International Center for
Mathematical Research in Peking University for the invitation. The second and
third-named authors Junyi Xie and Geng-Rui Zhang are supported by NSFC
Grant (No.12271007).

2. Rational maps with algebraic lengths

Let K be an algebraically closed subfield of C which is invariant under the
complex conjugate τ i.e. τ(K) = K. The aim of this section is the following
result.

Theorem 2.1. Let f : P1
C → P1

C be a rational map of degree d ≥ 2. Assume that
f is not a flexible Lattès map and for every x ∈ Per(f)(C), |ρf (x)| ∈ K. Then f
is defined over K.

Applying Theorem 2.1 to the case K = Q, we get Theorem 1.2.

2.1. Weil restriction. Recall that K is an algebraically closed field of C such
that τ(K) = K. Set L := Kτ = K ∩ R. For example, if K = C, then L = R. We
need the following easy lemma.

Lemma 2.2. We have K = L+ iL, in particular [K : L] = 2.

Proof of Lemma 2.2. Since K is algebraically closed, i ∈ K. In particular, K 6=
L. For every u ∈ K, we may write

u =
u+ τ(u)

2
+
u− τ(u)

2i
i

and both u+τ(u)
2

and u−τ(u)
2i

are contained in L. This concludes the proof. �
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We briefly recall the notion of Weil restriction. See [Poo17, Section 4.6] and
[BLR90, Section 7.6] for more information.

Denote by V ar/K (resp. V ar/L) the category of varieties over K (resp. L).
For every variety X over K, there is a unique variety R(X) over L represents the
functor V ar/L → Sets sending V ∈ V ar/L to Hom(V ⊗L K,X). It is called the
Weil restriction of X. The functor X 7→ R(X) is called the Weil restriction. One
has the canonical morphism ψK : X(K)→ R(X)(L). When K = C, this map is
a real analytic diffeomorphism. One may view X(K) as an L-algebraic variety
via ψK .

Definition 2.3. The L-Zariski topology on X(K) is the restriction of the Zariski
topology on R(X) via ψK . A subset Y of X(K) is L-algebraic if it is closed in
the L-Zariski topology. When K = C, the L-Zariski topology is exactly the real
Zariski topology as in [JX23b, Section 8.1.1].

By (iii) of Proposition 2.5 below, the L-Zariski topology is stronger than the
Zariski topology on X(K).

When K = C, roughly speaking, the Weil restriction is just constructed by
splitting a complex variable z into two real variables x, y via z = x + iy. For
the convenience of the reader, in the following example, we show the concrete
construction of R(X) when X is affine.

Example 2.4. First assume that X = AN
K . Then R(X) = A2N

L . The map

ψK : AN
L (L) = KN → A2N

L (L) = R2N

sends (z1, . . . , zN) to (x1, y1, x2, y2, . . . , xN , yN) where zj = xj + iyj.

Consider the algebra B := K[I]/(I2 + 1) ' K ⊕ IK. Every f ∈ K[z1, . . . , zN ]
defines an element

F := f(x1 + Iy1, . . . , xN + IyN) ∈ B[x1, y1, . . . , xN , yN ].

Since

B[x1, y1, . . . , xN , yN ] = K[x1, y1, . . . , xN , yN ]⊕ IK[x1, y1, . . . , xN , yN ],

F can be uniquely decomposed to

F = r(f) + Ii(f)

where r(f), i(f) ∈ K[x1, y1, . . . , xN , yN ].

More generally, if X is the closed subvariety of AN
K = SpecK[z1, . . . , zM ] defined

by the ideal (f1, . . . , fs), then R(X) is the closed subvariety of

R(AN
K) = A2N

L = SpecL[x1, y1, . . . , xN , yN ]

defined by the ideal generated by r(f1), i(f1), . . . , r(fs), i(fs).

We list some basic properties of Weil restriction without proof.

Propsition 2.5. Let X, Y ∈ V ar/K, then we have the following properties:

• if X is irreducible, then R(X) is irreducible;
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• dimR(X) = 2 dimX;
• if f : Y → X is a closed (resp. open) immersion, then the induced

morphism R(f) : R(Y )→ R(X) is a closed (resp. open) immersion.

We still denote by τ the restriction of τ to K. Denote by Xτ the base change
of X by the field extension τ : K → K. This induces a morphism of schemes
(over Z) τ : Xτ → X. It is not a morphism of schemes over K. It is clear that
(Xτ )τ = X.

Example 2.6. If X is the subvariety of AN
K = SpecK[z1, . . . , zN ] defined by the

equations
∑

I ai,Iz
I = 0, i = 1, . . . , s Then Xτ is the subvariety of AN

K defined
by

∑
I τ(ai,I)z

I = 0, i = 1, . . . , s. The map τ : X = (Xτ )τ → Xτ sends a point
(z1, . . . , zN) ∈ X(K) to (τ(z1), . . . , τ(zN)) ∈ Xτ (K).

The following result due to Weil is useful for computing the Weil restriction.

Propsition 2.7. [Poo17, Exercise 4.7] We have a canonical isomorphism

R(X)⊗L K ' X ×Xτ .

Under this isomorphism,

R(X)(L) = {(z1, z2) ∈ X(K)×Xτ (K)| z2 = τ(z1)}
and ψK sends z ∈ X(K) to (z, τ(z)) ∈ R(X)(L).

2.2. Admissible subsets. In this section,we recall the notion of admissible sub-
sets on real algebraic varieties introduced in [JX23b].

Let X be a variety over R.

Definition 2.8. [JX23b, Section 8.2] A closed subset V of X(R) is called admis-
sible if there is a morphism f : Y → X of real algebraic varieties and a Zariski
closed subset V ′ ⊆ Y such that V = f(V ′(R)) and f is étale at every point in
V ′(R).

In particular, every algebraic subset of X(R) is admissible.

Remark 2.9. Denote by J the non-étale locus for f in V . We have J ∩V (R) = ∅.
Since we may replace V by V \ J , in the above definition we may further assume
that f is étale.

Propsition 2.10. [JX23b, Remarks 8.14, 8.15 and Proposition 8.16] We have
the following basic properties:

(1) Let Y be a Zariski closed subset of X. If V is admissible as a subset of
X(R), then V ∩ Y is admissible as a subset of Y (R).

(2) An admissible subset is semialgebraic.
(3) Let V1, V2 be two admissible closed subsets of X(R). Then V1 ∩ V2 is

admissible.

The following theorem shows that admissible subsets satisfy the descending
chain condition.

Theorem 2.11. [JX23b, Theorem 8.17] Let Vn, n ≥ 0 be a sequence of decreasing
admissible subsets of X(R). Then there is N ≥ 0 such that Vn = VN for all n ≥ N.
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2.3. Transcendental points. Let XK be a variety over K and X := XK ⊗K C.
We think that XK as a model of X over K.

Denote by πK : X → XK the natural projection. For any point x ∈ X(C),
define Z(x)K to be the Zariski closure of πK(x) and Z(x) := π−1

K (Z(x)K). It
is clear that Z(x) is irreducible. We call Z(x) the C/K-closure of x w.r.t the
model XK . We say that x is transcendental if dimZ(x) ≥ 1 and call dimZ(x)
the transcendental degree of x.

The notion of transcendental points (on curves) was introduced in [XY23, Sec-
tion 4.1] and it plays important role in [XY23] on the geometric Bombieri-Lang
conjecture and [JX23a] on the dynamical André-Oort conjecture . Roughly speak-
ing, a very general point in Z(x) satisfies the same algebraic properties as x. In
this paper, we study lengths of periodic points in whose definition we need the
norm map | · | : C → R≥0 which is not algebraic. However | · |2 : C → R is real
algebraic. For this reason we need to generalize the above notions to respect the
real structure.

