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Abstract. Let f be a rational map of degree d ≥ 2. The moduli
space Mf , introduced by McMullen and Sullivan, is a complex
analytic space consisting all quasiconformal conjugacy classes of
f . For f that is not flexible Lattès, we show that there is a normal
affine varietyXf of dimension 2d−2 and a holomorphic injection i :
Mf → Xf such that i(Mf ) is precompact inXf . In particularMf

is Carathéodory hyperbolic (i.e. bounded holomorphic functions
separate points inMf ), provided that f is not flexible Lattès. This
solves a conjecture of McMullen. When d ≥ 4, we give a concrete
construction of Xf as the normalization of the Zariski closure of
the image of the reciprocal multiplier spectrum morphism.

1. Introduction

1.1. The dynamical Teichmüller space and moduli space of a
rational map. Let f ∈ Ratd be a rational map of degree d ≥ 2 on
the Riemann sphere P1(C). McMullen and Sullivan introduced the Te-
ichmüller space and moduli space for a rational map f [MS98]. These
two spaces are important in complex dynamics. For example, the Hy-
perbolic Conjecture claims that hyperbolic rational maps are dense in
Ratd. Using these two spaces and the Teichmüller theory they devel-
oped in [MS98], McMullen and Sullivan showed that the Hyperbolic
Conjecture is equivalent to that a non-Lattès rational map carries no
invariant line field on its Julia set. Roughly speaking, the moduli space
Mf is a complex analytic space containing all quasiconformal conju-
gacy classes of f , and the Teichmüller space Tf is the “universal cover”
of Mf .

Let us make a precise definition. Let Bel(f) be the set of L∞ Beltrami
differentials µ invariant under f such that ∥µ∥∞ < 1. Let QC(f) be
the group of quasiconformal homeomorphisms commuting with f , and
let QC0(f) be the normal subgroup of the elements in QC(f) that are
isotopic to identity. The modular group of f is defined by the quotient

Mod(f) := QC(f)/QC0(f).
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The Teichmüller space Tf is defined by Bel(f) quotiented by the
right action of QC0(f) by precomposition. McMullen and Sullivan
[MS98] showed that the Teichmüller space Tf is a complex manifold
biholomorphic to a contractable bounded domain in CN , the modular
group Mod(f) acts properly discontinuously on Tf , and the moduli
space Mf is defined as the complex analytic space

Mf := Tf/Mod(f),

hence Tf serves as the “universal cover” of Mf .
Let [µ] ∈ Mf , where µ is a Beltrami differentials invariant under f

such that ∥µ∥∞ < 1. By Measurable Riemann Mapping theorem, there
is a quasiconformal homeomorphism ϕ solving the Beltrami equation

∂ϕ

∂z
= µ

∂ϕ

∂z
.

The map g := ϕ−1fϕ is a rational map of degree d. Let [g] be the
PGL 2(C) conjugacy class of g in the moduli space Md of all degree d
rational maps. The map

Ψ : Mf → Md,(1.1)

[µ] 7→ [g],

is well defined and is a holomorphic injection [MS98], moreover Ψ(Mf )
is the set of all PGL 2(C) conjugacy classes that are quasiconformally
conjugate to f . We refer the readers to [Ast17] for more details.

Unlike the Teichmüller space Tf , not much of the complex structure
of the moduli space Mf are known. A complex analytic space X is
called Carathéodory hyperbolic if bounded holomorphic functions sepa-
rate points in X, i.e. for every x ̸= y in X, there is a bounded holomor-
phic function ϕ : X → C such that ϕ(x) ̸= ϕ(y). Carathéodory hyper-
bolicity is a strong hyperbolicity condition which implies Kobayashi
hyperbolicity [Kob98, Proposition 3.1.7 (1)]. As examples, bounded
domains in CN are Carathéodory hyperbolic.

McMullen [McM87, Page 473] made the following conjecture in 1987:

Conjecture 1.1 (McMullen). Let f be arational map of degree d ≥ 2
which is not flexible Lattès, then Mf is Carathéodory hyperbolic.

