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Abstract. We get three basic results in algebraic dynamics: (1). We give
the first algorithm to compute the dynamical degrees to arbitrary precision.
(2). We prove that for a family of dominant rational self-maps, the dynamical
degrees are lower semi-continuous with respect to the Zariski topology. This
implies a conjecture of Call and Silverman. (3). We prove that the set of
periodic points of a cohomologically hyperbolic rational self-map is Zariski
dense.

Moreover, we prove the Kawaguchi-Silverman conjecture for a class of self-
maps of projective surfaces including all the birational ones.

In fact, for every dominant rational self-map, we find a family of recursive
inequalities of some dynamically meaningful cycles. Our proofs are based on
these inequalities.
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1. Introduction

Let k be a field. Let X be a projective variety of dimension d over k. Let
f : X 99K X be a dominant rational self-map. The aim of algebraic dynamics is
to study algebraic and dynamical properties of the iterates of f .

1.1. Dynamical degrees. The most fundamental dynamical invariants associ-
ated to an algebraic dynamical system is arguably its dynamical degrees.

Let L be a big and nef line bundle in Pic(X). Denote by I(f) the indeterminacy
locus of f . Let X ′ be the graph of f in X × X i.e. the Zariski closure of
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{(x, f(x))| x is a closed point in X \ I(f)} and let π1, π2 be the projection to the
first and the second factors. For i = 0, . . . , d, the i-th degree of f is

degi,L f := ((π∗2L)i · (π∗1L)d−i).

Using the terminology from Section 2.2 and 2.1, we may write

degi,L f = ((f ∗L)i · Ld−i)
without specifying the birational model X ′. The i-th dynamical degree of f is

λi(f) := lim
n→∞

(degi,L f
n)1/n ≥ 1.

The existence of the above limit is non-trivial. It was proved by Russakovskii
and Shiffman [RS97] when X = PdC, and by Dinh and Sibony [DS05] when X
is projective over C. As shown in [DS04] by Dinh and Sibony, the dynamical
degrees can be defined even for meromorphisms on Kähler manifolds. It was
proved by Truong [Tru20] and Dang [Dan20] in arbitrary characteristic. The
methods of Truong [Tru20] and Dang [Dan20] are different. Truong’s method
is based on Jong’s alterations and Roberts’ effective version of Chow’s moving
lemma. This method can be viewed as an algebraic mimic of Dinh-Sibony’s
proof using positively closed currents [DS04, DS05]. Dang’s method is based
on Siu’s inequality. The definition of λi(f) does not depend on the choice of L
[DS04, DS05, Tru20, Dan20]. Moreover, if π : X 99K Y is a generically finite
and dominant rational map between varieties and g : Y 99K Y is a rational self-
map such that g ◦ π = π ◦ f , then λi(f) = λi(g) for all i. This can be shown
by combining [Dan20, Theorem 1] with the projection formula. Another way to
prove it is to apply the product formula for relative dynamical degrees directly
(c.f. [DN11], [Dan20] and [Tru20, Theorem 1.3]).

Roughly speaking, the dynamical degrees measure the algebraic complexity of
f . It controls the topological complexity of f . When X is a smooth projective
variety over C and f is an endomorphism, fundamental results of Gromov [Gro03]
and Yomdin [Yom87] show that

htop(f
an) = max

0≤i≤d
{λi(f)},

where htop(f
an) is the topological entropy of the holomorphic endomorphism f an :

X(C)→ X(C) induced by f. Dinh-Sibony [DS05] showed that the upper bound

(1.1) htop(f
an) ≤ max

0≤i≤d
{λi(f)}

still holds for arbitrary rational self-maps over C. However, (1.1) can be strict
in general [Gue05a]. Recently Favre, Truong and the author proved (1.1) in the
non-archimedean case [FTX22]. In the non-archimedean case, (1.1) can be strict
even for endomorphisms [FRL10, FTX22].

When k = Q, the dynamical degrees also control the arithmetic complexity
of f , which is measured by the notion of arithmetic degree (c.f. Section 7).
Further, the Kawaguchi-Silverman conjecture (=Conjecture 7.5) asserts that for
any point x ∈ X(k) with Zariski dense orbit, the arithmetic degree αf (x) for
(X, f, x) equals λ1(f). This conjecture has attracted a lot of attention. For the
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recent development, see [Mat23] and the references therein. See [Son23, LS23]
for the higher arithmetic degrees and their relations to the higher dynamical
degrees. In Section 7, we will prove the Kawaguchi-Silverman conjecture for a
class of self-maps of projective surfaces including all the birational ones.