The Weil restriction R(X) of X w.r.t. C/R is a real algebraic variety. We have
R(X) = R(XK) ⊗L R. Denote by πL : R(X) → R(XK) the natural projection.
For every x ∈ X(C), let Y (x)L be the Zariski closure of πL(ψC(x)) and Y (x) :=
π−1
L (Y (x)L). Set ZR(x) := ψ−1

C (Y (x)(R)) which is a real Zariski closed subset of
X(C).

We now give a more concrete description of Z(x) and ZR(x). Let UK be
an affine open neighborhood of πK(x). Set U := π−1

K (UK) = UK ⊗K C. We
have a natural embedding π∗K : O(UK) ↪→ O(U). We can view elements in
OK(U) := π∗K(O(UK)) as the algebraic functions on U(C) defined over K. Then
we have

Z(x) ∩ U = {y ∈ U | h(y) = 0 for every h ∈ OK(U) with h(x) = 0}
and Z(x) is the Zariski closure of Z(x) ∩ U.

As O(R(U)C) = O(R(U)) ⊗R C, every h ∈ O(R(U)C) can be viewed as a C-
valued algebraic function on R(U)(R). Every h ∈ O(R(U)C) induces a function
h◦ψC on U(C). The functions of this form are exactly the C-valued real algebraic
functions on U(C). Denote by CR−alg(U) the R-algebra of C-valued real algebraic
functions on U(C). Since algebraic functions are real algebraic, we have a natural
embedding O(U) ⊆ CR−alg(U). By Proposition 2.7, we have

CR−alg(U) ' O(U)⊗C τ(O(U)).

Let OL(R(U)) := π∗L(O(R(UK))) be the set of algebraic functions defined over
L on R(U). Let CR−alg,L(U) the image of OL(R(U))⊗L K in CR−alg(U), which is
the set of C-valued real algebraic functions on U(C) defined over L. It is clear
that OK(U) ⊆ CR−alg,L(U). By Proposition 2.7, we have

CR−alg,L(U) ' OK(U)⊗K τ(OK(U)).

We have

ZR(x) ∩ U(C) = {y ∈ U(C)| h(y) = 0 for every h ∈ CR−alg,L(U) with h(x) = 0}
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and ZR(x) is the real Zariski closure of ZR(x)∩U(C). This implies the following
lemma.

Lemma 2.12. Let fK : X ′K → XK be a morphisms between K-varieties. Set
X ′ := X ′K⊗KC and let f : X ′ → X be the morphism induced by f. Let x′ ∈ X ′(C)
and x ∈ X(C) with f(x′) = x. Then we have f(ZR(x′)) ⊆ ZR(x).

Lemma 2.13. We have ZR(x) ⊆ Z(x) and ZR(x) is Zariski dense in Z(x). In
particular, if x is transcendental, then dimR Z

R(x) > 1.

Proof. It is clear that ZR(x) ⊆ Z(x). After replacing XK by an affine open
neighborhood of πK(x). We may assume that XK , X are affine. Let h ∈ O(X)
such that h(ZR(x)) = 0. Let ej, j ∈ J be a K-basis of C. We may assume
that 0 ∈ J and 1 = e0. Write h ⊗C 1 =

∑
j∈J gjej. Then gj ∈ CR−alg,L(X) and

gj(x) = 0.
Let fn, n ∈ N be a K-basis of OK(X). We may assume that 0 ∈ N and 1 = f0.

Write

gj =
∑
m,n∈N

bj,m,nfm ⊗ τ(fn).

The we get

h⊗C 1 =
∑

j∈J,m,n∈N

bj,m,nejfm ⊗ τ(fn).

As ejfm ⊗ τ(fn), j ∈ J,m, n ∈ N forms a K-basis of CR−alg(X), we have

bj,m,n = 0

for every n 6= 0. So gj =
∑

m∈N bj,m,0fm⊗1 ∈ OK(X). Since gj(x) = 0, gj|Z(x) = 0.
Then we have h|Z(x) = 0 which concludes the proof. �

Lemma 2.14. Assume that XK is affine. Let h ∈ CR−alg,L(X). For x ∈ X(C),
if h(x) ∈ K, then h is constant on ZR(x).

Proof. Write h = g ◦ ψC where g ∈ OL(R(X))⊗L K. Write g = π∗L(g1) + π∗L(g2)i
where g1, g2 ∈ O(R(XK)). Since h(x) ∈ K, π∗L(g1)(ψ(x)), π∗L(g2)(ψ(x)) ∈ L. The
map πL|ψ(x) : ψ(x) → Y (x)L induces an embedding O(Y (x)L) ↪→ L. The image
of gi|Y (x)L , i = 1, 2 are contained in L. Hence gi|Y (x)L , i = 1, 2 are contained in L.
This implies that π∗L(g1), π∗L(g2) are constant on Y (x)(L), hence h is constant on
ZR(x). This concludes the proof. �

2.4. Moduli space of rational maps. For d ≥ 2, let Ratd be the space of degree
d endomorphisms on P1. It is a smooth quasi-projective variety of dimension 2d+1
[Sil12]. Let FLd ⊆ Ratd be the locus of flexible Lattès maps, which is Zariski
closed in Ratd. The group PGL2 = Aut(P1) acts on Ratd by conjugacy. The
geometric quotient

Md := Ratd/PGL2

is the (coarse) moduli space of endomorphisms of degree d [Sil12]. The mod-
uli space Md = Spec(O(Ratd)

PGL2) is an affine variety of dimension 2d − 2
[Sil07, Theorem 4.36(c)]. Let Ψ : Ratd → Md be the quotient morphism. Set
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[FLd] := Ψ(FLd). The above construction works over any algebraically closed
field of characteristic 0 and commutes with base changes.

For every n ∈ Z>0, let Pern(fRatd) be the closed subvariety of Ratd × P1 of the
n-periodic points of fRatd . Let φn : Pern(fRatd) → Ratd be the first projection.
It is a finite map of degree dn + 1. Let λn : Pern(fRatd) → A1 be the morphism
(ft, x) 7→ dfnt (x) ∈ A1. View Pern(fRatd) as the moduli space of endomorphisms
of degree d with a marked n-periodic point. We also denote it by Ratd[n] or
Rat1

d[n].
Let s1, . . . , sn be a sequence of elements in Z≥0 with s1 ≤ · · · ≤ sn and si ≤

di!+1. We construct the space Rd(s1, . . . , sn) of rational functions of degree d with
sn marked n!-periodic points (counting with multiplicities) and in which there
are sn−1 (n − 1)!-periodic points (counting with multiplicities) . . . and in which
there are s1 1-periodic points (counting with multiplicities) as follows: Consider
the fiber product (Ratd[n!])sn/Ratd

of sn copies of Ratd[n!] over Ratd. For i 6= j ∈
{1, . . . , dn! +1}, let πi,j : (Ratd[n!])sn/Ratd

→ (Ratd[n!])2
/Ratd

be the projection to the

i, j coordinates. The diagonal ∆ ⊆ (Ratd[n!])2
/Ratd

is an irreducible component of

(Ratd[n!])2
/Ratd

. Consider the open subset

U := (Ratd[n!])sn/Ratd
\ (∪i 6=j∈{1,...,dn!+1}π

−1
i,j (∆)).

Let U ′ be the subset of U of points (f, x1, . . . , xsn) satisfying fm!(xi) = xi for
every m = 1, . . . , n and i = 1, . . . , sm. This set is open and closed in U. We then
define Rd(s1, . . . , sn) to be the Zariski closure of U ′ in (Ratd[n!])sn/Ratd

. For m ≤ n,

define φn,m : Rd(s1, . . . , sn) → Rd(s1, . . . , sm) the morphism (f, x1, . . . , xsn) 7→
(f, x1, . . . , xsm). Moreover, denote by φn,0 : Rd(s1, . . . , sn)→ Ratd the morphism
(f, x1, . . . , xsn) 7→ f. For m1 ≤ m2 ≤ n, we have φm2,m1 ◦ φn,m2 = φn,m1 . Let
λs1,...,sn : Rd(s1, . . . , sn)→ Asn the morphism defined by

(f, x1, . . . , xsn) 7→ (dfn!(x1), . . . , dfn!(xsn)).