Here a rational map of degree d ≥ 2 is called Lattès if it is semi-
conjugate to an endomorphism on an elliptic curve. A Lattès map
f is called flexible Lattès if one can continuously vary the complex
structure of the elliptic curve to get a family of Lattès maps passing
through f . The structure of flexible Lattès maps is well-understood
[Mil06, Section 5], and the flexible Lattès locus in Md is either empty
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(when d is not a square) or being an algebraic curve with at most two
connected components (when d is a square). When f is flexible Lattès,
then V := Ψ(Mf ) contains the connected component of FLd contain-
ing [f ] (actually V is equal to this connected component, see Lemma
3.1). Since V is quasi-projective, by Riemann’s extension theorem,
bounded holomorphic function on V are constant, hence Mf is not
Carathéodory hyperbolic. So that the condition that f is not flexible
Lattès in Conjecture 1.1 can not be dropped.

1.2. Main results. The purpose of this paper is to solve McMullen’s
conjecture. In fact we shall prove a stronger statement. We first recall
the notion of structural stability. Let (ft)t∈X be a holomorphic family
of degree d rational maps parametrized by a complex analytic space
X. The family is called structurally stable if periodic points does not
change their types (attracting, repelling or indifferent) in this family,
this is equivalent to that ft are all quasiconformally conjugate on their
Julia sets [McM16, Theorem 4.2]. Note that structural stability is a
local property.

Let X be a complex analytic space and let Φ : X → Md be a
holomorphic map. It is not always possible to lift Φ to a map taking
image in Ratd (the space of degree d rational maps). However we can
always lift Φ locally.

We define the map Φ : X → Md to be structurally stable if every
local lifts Φ̃ defines a structurally stable family of rational maps. By
definition, the map Ψ in (1.1) is structurally stable. We show the
following result which implies Conjecture 1.1.

Theorem 1.2. Let d ≥ 2. Let X be a connected complex analytic
space and let Φ : X → Md be a holomorphic injective map which is
structurally stable. Assume that there exists t ∈ X such that Φ(t) /∈
FLd. Then there is a normal affine variety Y of dimension 2d− 2 and
a holomorphic injection i : X → Y such that i(X) is precompact in Y .
In particular X is Carathéodory hyperbolic.

We now explain the construction of the space Y and the map i in
Theorem 1.2, and hence give a sketch of the proof of Theorem 1.2.
We will use the reciprocal multiplier spectrum morphism. The precise
definition is given in Section 2. Basically, for fixed integers m ≥ n ≥ 1
and f ∈ Ratd, we collect all periodic points of f with exact periods
j, n ≤ j ≤ m. Assume that f has no super-attracting cycle with
exact periods j, n ≤ j ≤ m. Using elementary symmetric polynomials,
the reciprocal of the multipliers of these periodic points determine a
point in CNn,m , where Nn,m is the number of periodic points with exact
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periods j, n ≤ j ≤ m, counted with multiplicity. Hence we can define
the reciprocal multiplier spectrum morphism τn,m : Md\Zn,m → CNn,m ,
where Zn,m is the locus of f having a super-attracting cycle with exact
periods j, n ≤ j ≤ m.

In the setting of Theorem 1.2, we can choose n large enough such
that Φ(X) is contained in Md\Zn,m, moreover τn,m(Φ(X)) is contained
in a bounded domain in CNn,m by the structural stability. Let FLd be
the flexible Lattès locus. By a Theorem of McMullen [McM87], for
fixed n, the morphism τn,m : Md \ (Zn,m ∪ FLd) → CNn,m is quasi-
finite (which means that every fiber of τn,m is a finite set) for m large
enough. By a generalized Zariski’s Main Theorem [Gro66, Théorème
8.12.6], there exists a normal affine variety Y , an open immersion η :
Md \ (Zn,m ∪ FLd) → Y , and a finite morphism (which means quasi-
finite and proper) τ̃n,m : Y → CNn,m , such that τn,m = τ̃n,m ◦ η. The
map i in Theorem 1.2 is given by i := η ◦ Φ. We get that i(X) is
precompact in Y by the finiteness of τ̃n,m.

When d ≥ 4, using a recent result of the authors about the generic
injectivity of multiplier spectrum morphism [JX23], we can concretely
construct the space Y in Theorem 1.2 .

Theorem 1.3. Let d ≥ 4. Then the complex analytic space Y in
Theorem 1.2 can be chosen to be the normalization of the Zariski closure
of the image of the reciprocal multiplier spectrum morphism τn,m for
some m ≥ n ≥ 1.