Since φn is étale at every point x ∈ Pern(fRatd) \ λ−1
s1,...,sn

(1), φn,0 is étale at every

point x ∈ (λs1,...,sn)−1((A1 \ {1})sn).
DefineMd(s1, . . . , sn) := Rd(s1, . . . , sn)/PGL2 to be the moduli space of endo-

morphisms of degree d on P1 with sn marked n!-periodic points (counting with
multiplicities) and in which there are sn−1 (n−1)!-periodic points (counting with
multiplicities) . . . and in which there are s1 1-periodic points (counting with mul-
tiplicities). The morphisms φn,m, λs1,...,sn descent to [φn,m] : Md(s1, . . . , sn) →
Md(s1, . . . , sm) when m = 1, . . . , n, [φn,0] :Md(s1, . . . , sn)→Md and [λs1,...,sn ] :
Md(s1, . . . , sn) → Asn . Then [φn,0] is étale at every point x ∈ [λs1,...,sm ]−1((A1 \
{1})sn).

2.5. Length maps. For d ≥ 2, let s1, . . . , sn be a sequence of elements in Z≥0

with s1 ≤ · · · ≤ sn and si ≤ di! + 1. Let

|λs1,...,sn| :Md(s1, . . . , sn)(C)→ Rsn
≥0

be the composition of

[λs1,...,sn ] :Md(s1, . . . , sn)(C)→ Csn
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and the norm map

(a1, . . . , asn) ∈ Csn 7→ (|a1|, . . . , |asn|) ∈ Rsn
≥0.

Define

qs1,...,sn :Md(s1, . . . , sn)(C)→ Rsn
≥0

be the composition of

|λs1,...,sn| :Md(s1, . . . , sn)(C)→ Rsn
≥0

and the map

(a1, . . . , asn) ∈ Rsn
≥0 7→ (a2

1, . . . , a
2
sn) ∈ Rsn

≥0.

It is clear that

qs1,...,sn ∈ CR−alg,L(Md(s1, . . . , sn)(C)).

Here the model of Md(s1, . . . , sn)C over K is taken to be Md(s1, . . . , sn)K .

By Lemma 2.14, for every x ∈ Md(s1, . . . , sn)(C), if qs1,...,sn(x) ∈ Lsn , then
qs1,...,sn|V R(x) is constant. Hence for every x ∈Md(s1, . . . , sn)(C), if |λs1,...,sn|(x) ∈
Lsn , then |λs1,...,sn||V R(x) is constant.

2.6. Rigidity of length spectrum. In this section, we recall the rigidity of
length spectrum proved by Ji and Xie [JX23b].

Let f be an endomorphism of P1(C) of degree d ≥ 2. As in [JX23b, Section 8.3]
the length spectrum L(f) = {L(f)n, n ≥ 1} of f is a sequence of finite multisets1,
where L(f)n := Ln(f) is the multiset of norms of multipliers of all fixed points of
fn. In particular, L(f) is a multiset of non-negative real numbers of cardinality
dn + 1. For every n ≥ 0, let RL(f)n be the sub-multiset of L(f)n consisting of all
elements > 1. We call RL(f) := {RL(f)n, n ≥ 1} the repelling length spectrum
of f and RL∗(f) := {RL∗(f)n := RL(f)n!, n ≥ 1} the main repelling length
spectrum of f . We have dn + 1 ≥ #RL(f)n ≥ dn + 1 −M for some M ≥ 0. It
is clear that the difference dn! + 1 − #RL∗(f)n is increasing and bounded. As
L(f), RL(f) and RL∗(f) are invariant under conjugacy, they descent onMd(C).
For every [f ] ∈Md(C), define L([f ]) := L(f), RL([f ]) := RL(f) and RL∗([f ]) :=
RL∗(f) for any f in the class [f ].

Let Ω be the set of sequences An, n ≥ 1 of multisets consisting of real numbers
of norm strictly larger than 1 satisfying #An ≤ dn! + 1 and for every a ∈ An with
multiplicity m, an+1 ∈ An+1 with multiplicity at least m. For A,B ∈ Ω, we write
A ⊆ B if An ⊆ Bn for every n ≥ 1. An element A = (An) ∈ Ω is called big if
dn! + 1 −#An is bounded. For every endomorphism f of P1(C) of degree d, we
have RL∗(f) ∈ Ω and it is big.

Theorem 2.15. [JX23b, Theorem 8.25] If A ∈ Ω is big, then the set

{f ∈Md(C) \ [FLd]| A ⊆ RL∗(f)}
is finite.

1A multiset is a set except allowing multiple instances for each of its elements. The number
of the instances of an element is called the multiplicity. For example: {a, a, b, c, c, c} is a multiset
of cardinality 6, the multiplicities for a, b, c are 2,1,3, respectively.
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2.7. Proof of Theorem 2.1. Let f : P1
C → P1

C be a rational map of degree
d ≥ 2. Assume that f is not a flexible Lattès map and for every x ∈ Per(f)(C),
|ρf (x)| ∈ K. We want to show that [f ] ∈ Md(C) is not transcendental over K
for the model (Md)K . Now assume that [f ] is transcendental.

Set A := RL∗(f) ∈ Ω, which is big. Set sn := #An. We may pick a sequence of
periodic points xi, i ≥ 1 such that for every n ≥ 1, x1, . . . , xsn are fixed by fn! and
An = {|ρ(xi)|n!, i = 1, . . . , sn}. Let [fn] ∈M(s1, . . . , sn)(C) be the point presented
by (f, x1, . . . , xsn). It is clear that [φn,0]([fn]) = [f ] for every n ≥ 1. Since
[f ] is transcendental, for every n ≥ 1, [fn] is transcendental. By Lemma 2.13,
dimR Z

R(fn) ≥ 1 for every n ≥ 1. Our assumption implies that |λs1,...,sn|([fn]) ∈
Lsn . The last paragraph of Section 2.5 shows that |λs1,...,sn| is constant on ZR(fn).
As |λs1,...,sn|([fn]) ∈ (1,+∞)sn , [φn,0] is étale in a neighborhood of ZR(fn). Since
[φn,0] is a finite map, Vn := [φn,0](ZR(fn)) is closed in Md(C). Then Vn is an
admissible subset of Md(C). Moreover, by Lemma 2.12, Vn, n ≥ 1 is decreasing.
By Theorem 2.11, there is N ≥ 1 such that Vn = VN for n ≥ N. Then for every
g ∈ VN , we have A ⊆ RL∗([g]). Since [f ] 6∈ [FLd], Z

R([fN ]) is real irreducible
and dimR Z

R([fN ]) ≥ 1, VN ∩ (Md(C) \ [FLd]) is infinite. This contradicts to
Theorem 2.15. This concludes the proof. �

3. An equidistribution theorem

The following equidistribution-type theorem is a reformulation of [Yua08, The-
orem 3.1]. We only state it in the case where the canonical height of X is 0,
since this case often appear in the dynamical settings. Our statement is slightly
stronger than [Yua08, Theorem 3.1] as our Sn may contain several Galois orbits.
We follow the terminology in [Yua08].

Theorem 3.1. Let K be a number field and X be a projective variety over K.
Fix an embedding of K into C. Let L be a metrized line bundle on X such that
L is ample and the metric is semipositive. Let µ := degL(X)−1c1(L)dim X

C be the
canonical probability measure on X(C) associated to L. For n ∈ Z>0, let Sn be a
countable subset of X(K) which is Gal(Q/K)-invariant. For y ∈ Sn, given real
numbers an,y ≥ 0 such that

∑
y∈Sn an,y = 1 and an,y = an,σy for all y ∈ Sn and

σ ∈ Gal(Q/K). Assume that (Sn)∞n=1 satisfies the following two conditions:
(1) (small)

∑
y∈Sn an,yhL(y) → 0 as n → +∞, here hL is the height function

associated with L ;
(2) (generic) for any proper subvariety V $ X of X,

∑
y∈Sn∩V an,y → 0 as

n→ +∞.
Then the measure µn :=

∑
y∈Sn an,yδy converges weakly to µ on X(C) as n→ +∞

where δy denotes the Dirac measure at the point y, i.e., for all continuous function
g on X(C), we have

(3.3) lim
n→∞

∑
y∈Sn

an,yg(y) =

∫
X(C)

gdµ.

Proof. Our proof is a small modification of the one for [Yua08, Theorem 3.1].
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Let d be the dimension of X. We say that a continuous function f on X(C)
is smooth if there exists an embedding of X(C) into a projection manifold Y
such that f can be extended to a smooth function on Y . As in [Zha98], by the
Stone-Weierstrass theorem, continuous functions on X(C) can be approximated
uniformly by smooth functions. Then we suffice to prove (3.3) for all smooth real-
valued function f on X(C). Fix such a function f . Let v0 be the archimedean
place of K corresponding to the fixed embedding K ↪→ C. For a real function
g on X(C) and a metrized line bundle G = (G, ‖·‖) on X, we define the twist
G(g) := (M, ‖·‖′) to be the line bundle G on X with the metric ‖s‖′v0 = ‖s‖v0e−g
and ‖s‖′v = ‖s‖v for any v 6= v0. Let ε > 0. By the adelic Minkowski’s theorem
(cf. [BG06, Appendix C]) and [Yua08, Lemma 3.3], for a fixed place ω0 ∈ MK

and N ∈ Z>0, there exists a nonzero small section sN ∈ Γ(X,NL) such that

log‖sN‖′ω0
≤ − ĉ1(L(εf))d+1 +O(ε2)

(d+ 1)degL(X)
N + o(N) = (−hL(εf)(X) +O(ε2))N + o(N)

and log‖sN‖′ω ≤ 0 for all ω 6= ω0, where ‖·‖′ω denotes the metric of NL(εf). For
a point y, denote by y its Zariski closure. For N, n ∈ Z>0, denote the vanishing
locus of sN by VN $ X, using the condition of L, we have

∑
y∈Sn

an,yhL(εf)(y) ≥
∑

y∈Sn,y∈VN

an,ydeg(y)−1

∑
v

∑
z∈O(y)

(−N−1 log‖sN(z)‖′v)

 + 0

≥

 ∑
y∈Sn,y /∈VN

an,y

 (hL(εf)(X) +O(ε2) + oN(1)).

Let n→ +∞, the generic condition (2) implies that

lim inf
n→+∞

∑
y∈Sn

an,yhL(εf)(y) ≥ hL(εf)(X) +O(ε2) + oN(1).

Let N → +∞, then

lim inf
n→+∞

∑
y∈Sn

an,yhL(εf)(y) ≥ hL(εf)(X) +O(ε2).

By the definition, it is easy to see that∑
y∈Sn

an,yhL(εf)(y) =
∑
y∈Sn

an,yhL(y) + ε

∫
X(C)

fdµn

and

hL(εf)(X) = hL(X) + ε
1

degL(X)

∫
X(C)

fc1(L)dC +O(ε2).

With the small condition (1), dividing ε and setting ε→ 0+, we get

lim inf
n→+∞

∫
X(C)

fdµn ≥
1

degL(X)

∫
X(C)

fc1(L)dC =

∫
X(C)

fdµ.
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Replacing f by −f in the above inequality, we get the other direction and thus

lim
n→+∞

∫
X(C)

fdµn =

∫
X(C)

fdµ.

�

Remark 3.2. The same idea also applies for a non-archimedean place or the alge-
braic case, which gives the full analogy of [Yua08, Theorem 3.1 and 3.2].

In order to check the generic condition in Theorem 3.1, we need the following
lemma. The proof uses the ergodic theory with respect to the constructible
topology (on algebraic varieties) introduced by Xie in [Xie23].

Lemma 3.3. Let K be a number field and X be a projective variety over K.
Given a dominant endomorphism f : X → X and a sequence (xn)∞n=1 of periodic
points in X(K) under f . Assume that (xn)∞n=1 is generic in X, i.e., there does
not exist a proper Zariski closed subset Z $ X containing all xn except for finitely
many. Then for every proper subvariety V $ X, we have

(3.4)
#(V ∩Of (xn))

#Of (xn)
→ 0, as n→ +∞,

where Of (xn) is the (forward) orbit of xn under f .

Proof. Clearly, we suffice to show that for any subsequence (nk)k of (n)∞n=1, there
exists a subsubsequence (nkl)l such that

#(V ∩Of (xnkl ))

#Of (xnkl )
→ 0, as l→ +∞.

Given a proper subvariety V $ X and fix V . Let |X| be X equipped with the
constructible topology (i.e. the topology of X generated by all its Zariski closed
and open subsets) and M1(|X|) be the space of all probability Radon measures
on |X| with the topology of weak convergence relative to all continuous functions
on |X|. Then M1(|X|) is sequentially compact (cf. [Xie23, Corollary 1.14]). For
n ∈ Z>0, set

mn = (#Of (xn))−1
∑

z∈Of (xn)

δz.

By the sequentially compactness of M1(|X|), we suffice to show that for any
subsequence (nk)k of (n)∞n=1 with mnk → m as k → +∞ in M1(|X|) for some
m ∈M1(|X|), we have

#(V ∩Of (xnk))

#Of (xnk)
→ 0, as k → +∞.

Without loss of generality, we may assume that (mn) itself converges to a measure
m ∈ M1(|X|); and we suffice to show (3.4) in this case. As f∗mn = mn, we see
that f∗m = m. Then according to [Xie23, Lemma 5.3], m must be of form
m =

∑
y∈S ayδOf (y), where S is a countable set of periodic elements in |X| under

f , ay ∈ R≥0 with
∑

y∈S ay = 1, and δOf (y) = (#Of (y))−1
∑

z∈Of (y) δz for y ∈ S.
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Denote the characteristic function of V $ |X| by 1V , then 1V is continuous with
respect to the constructible topology. As mn → m, we get

#(V ∩Of (xn))

#Of (xn)
=

∫
1V dmn →

∫
1V dm, as n→ +∞.

Suppose that (3.4) fails. Then there must be a y ∈ S with ay > 0 and V ∩Of (y) 6=
∅. Denote the exact period of y under f by k. Let Y be the Zariski closure of
{y}. Then Y ⊆ ∪k−1

j=0f
◦j(V ), hence Y is also a proper Zariski closed subset of X.

Note that
#(Y ∩Of (xn))

#Of (xn)
=

∫
1Y dmn →

∫
1Y dm ≥

ay
k
> 0, as n→ +∞.

Hence for every sufficiently large integer n � 1, we have xn ∈ ∪∞j=0f
◦j(Y ) =

∪k−1
j=0f

◦j(Y ); but ∪k−1
j=0f

◦j(Y ) has dimension strictly smaller than dim X by the
noetherian condition, contradicting the assumption that (xn)∞n=1 is generic in
X. �

4. Proofs of Theorem 1.4 and the defined over Q case of Theorem
1.3

Proof of Theorem 1.4. Assume that f is not exceptional. By Theorem 1.2, our
assumption implies that f is defined over Q (after a conjugate over C), hence
over a number field K. After replacing K by a finite extension of K, we may
assume that both f and f are defined over K. Here we denote by f the rational
map obtained from f via replacing the coefficients by their complex conjugates.
According to [Hug23, Theorem 9 and Lemma 11] (cf. [Zdu14]), there exists a
sequence (xn)∞n=1 of distinct points in Per∗(f) such that

a := lim
n→∞

χf (xn) > Lf ,

where the limit exists and is finite.
Clearly, Lf = Lf . For an arbitrary x ∈ Per(f), we have x ∈ Per(f), nf (x) =

nf (x) and ρf (x) = ρf (x), hence χf (x) = χf (x).