We believe that the restriction d ≥ 4 in Theorem 1.3 is unnecessary.

1.3. Strcture of the paper. In Section 2 we give the definition of
the reciprocal multiplier spectrum morphism. The proof of Theorem
1.2 and Conjecture 1.1 is given in Section 3. The proof of Theorem 1.3
is given in Section 4.

Acknowledgement. The first-named author would like to thank Bei-
jing International Center for Mathematical Research in Peking Univer-
sity for the invitation. The first named author Zhuchao Ji is supported
by ZPNSF grant (No.XHD24A0201). The second-named author Junyi
Xie is supported by NSFC Grant (No.12271007).

2. The reciprocal multiplier spectrum morphism

In this section we will define the reciprocal multiplier spectrum mor-
phism τn, and we will show that τn are quasi-finite by using McMullen’s
rigidity theorem [McM87, Theorem 2.2].
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Definition 2.1. Let f be a rational map of degree d and let x be a
periodic point of f . We say an integer n ≥ 1 is a formal exact periods
of x if one of the following holds:

(i) n is the minimal integer such that fn(x) = x;
(ii) n = mr and dfm(x) is a primitive r-th root of unity, where m

is the minimal integer such that fm(x) = x.

By definition, for every periodic point x of f , it has at most two
formal exact periods.

Let {x1, . . . , xNn} be the multiset of periodic points of f with formal
exact periods n, counted with multiplicity. The multipliers dfn(xi) of
these points determine an element sn(f) ∈ CNn/SNn , where SNn is the
symmetric group which acts on CNn by permuting the coordinates. It
was shown in [Sil07, Theorem 4.50] that

[f ] 7→ sn(f)

defines a morphism on Md.

Let m ≥ n ≥ 1 be two integers. Let ρn,m : Md → CNn/SNn × · · · ×
CNm/SNm be the morphism

[f ] 7→ (sn(f), . . . , sm(f)).

Let Wn,m be the Zariski closed set {(f, g) : ρn,m(f) = ρn.m(g)} ⊂
Md×Md. Then for fixed n, Wn,m is a decreasing sequence with respect
to m. By Noetheriality there exists a minimal N = N(d, n) ≥ n such
that ⋂

m≥n

Wn,m = Wn,N .

The following is a consequence of McMullen’s rigidity theroem [McM87,
Theorem 2.2].

Theorem 2.2. For every d ≥ 2 and n ≥ 1, We set ρn := ρn,N . Then
ρn is quasi-finite on Md \ FLd.

Proof. Assume by contradiction that ρn is not quasi-finite on Md\FLd.
Then there exists an algebraic family of rational maps ϕ : V → Ratd,
t 7→ ft, parametrized by the algebraic curve V such that ρn(ft) is
constant, π ◦ ϕ : V → Md is non-constant with π ◦ ϕ(V ) ∩ FLd = ∅,
where π : Ratd → Md is the canonical projection.
By the definition of ρn, ρn,m(ft) is constant for every m ≥ n. This

implies the multipliers of periodic points with large exact periods are
constant in this family. In particular the number of attracting periodic
points is bounded in this family. This implies ϕ : V → Ratd is a struc-
turally stable algebraic family [McM16, Theorem 4.2]. By [McM87,
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Theorem 2.2], ϕ : V → Ratd is a flexible Lattès family, which is a
contradiction. □

We now define the reciprocal multiplier spectrum morphism. Let
n ≥ 1 be an integer. Let Zn ⊂ Md be the subvariety containing
rational map with a super-attracting periodic point with exact periods
n. We let δn : Md \ Zn → CNn be the morphism

[f ] → (σ1(α1, . . . , αn), . . . , σNn(α1, . . . , αn)),

where αi := dfn(xi)
−1 and σi is the i-th elementary symmetric polyno-

mial of Nn variables.

Let m ≥ n ≥ 1 be two integers. Let Zn,m ⊂ Md be the subvariety
containing rational map with a super-attracting periodic point with
exact periods j such that n ≤ j ≤ m. We let τn,m : Md \ Zn,m →
CNn × · · · × CNm be the morphism given by

[f ] 7→ (δn(f), . . . , δm(f)).