Consider the morphism F := f × f : P1 × P1 → P1 × P1 over K. For n ∈ Z>0,
set pn = (xn, xn) ∈ Per(F ). Let Γ be the Zariski closure of {pn : n ∈ Z>0} in
P1 × P1. As (pn)∞n=1 is pairwise distinct, by the noetherian condition, we have
dim Γ ≥ 1. After taking a subsequence, we may assume that Γ is irreducible and
that (pn)∞n=1 is generic in Γ.

There are 2 cases: dim Γ = 2 or 1. When dim Γ = 2, then Γ = P1 × P1 and
the canonical probability measure on Γ relative to F is µ := µf × µf , where µf
and µf are the canonical measures on P1 relative to f and f , respectively. When

dim Γ = 1, by the dynamical Manin-Mumford problem for F on P1 × P1, proved
in [GTZ11], Γ is periodic under F . After replacing f by fm for some suitable
m ∈ Z>0, we may assume that Γ is F -invariant. Still denote by µ the canonical
probability measure on Γ relative to F . In all cases, let πj : Γ → P1 be the j-th
projection on Γ for j = 1, 2. Then we have

deg(π1)µ = π∗1µf , deg(π2)µ = π∗2µf .
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For n ∈ Z>0, set

νn =
1

nf (xn)[Kn : K]

nf (xn)−1∑
j=0

∑
τ∈Gal(Kn/K)

δF ◦j(τ(pn)),

where Kn is the Galois closure of K(xn) over K in Q and K(∞) := K.
Claim: νn converges weakly to µ as n→ +∞.
We prove the claim using Theorem 3.1. Let L be the line bundle π∗1OP1(1) ⊗

π∗2OP1(1) on Γ. Then F |∗ΓL ∼= L⊗d. By [Zha95], there exists a unique semipositive
metric over L making F |∗ΓL ∼= L⊗d an isometry; denote L with this metric by L.
We need to check the conditions (1) and (2) in Theorem 3.1. The condition (1) is
trivial, since hL(Γ) = 0 and the height of any periodic algebraic point relative to
L is zero. For the condition (2), let V be an arbitrary proper subvariety of Γ and
fix V . By consider the finitely many images of V under Galois transformations,
the generic condition (2) follows from Lemma 3.3. Thus the claim is true.

Let n ∈ Z>0, take m ∈ Z>0 such that |ρf (xn)|m ∈ K by the assumption, and

write l = nf (xn). For every τ ∈ Gal(Q/K) and 0 ≤ j ≤ l − 1, we have

det(dF ◦l(F ◦j(τ(pn))))m = det(dF ◦l(τ(pn)))m = τ(det(dF ◦l(pn))m)

=τ(ρf (xn)mρf (xn)m) = τ(|ρf (xn)|2m) = |ρf (xn)|2m,

hence |det(dF l(F ◦j(τ(pn))))| = |ρf (xn)|2. Then by the definition of νn, we have∫
log|det(dF )|dνn =

1

l

∫
log|det(dF ◦l)|dνn

=
1

l2[Kn : K]

l−1∑
j=0

∑
τ∈Gal(Kn/K)

log|det(dF ◦l(F ◦j(τ(pn))))|

=
1

l2[Kn : K]

l−1∑
j=0

∑
τ∈Gal(Kn/K)

log|ρf (xn)|2

=
2

l
log|ρf (xn)| = 2χf (xn).

For any A ∈ R, since the function max{log|det(dF )|, A} is continuous, we have

2a = 2 lim
n→∞

χf (xn) = lim
n→∞

∫
log|det(dF )|dνn

≤ lim
n→∞

∫
max{log|det(dF )|, A}dνn

=

∫
max{log|det(dF )|, A}dµ.

Let A→ −∞, by the monotone convergence theorem, we have

(4.5) 2Lf < 2a ≤
∫

log|det(dF )|dµ.
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When dim Γ = 2, it is clear that∫
log|det(dF )|dµ =

∫
P1×P1

log|det(d(f × f))|d(µf × µf ) = Lf + Lf = 2Lf ,

contradicting (4.5). When dim Γ = 1, then∫
log|det(dF )|dµ =

∫
Γ

log|det(d(f × f))|dµ

=

∫
Γ

log|det(df) ◦ π1|dµ+

∫
Γ

log|det(df) ◦ π2|dµ

=

∫
Γ

log|det(df) ◦ π1|d
π∗1µf

deg(π1)
+

∫
Γ

log|det(df) ◦ π2|d
π∗2µf

deg(π2)

=

∫
P1

log|det(df)|dµf +

∫
P1

log|det(df)|dµf
=Lf + Lf = 2Lf ,

contradicting (4.5). Therefore, f must be exceptional. We have finished the
proof. �

Proof of Theorem 1.3 when f is defined over Q. Assume that f is defined over
Q, hence f is defined over a number field K. Suppose that the Theorem 1.3 does
not hold for f . Let V be the Q-span of χf (Per∗(f)) in R, then dimQV <∞. We
can take M ∈ Z>0 and x1, . . . , xM ∈ Per∗(f) such that χf (x1), . . . , χf (xM) gener-
ate V over Q. By enlarging K, we may assume that |ρf (x1)|, . . . , |ρf (xM)| ∈ K.
Then for every z0 ∈ Per∗(f), χf (z0) is a linear combination of χf (x1), . . . , χf (xM)
over Q; then it is easy to see that there exists n ∈ Z>0, n1, . . . , nM ∈ Z such that

|ρf (z0)|n = |ρf (x1)|n1 · · · |ρf (xM)|nM ∈ K,
which contradicts Theorem 1.4 since f is not exceptional by the assumption. �

5. Some linear algebras

5.1. Pseudo linear algebra. Let V,W be two R-linear spaces. A pseudo mor-
phism f : V → W is a pair (Vf , f) where Vf is a linear subspace of V and
f : Vf → W is an R-linear map. If x ∈ V \ Vf , we write f(x) = ∞. When
W = R, we say that f is a pseudo linear function.

Denote by PHom(V,W ) the set of pseudo morphisms from V to W . For f, g ∈
PHom(V,W ), we define f + g to be the pair (Vf ∩ Vg, f |Vf∩Vg + g|Vf∩Vg). Then
PHom(V,W ) is a commutative semigroup with + as the operation. We denote by
0 the pair (V, 0). We have 0 + f = f for all f ∈ PHom(V,W ). For every a ∈ R,
we define af to be the pair (Vf , af). We note that f + (−f) = (Vf , 0), which is
not 0 if Vf 6= V . We have an natural embedding Hom(V,W ) ↪→ PHom(V,W ).

For f ∈ PHom(U, V ) and g ∈ PHom(V,W ), we define their composition g ◦ f
to be (Uf ∩ f−1(Vg), g ◦ f |Uf∩f−1(Vg)) ∈ PHom(U,W ). Observe that if f(v) =∞,
then g ◦ f(v) =∞.

Fix a subset O of V . Denote the set of positive real numbers by R+, and set
R≥0 := R+ ∪ {0}.
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Definition 5.1. A sequence (fi)
∞
i=1 in PHom(V,W ) is said to be an O-sequence

if the following conditions are satisfied:
(i) fi(O) ⊆ R≥0∪{∞} for i ≥ 1; (ii) for every λ ∈ O, the set {i ≥ 1 : fi(λ) 6= 0}

is finite.
Clearly, an infinite subsequence of an O-sequence is still an O-sequence.

Definition 5.2. Let (λi)
∞
i=1 be a sequence in O and (fi)

∞
i=1 be a sequence in

PHom(V,R). We say that ((λi)
∞
i=1, (fi)

∞
i=1) is an upper triangle O-system (resp.

weak upper triangle O-system) if the following conditions hold:
(i) (fi)

∞
i=1 is an O-sequence;

(ii) fi(λi) ∈ R+ (resp. fi(λi) ∈ R+ ∪ {∞}) for i ≥ 1;
(iii) fj(λi) = 0 for j > i ≥ 1.

Clearly, an upper triangle O-system is a weak upper triangle O-system.

Lemma 5.3. Let ((λi)
∞
i=1, (fi)

∞
i=1) be a weak upper triangle O-system. Then

(λi)
∞
i=1 are linearly independent over R.

Proof. Since f1(λ1) 6= 0, we see that λ1 6= 0. Then we only need to show that for

all l ≥ 2, λl is not contained in spanR{λi : i ≤ l − 1}. Otherwise, λl =
∑l−1

i=1 aiλi
for some l ≥ 2, ai ∈ R, 1 ≤ i ≤ l − 1. Then fl(λl) =

∑l−1
i=1 aifl(λi) = 0, which

contradicts to our assumption. �

Let τ : V → V be an involution (i.e. τ 2 = id).

Lemma 5.4. Assume that τ(O) ⊆ O. Let ((λi)
∞
i=1, (fi)

∞
i=1) be an upper triangle

O-system. Then there exists a strictly increasing sequence (mi)
∞
i=1 in Z>0 such

that the pair ((λmi + τ(λmi))
∞
i=1, (fmi)

∞
i=1) is a weak upper triangle O′-system,

where O′ = {λmi + τ(λmi) : i ∈ Z>0}.

Proof. It is clear that (fi)
∞
i=1 is also an O′-sequence. We construct (mi)

∞
i=1 re-

cursively. Set m1 := 1. As τ(λ1) ∈ O, we have f1(τ(λ1)) ∈ R≥0 ∪ {∞}. Since
f1(λ1) ∈ R+, we have

fm1(λm1 + τ(λm1)) = f1(λ1) + f1(τ(λ1)) ∈ R+ ∪ {∞}.
Assume that we have constructed m1, . . . ,ml satisfying the conditions for weak
upper triangle systems. Since (fi)

∞
i=1 is an O-system and τ(λ1), · · · , τ(λl) ∈ O,

there exists ml+1 > ml such that fml+1
(τ(λi)) = 0 for all i = 1, . . . , l. Then for

all i = 1, . . . , l, we have

fml+1
(λmi + τ(λmi)) = fml+1

(λmi) + fml+1
(τ(λmi)) = 0;

also,

fml+1
(λml+1

+ τ(λml+1
)) = fml+1

(λml+1
) + fml+1

(τ(λml+1
)) ∈ R+ ∪ {∞}

and

fmi(λml+1
+ τ(λml+1

)) = fmi(λml+1
) + fmi(τ(λml+1

)) ∈ R≥0 ∪ {∞}.
We conclude the proof. �

By Lemma 5.4 and Lemma 5.3 we get the following result.
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Corollary 5.5. Assume that τ(O) ⊆ O. Let ((λi)
∞
i=1, (fi)

∞
i=1) be an upper triangle

O-system. Then dimRspanR{2−1(λi + τ(λi)) : i ≥ 1} =∞.

Note that the discussion in this subsection also applies with R replaced by any
ordered field F .

5.2. Linear algebra for multiplication. For every field k of characteristic 0,
denote by µk the subgroup of roots of unity in k. Denote by rog : k∗ → D(k) :=
k∗/µk the quotient map. Extend rog to a map rog : k → D(k) ∪ {∞} by sending
0 to ∞. Here we use the notation rog since it is an analogy of the classical
log function to some extent. The embedding k ↪→ k gives a natural embedding
D(k) ↪→ D(k) as multiplicative abelian groups. Write D(k)Q := D(k)⊗ZQ, where
D(k) is as a multiplicative commutative group, hence a Z-module; then D(k)Q is
the subspace of D(k) spanned by D(k) over Q. Write D(k)R := D(k)⊗Z R.

Let A ⊆ k be an integral domain with Frac(A) = k. Define D(A) := rog(A \
{0}) ⊆ D(k), which is a subsemigroup of D(k). For every prime ideal p of A, the
surjective projection A→ A/p induces a surjective morphism sp : D(A)∪{∞} →
D(A/p) ∪ {∞}. In fact, we may view sp as a pseudo morphism

sp : D(k)R → D(Frac(A/p))R

with domain Vsp := (A \ p)⊗Z R.

5.3. Norms. Let k be a field of characteristic 0. For every finite field extension

k̃ over k , denote by Nk̃/k : k̃ → k the norm map. We define a morphism

nk : D(k)Q → D(k)Q by

nk : rog(x) 7→ [l : k]−1rog(Nl/k(x)),

where l is any finite extension over k containing x. We may check that nk is
well defined and is Q-linear. We also denote by nk its R-linear extension nk :
D(k)R → D(k)R. When the field k is clear, we also write n for nk.

5.4. Valuations. Assume that K is a number field. Denote by MK the set of
all places of K. For every v ∈ MK , denote by v : D(K)R → R the R-linear map
given by

rog(x) 7→ − log(|x|v), x ∈ K∗.

It is easy to check that this map is well-defined and R-linear. We also denote by
v : D(K)Q → R its restriction. For every a ∈ D(K)R, the set {v ∈MK : v(a) 6= 0}
is finite.

Let S be a finite subset of MK containing all the archimedean places. Let
OK,S be the ring of S-integers in K. Let O be the integral closure of OK,S in
K. For every v ∈ MK \ S and λ ∈ O, we have v ◦ n(λ) ≥ 0. Write MK \ S =
{v1, v2, . . . }. Then (vi)

∞
i=1 ⊆ Hom(D(K)R,R) is anOK,S-sequence and (vi◦n)∞i=1 ⊆

Hom(D(K)R,R) is an O-sequence.
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5.5. Complex conjugation and absolute value. Denote by τ : C → C the
complex conjugation. Then R is the fixed field Cτ of τ . As Q-vector spaces, we
have an identification D(R) = R∗/{±1} → R, rog(a) 7→ log|a|, where the latter
log is the classical one on R+. Using this identification, the absolute value on C
can be viewed as the norm nR : D(C) → D(R) sending rog(x) to 2−1(rog(x) +
rog(τ(x))).

Let k be an algebraically closed subfield of C stable under the complex conju-
gation. Still denote by τ ∈ Gal(k/Q) the restriction of the complex conjugation
on k. Note that τ is an involution. Denote by kτ the τ -fixed subfield of k. Then
the restriction of the absolute value nR on k is nkτ : D(k) → D(kτ ), rog(x) 7→
2−1(rog(x) + rog(τ(x))).

We shall prove the following result.

Theorem 5.6. Assume that k is an algebraically closed field of characteristic 0.
Let τ ∈ Gal(k/Q) be an element with τ 2 = id. If f : P1 → P1 is an endomorphism
over k of degree at least 2 which is not PCF, then the Q-subspace in D(kτ )Q
spanned by {nkτ (rog(ρf (x))) : x ∈ Per∗(f)(k)} is of infinite dimension.

Take k = C and let τ be the complex conjugation, then Theorem 5.6 implies
Theorem 1.3 in the case that f is a non-PCF map.

Remark 5.7. Setting τ = id, then from Theorem 5.6 we get the following result:
Assume that k is an algebraically closed field of characteristic 0. If f : P1 → P1

is an endomorphism over k of degree at least 2 which is not PCF, then the
Q-subspace in D(k)Q spanned by {rog(ρf (x)) : x ∈ Per∗(f)(k)} is of infinite
dimension.

6. Proofs of Theorem 5.6 and Theorem 1.3

6.1. Proof of Theorem 5.6: the case k = Q. Let τ be an element in Gal(Q/Q)
with τ 2 = id.

Denote by Cf the set of critical points of f . Since f is not postcritically finite,
there exists o ∈ Cf such that the (forward) orbit Of (o) of o is infinite. We fix
this critical point o. Let X be the union of all (forward) orbits of periodic critical
points of f . Then X is finite.