Definition 2.3. The n-th reciprocal multiplier spectrum morphism is
defined as τn := τn,N , where N = N(d, n) is the same as in Theorem
2.2.

Corollary 2.4. For every d ≥ 2 and n ≥ 1, τn is quasi-finite on
Md \ (Zn,N ∪ FLd).

Proof. This a corollary of Theorem 2.2, since elementary symmetric
polynomials give an isomorphism between CN/SN and CN . □

3. Proof of Theorem 1.2 and Conjecture 1.1

We begin with a lemma.

Lemma 3.1. Let d ≥ 2. Let X be a connected complex analytic space
and let Φ : X → Md be a holomorphic map which is structurally stable,
such that Φ(X) ∩ FLd ̸= ∅. Then Φ(X) ⊂ FLd.

Proof. Pick t0 ∈ Φ(X)∩FLd. Since Φ is structurally stable, by [McM16,
Theorem 4.2], for every t ∈ X, Φ(t) and Φ(t0) are quasiconformally
conjugate on their Julia sets (which is equal to P1(C))). In particular
all Φ(t) are postcritically finite (PCF), which means that the critical
orbits are finite) with the same critical orbits relation as Φ(t0). Hence
Φ : X → Md is a holomorphic family of PCF maps. By Thurston’s
rigidity theorem [McM87, Theorem 6.2], either Φ(X) is a single point
or Φ(X) ⊂ FLd. In all these two cases we have Φ(X) ⊂ FLd. □
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Proof of Theorem 1.2. Since Φ is strcturally stable, by [McM16, Theo-
rem 4.2], we can choose n large enough such that all attracting periodic
points have exact periods less than n along the family Φ : X → Md.
Let τn be the reciprocal multiplier spectrum morphism given in Defini-
tion 2.3. By Lemma 3.1, Φ(X) ⊂ Md\(Zn,N∪FLd), whereN = N(d, n)
is given in Theorem 2.2. By Corollary 2.4, τn : Md \ (Zn,N ∪FLd) → Cl

is quasi-finite, l ≥ 1. By our construction τn ◦ Φ(X) is contained in a
bounded domain in Cl.

By a generalized version of Zariski’s Main Theorem [Gro66, Théorème
8.12.6], there is a normal affine variety Y , an open immersion η :
Md \ (Zn,N ∪ FLd) → Y , and a finite morphism τ̃n : Y → Cl, such
that τn = τ̃n ◦ η. We define i := η ◦ Φ : X → Y . Then i is a holomor-
phic injection. We need to show that i(X) is precompact in Y . We
have τ̃n(i(X)) = τ̃n ◦ η ◦ Φ(X) = τn ◦ Φ(X), which is precompact in
Cl. Since τ̃n : Y → Cl is finite (hence proper), we know that i(X) is
precompact in Y , as i(X) ⊂ τ̃−1

n (τn ◦ Φ(X)) .
Since Y is normal and affine, Y can be embedded in Cq as a Zariski

closed subset, for some q ≥ 1. The coordinates functions z1, . . . , zq
define bounded holomorphic injective functions on i(X). Since i : X →
i(X) is biholomorphic, for 1 ≤ j ≤ q, zj ◦ i are bounded holomorphic
injective functions on X, which clearly separate points in X. This
implies that X is Carathéodory hyperbolic. This finishes the proof.

□

Proof of Conjecture 1.1. Let Ψ be the holomorphic injection given in
(1.1), then Ψ : Mf → Md is structurally stable since elements in
Ψ(Mf ) are quasiconformally conjugate. Since f /∈ FLd, by Theorem
1.2, Mf is Carathéodory hyperbolic.

□

4. Proof of Theorem 1.3

We first show the follwoing result, which is a generalization of the
main theorem (Theorem 1.3) in [JX23]. Theorem 1.3 in [JX23] corre-
sponds to the case n = 1 in the following result. The proof follows the
same line as in the proof in [JX23]. Recall that we have shown that for
every d ≥ 2 and n ≥ 1, the two morphisms ρn and τn are quasi-finite
(after excluding FLd), see Theorem 2.2 and Corollary 2.4.