Pick a number field K satisfying τ(K) = K and such that f, o and all points
in X are defined over K.

Denote byMK the set of places of K. Let B ⊆MK be a finite set containing
all the archimedean places, satisfying τ(B) = B and such that for every v ∈
MK\B, f has good reduction at v. Then we have τ(OK,B) = OK,B. For x ∈
Per(f)(k), set λ(x) = (nf (x))−1rog(ρf (x)) ∈ D(k)R ∪ {∞}. Recall that nf (x) is
the exact periods of x and ρf (x) is the multiplier of x. Then for all x ∈ Per∗(f)(k),
we have nK(λ(x)) ∈ D(OK,B).

Denote by Cv the completion of the algebraically closure of Kv. Every embed-
ding σ : k ↪→ Cv gives a bijection σ : Per(f)(k)→ Per(f)(Cv). Observe that for
every x ∈ Per(f)(k), we have σ(λ(x)) = λ(σ(x)).

For every v ∈ MK \ B and x ∈ P1(Cv), denote by x̃ ∈ P1(K̃v) the reduction
of x in the special fiber at v and fv : P1

K̃v
→ P1

K̃v
the reduction of f . After



22 ZHUCHAO JI, JUNYI XIE, AND GENG-RUI ZHANG

enlarging B, we may assume that õ /∈ Xv where Xv is the reduction of X in

P1(K̃v) ⊆ P1(K̃v)
Observe that for every v ∈ MK \ B, x ∈ Per(f)(k) of exact period n ≥ 1 and

any embedding σ : k ↪→ Cv, we have v(λ(x)) ≥ 0. Moreover the followings are
equivalent:

(i) v(λ(x)) > 0;

(ii) there exists an embedding σ : k ↪→ Cv such that (fnv )′(σ̃(x)) = 0;

(iii) there exists an embedding σ : k ↪→ Cv, q ∈ Cf and m ≥ 0, such that σ̃(q)

is periodic for fv and σ̃(x) = fmv (σ̃(q)).
For v ∈MK \B, denote by Pv the union of all orbits of periodic critical points

of fv. Then Pv is finite. For every v ∈ MK \ B, q ∈ Pv, there exists a unique
periodic point y ∈ Per(f)(Cv ∩ k) such that ỹ = q. Then there exists a unique
Gal(k/K)-orbit O(q) in k such that for some (then every) x ∈ O(q), there exists

an embedding σ : k ↪→ Cv such that σ̃(x) = q (here O(q) is the orbit of q). In
particular, we have Xv ⊆ Pv and ∪q∈XvO(q) = X. It follows that the set

Qv := {x ∈ Per(f)(k) : v(λ(x)) > 0} =
⋃
q∈Pv

O(q)

is finite. Moreover, Qv = X if and only if Pv = Xv.

Lemma 6.1. The set S := {v ∈MK \B : Pv \Xv 6= ∅} is infinite.

Proof. By [BGKT12, Lemma 4.1], there are infinitely may v ∈MK \B, for which
there exists n ∈ Z>0 such that fnv (õ) = õ. For such v, we have õ ∈ Pv \Xv, which
concludes the proof. �

Lemma 6.2. There exists a sequence (xi)
∞
i=1 in Per∗(f)(k) and a sequence (vj)

∞
j=1

in MK \ B such that vi(λ(xi)) > 0 for i ≥ 1 and vj(λ(xi)) = 0 for j 6= i. In
particular, ((λ(xi))

∞
i=1, (vi)

∞
i=1) is an upper triangle D(OK,B)-system for D(K)R.

Proof. We construct these two sequences recursively.
By Lemma 6.1, S is infinite. Pick v1 ∈ S, then there exists x1 ∈ Qv1 \ X ⊆

Per∗(f)(k). We have v1(λ(x1)) > 0.
Assume that we have constructs x1, . . . , xm ∈ Per∗(f)(k) and v1, . . . , vm ∈
MK \ B such that vj(λ(xi)) ≥ 0 and the quality holds if and only if j 6= i. The
set ∪mi=1Qvi \X is finite. Then there exists a finite set Tm ⊆MK such that for all
x ∈ ∪mi=1Qvi \X, and v ∈MK \Tm, we have v(x) = 0. By Lemma 6.1, there exists
vm+1 ∈ S \({v1, . . . , vm}∪Tm). Then we have vm+1(xi) = 0 for i = 1, . . . ,m. Pick
xm+1 ∈ Qvm+1 \ X. We have vm+1(xm+1) > 0. It follows that xm+1 /∈ ∪mi=1Qvi .
Then vi(xm+1) = 0 for i = 1, . . . ,m. We conclude the proof of Lemma 6.2. �

Then we conclude the proof by Corollary 5.5.

6.2. Proof of Theorem 5.6: the general case. Denote by Cf the set of critical
points of f . Since f is not PCF, there is an o ∈ Cf which is not preperiodic. We
fix this critical point o. Fix a subfield K of k such that K/Q is finite generated,
τ(K) = K, and o, f are defined over K. Without loss of generality, we may
assume that k = K.
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Take a finite generated Z-subalgebra A of K with Frac(A) = K and τ(A) = A.
After shrinking Spec(A), we may assume that there exists an endomorphism
fA : P1

A → P1
A over A whose restriction fK : P1

K → P1
K over the generic fiber P1

K

satisfies f = fK ⊗K k.
For every c ∈ Spec(A ⊗Z Q)(Q), denote by fc the specialization of fA at c,

and oc the specialization of o at c. Then oc is a critical point of fc. By [GX18,
Lemma 3.3], there exists c ∈ Spec(A⊗ZQ)(Q) such that the orbit of oc is infinite.
In particular, fc is not PCF. There exists a number field L ⊆ K such that c is
defined over L. Denote by A1 the algebra generated by A,OL and τ(OL); we may
replace Spec(A) by some Zariski open set of Spec(A1) for which fA : P1

A → P1
A is

still everywhere well-defined. We may view Spec(A) as an OL-scheme, and pick
a point c ∈ Spec(A ⊗OL L) such that the orbit of oc is infinite. After shrinking
Spec(A), the Zariski closure of c in Spec(A) is isomorphic to Spec(OL,S) for a
finite set of places S ⊆ML containing all archimedean places. It corresponds to
a prime ideal p of A.

Denote by sp : D(K)R 99K D(L)R the pseudo morphism as in Section 5. We
have sp(D(A)) ⊆ D(OL,S) ∪ {∞}. Then for every v ∈ML \ S and λ ∈ D(A), we
have v(λ) ∈ R≥0 ∪ {∞}. Moreover, for every λ ∈ D(A), if sp(λ) 6=∞, then there
are only finitely many v ∈ML \ S for which v(sp(λ)) 6= 0.

For every y ∈ Per(f)(K), denote by yc the set of x ∈ Per(fc)(L) with whose
image is contained in the image of y in P1

A. For every y ∈ Per(f)(K), yc is
finite and nonempty. On the other hand, for every x ∈ Per(fc)(L), the set of
y ∈ Per(f)(K) with x ∈ yc is finite and nonempty. Moreover, if x ∈ yc, then

sp(nK(λ(y))) = nL(λ(x)).

Since the set of x ∈ Per(fc)(L) with nL(λ(x)) =∞ is finite, the set

Wc := {y ∈ Per(f)(K) : sp(nK(λ(y))) =∞}

is also finite. Similarly Wτ(c) := {y ∈ Per(f)(K) : sτ(p)(nK(λ(y))) =∞} is finite.

By Lemma 6.2, there exists (yi)
∞
i=1 in Per(fc)(L) and (vi)

∞
i=1 in ML \ S such

that ((nL(λ(yi)))
∞
i=1, (vi)

∞
i=1) is an upper triangle D(OL,S)-system for D(L)R. For

every i ∈ Z>0, there exists xi ∈ Per(f)(K) such that the image of yi is contained
in the Zariski closure of the image of xi in P1

A. We have

sp(nK(λ(xi))) = nL(λ(yi)).

After removing finite terms, we may assume that yi /∈ Wc ∪Wτ(c) for all i ≥ 1. It
follows that nL(λ(yi)) ∈ rog(A \ (p ∪ τ(p))) for i ≥ 1. Observe that (vi ◦ sp)∞i=1 is
a rog(A \ (p ∪ τ(p)))-sequence. It follows that ((nL(λ(yi)))

∞
i=1, (vi ◦ sp)∞i=1) is an

upper triangle rog(A \ (p ∪ τ(p)))-system for D(K)R. Since rog(A \ (p ∪ τ(p))) is
invariant under τ , we conclude the proof by Corollary 5.5.

6.3. Proof of Theorem 1.3. There are two cases:
1. The case f is PCF. In this case according to [DH93], PCF maps are defined

over Q in the moduli spaceMd of rational maps of degree d, except for the family
of flexible Lattès maps. So after a conjugacy by an elements in PGL2(C), f is
defined over Q, and Theorem 1.3 was already proved in the end of Section 4.
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2. The case f is not PCF. Then Theorem 1.3 is a consequence of Theorem 5.6.
This finishes the proof of Theorem 1.3.

7. Proofs of the Applications

7.1. Proof of Theorem 1.10. Without loss of generality, we may assume that
k is of finite transcendence degree over Q. Fix an embedding of k into C. We
view f as an endomorphism on X defined over C. According to [Xie22, Theorem
3.34], we may assume that all fj : P1 → P1 has degree at least 2 for 1 ≤ j ≤ N .

Assume first that all fj are not exceptional, 1 ≤ j ≤ N . Corollary 1.5 implies
that we can take xj ∈ Per∗(fj)(C) for 1 ≤ j ≤ N such that ρf1(x1), · · · , ρfN (xN)
are multiplicatively independent in C. After replacing f by an iterate, we may
assume that fj(xj) = xj for 1 ≤ j ≤ N , and the multipliers (ρfj(xj) = f ′j(xj))

N
j=1

are still multiplicatively independent. Denote x = (x1, . . . , xN) ∈ X(k). Then x
is a fixed point of f (smooth in the fixed locus of f) such that the eigenvalues of
df |x are nonzero and multiplicatively independent. Then the conclusion follows
from [ABR11].

Assume that all fj are exceptional, 1 ≤ j ≤ N . This case is easy, and we just
refer to the proof in the first several paragraphs of [Xie22, Section 9.3].

We may assume that 0 ≤ s ≤ N such that f1, · · · , fs are not exceptional and
fs+1, · · · , fN are exceptional. Let l(f) = min{s,N − s} ≥ 0. Then we have done
in the case l(f) = 0. Then an induction on l(f) will prove this corollary, as shown
in the last several paragraphs of [Xie22, Section 9.3].

7.2. Proof of Theorem 1.12. Using the terminology and notations in Section 5,
it is clear that (2) and (3) is equivalent to the following (2)′ and (3)′, respectively.

(2)′ ρf (x) ∈ Q for all x ∈ Per(f)(C) and the Q-subspace of D(Q)Q generated
by nQ(rog(ρf (x))) for x ∈ Per∗(f)(C) is of finite dimension over Q.

(3)′ |ρf (x)| ∈ Q for all x ∈ Per(f)(C) and the Q-subspace of D(Q)Q generated
by nQ(rog(|ρf (x)|)) for x ∈ Per∗(f)(C) is of finite dimension over Q.

Now we prove that (1), (2)′, (3)′ are equivalent.
(1) ⇒ (2)′ and (3)′:

Suppose that f is PCF. By [DH93], PCF maps are defined over Q inMd, except
for the family of flexible Lattès maps. If f is flexible Lattès, then according to
[Mil06, Lemma 5.6], ρf (x) ∈ Z for all x ∈ Per(f)(C). If f is defined over Q, then

clearly ρf (x) ∈ Q for all x ∈ Per(f)(C). Thus, we always have ρf (x), |ρf (x)| ∈ Q
for all x ∈ Per(f)(C).

Suppose that (2)′ is false, then

dimQspanQ{nQ(rog(ρf (x))) : x ∈ Per∗(f)(C)} =∞.

By [Mil06, Corollary 3.9], f cannot be a flexible Lattès map, hence f is defined
over Q, and over a number field K. We use the notation and ideas in the case
of Section 6.1 where τ = Id. Let B ⊆ MK be a finite set containing all the
archimedean places such that for every v ∈ MK \ B, f has good reduction at v.
For every v ∈MK \B, the reduction fv are still PCF and its critical orbits from
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those of f . Then as in Section 6.1, it is easy to see that the set

W := {x ∈ Per∗(f)(C) : v(nK(λ(x))) = 0,∀v ∈MK \B}

is co-finite in Per∗(f)(C). It is well-known that rank(O×K,B) = #B − 1 < ∞
(cf. [Nar04, Theorem 3.12]). Note that nK(rog(ρf (x))) ∈ D(OK,B) for all x ∈
Per∗(f)(C). Then we deduce that

dimQspanQ{nK(rog(ρf (x))) : x ∈ Per∗(f)(C)} <∞,

which implies dimQspanQ{nQ(rog(ρf (x))) : x ∈ Per∗(f)(C)} < ∞, contradicting
the assumption. Thus (2)′ must hold.

(3)′ follows similar to the above paragraph, corresponding to the case where τ
is the complex conjugate of Section 6.1.
(2)′ ⇒ (1):

Suppose that f is not PCF. In particularly, f is not flexible Lattès. Denote
by Z the set of conjugacy classes [g] ∈ Md(C) such that f and g have the same
multiplier spectrum. By [Sil98, Theorem 4.5] and (2)′, Z is Zariski closed in
Md(C) and it is defined over Q. By [McM87, Corollary 2.3], Z consists of finitely
many points and possibly a curve of flexible Lattès maps. Since f is not flexible
Latteś, then we may assume that f is defined over Q, hence over a number field
K. By the argument in Section 6.1 of the case τ = Id, we have

dimQspanQ{nK(rog(ρf (x))) : x ∈ Per∗(f)(C),nK(rog(ρf (x))) ∈ D(OK,B)} =∞,

where B ⊆MK is a finite set containing all the archimedean places such that for
every v ∈MK \B, f has good reduction at v. After enlarging B, we may assume
that B is invariant under every σ ∈ Gal(K/Q). Indeed, a small modification of
the proof of Lemma 6.2 shows that there exists a sequence (xi)

∞
i=1 in Per∗(f)(k)

and a sequence (vj)
∞
j=1 in MK \B satisfy the following conditions:

vi(nK(λ(xi))) > 0 for all i ≥ 1;

σ(vj)(nK(λ(xi))) = 0 for all i 6= j and σ ∈ Gal(K/Q).

For i ≥ 1, let pi be the prime number below vi, let B̃ be the restriction of
B to MQ. Then it is easy to see that the pair ((nQ(λ(xi)))

∞
i=1, (vpi)

∞
i=1) is an

upper triangle D(MQ,B̃)-system for D(Q)Q. By Corollary 5.5, this contradicts

(2)′. Thus, f must be PCF.
(3)′ ⇒ (1):

Assume that f is not PCF. We use the notation and ideas in the case of
Section 6.2 with τ the complex conjugate. As in the proof of Section 6.2, we get
a number field L and a finite set S ⊆ ML. We may assume that S is invariant
under every σ ∈ Gal(L/Q). By the argument in (2)′ ⇒ (1), there exists a pair
((nL(λ(yi)))

∞
i=1, (vi)

∞
i=1) satisfy the following conditions:

vi(nL(λ(xi))) > 0 for all i ≥ 1;

σ(vj)(nL(λ(xi))) = 0 for all i 6= j and σ ∈ Gal(L/Q).

Then we can deduce a contradiction similar to the proof of (2)′ ⇒ (1), hence f
is PCF.
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