Theorem 4.1. For every d ≥ 4 and n ≥ 1, ρn and τn are generically
injective, i.e. they are injective morphisms when restricted on a non-
empty Zariski open subset.
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Proof. Since elementary symmetric polynomials give an isomorphism
between CN/SN and CN , it suffices to show that ρn is generically in-
jective.

Two rational maps f and g are called interwined if there is an alge-
braic curve Z ⊂ P1(C)× P1(C) whose projections to both coordinates
are onto, such that Z is preperiodic by the map f × g. By [JX23, The-
orem 3.3], there is a non-empty Zariski open subset U of Md such that
for every f, g ∈ Ratd(C) with [f ], [g] ∈ U , if f and g are interwined,
then [f ] = [g]. This is the only step that we need the condition d ≥ 4.

Assume by contradiction that ρn is not generically injective. Sim-
ilar to the contruction in the third paragraph in the proof of [JX23,
Theorem 1.3], after shrinking U , we can construct two algebraic fam-
ilies fV , gV of degree d rational maps parametrized by the same irre-
ducible algebraic curve V such that the following holds: There exists
n := {n1, . . . , n2d−3} ∈ (N∗)2d−3, (N∗ stands for the set of positive
integers) such that ni ≥ n and we have

(4.1) Ψf (V ) ⊂ Yn ∩ U, and Ψg(V ) ⊂ U,

where Yn ⊂ Md is the algebraic curve containing all conjugacy classes
having 2d− 3 super-attracting cycles with exact periods n1, . . . , n2d−3.
The map Ψf : V → Md (similarly for Ψg) is defined by t 7→ [ft].
Moreover we have

(4.2) ρn ◦Ψf = ρn ◦Ψg,

finally for every t ∈ V , we have

(4.3) Ψf (t) ̸= Ψg(t).

By [JX23, Lemma 2.4], there are infinitely many t ∈ V such that ft
is PCF map with 2d−2 number of distinct super-attracting cycles. We
claim that we can further ask that these ft have no super-attracting cy-
cles with exact periods less than n. Assume by contradiction that this
claim is not true. Then there exists an infinite set X ⊂ Md such that
every g ∈ X has 2d−2 number of distinct super-attracting cycles, more-
over the exact periods of these super-attracting cycles are uniformly
bounded. Let X be the Zariski closure of X. Then dimC(X) ≥ 1.
Pick an irreducible component Y of X with dimC(Y ) ≥ 1. Then Y
is a positive dimensional family of PCF maps. By Thurston’s rigicity
theorem [McM87, Theorem 6.2], Y ⊂ FLd, which is a contradiction,
since flexible Lattès maps have no super-attracting cycle.
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By (4.2), ρn(ft) = ρn(gt), hence by [JX23, Lemma 3.5], for such t,
gt is also a PCF map. By [JX23, Theorem 3.4], after shrinking V , ft
and gt are intertwined for every t ∈ V . By the definition of U and by
(4.1), Ψf (t) = Ψg(t) for every t ∈ V . This contradicts (4.3). We then
conclude the proof. □

Proof of Theorem 1.3. In the proof of Theorem 1.2, we have constructed
an affine and normal variety Y , an open immersion η : Md \ (Zn,N ∪
FLd) → Y and a finite morphism τ̃n : Y → Cl, such that τn = τ̃n ◦ η.
Let d ≥ 4. By Theorem 4.1, τn is generically injective on Md \ Zn,N .
This implies that τ̃n is generically injective on Y . Since Y is normal,
τ̃n : Y → τ̃n(Y ) is a normalization. It remains to show that τ̃n(Y ) is
the Zariski closure of τn(Md \ Zn,N). Let Z be the Zariski closure of
τn(Md\Zn,N), which is also the Zariski closure of τn(Md\(Zn,N∪FLd)).
Since τ̃n(Y ) is closed and τn = τ̃n ◦ η, we have τn(Md \Zn,N) ⊂ τ̃n(Y ).
Since τ̃n(Y ) is closed, we have Z ⊂ τ̃n(Y ). On the other hand, since
η(Md \ (Zn,N ∪FLd)) is dense in Y , then Z = τ̃n ◦η(Md \ (Zn,N ∪FLd))
is dense in τ̃n(Y ). This implies Z = τ̃n(Y ). The proof is finished.

□
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