When f is an endomorphism, the dynamical degrees control the action of f ∗

on the cohomology of X. When X is a smooth projective variety over C, Dinh
[Din05] proved that

(1.2) λi(f) = ρ(f ∗ : H2i(X(C),R)→ H2i(X(C),R))

where H2i(X(C),R) is the singular cohomology of degree 2i and ρ(f ∗) is the spec-
tral radius of the linear operator f ∗. In positive characteristic, Truong proposed
a conjecture saying that (1.2) still holds if one replaces the singular cohomology
by the Ql-cohomology with l 6= char k [Tru16]. This conjecture is wildly open.
Indeed, the case for Frobenius endomorphisms implies Deligne’s famous theo-
rem for Weil’s Riemann hypothesis [Del74]. However, it was proved by Esnault
and Srinivas [ES13] for surface automorphisms and by Truong [Tru16] for any
dominant endomorphisms of smooth projective varieties, that

max
0≤i≤d

λi(f) = max
0≤i≤2d

ρ(f ∗ : H i(X,Ql)→ H i(X,Ql))

with respect to any field embedding Ql ↪→ C. Truong’s proof indeed relies on
Deligne’s theorem.

Cohomologically hyperbolic self-maps. We introduce the notion of cohomological
Lyapunov exponents as follows: For i = 1, . . . , d, define the i-th cohomological
Lyapunov exponent of f to be

µi(f) := λi(f)/λi−1(f).

Define µd+1(f) := 0 for convenience. As the sequence of dynamical degrees is
log-concave [DS05, Tru20, Dan20], the sequence µi(f), i = 1 . . . , d is decreasing.

For i = 1, . . . , d, we say that f is i-cohomologically hyperbolic if λi(f) is strictly
larger than other dynamical degrees i.e.

µi(f) > 1 and µi+1(f) < 1.

We say that f is cohomologically hyperbolic if it is i-cohomologically hyperbolic
for some i = 1, . . . , d, in other words, µj(f) 6= 1 for every j = 1, . . . , d.

Cohomological hyperbolicity can be viewed as a cohomological version of the
important notion of hyperbolic dynamics in differentiable dynamical systems.
Indeed, when k = C, very few algebraic dynamical system could be Anosov
(which is a strong version of hyperbolicity) c.f. [Ghy95, Can04, XZ24]. However
people expect that a cohomologically hyperbolic self-map looks like a hyperbolic
map, hence shares some properties of hyperbolic maps.

1.2. Algorithm to compute the dynamical degrees. A basic problem is to
compute the dynamical degrees to any given precision. More precisely,

Question 1.1. For any given number l ∈ Z>0, is there an algorithm (that stops

in finite time) to compute a number λ̃ such that λi(f) ∈ (λ̃, λ̃+ 1
2l

)?
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Let L be an ample (or big and nef) line bundle on X. By the definition of the
dynamical degree, for n sufficiently large, we have

λi(f) ∈ ((degi,L f
n)1/n − 1

2l+1
, (degi,L f

n)1/n +
1

2l+1
).

But this does not answer Question 1.1, as we do not know how large n we need.

Question 1.1 is also interesting in cryptography. See [SB21, Section 2] for
interesting discussions.

Our result. Strictly speaking, the answer to Question 1.1 depends on the input
i.e. how we represent X and f .

Example 1.2. Let X := P1
C. Define fn : X → X,n ≥ 1 as follows: Let Tn, n ≥ 0

be all the Turing machines. Define an := 0 if Tn will halt, and an := 1 if Tn will
not halt. Define fn(z) := anz

2 + z. As λ1(fn) = deg fn, λ1(fn) = 1 if Tn will halt,
and λ1(fn) = 2 if Tn will not halt. As the Halting problem is unsolvable, there is
no algorithm to compute λ1(fn) for all n ≥ 0.

To describe our input, we need the notion of mixed degrees : Let L be an ample
(or big and nef) line bundle on X. Let s ≥ 1, consider two sequence of non-
negative integers: m1 > · · · > ms ≥ 0 and r1, . . . , rs ≥ 0 with

∑s
i=1 ri = d. The

mixed degree (Lr1m1
· · ·Lrsms) is easier to define using the terminology in Section

2.2 and 2.1. Here we define it in a more direct way. Let X ′ be the graph in
Xs+1 = X × (Xs) of the morphism X → Xs sending x to (fm1(x), . . . , fms(x)).
Let πi be the projection to the (i+ 1)-th factor. Then we define

(Lr1m1
· · ·Lrsms) := ((π∗1L)r1 · · · (π∗sL)rs) ∈ Z>0.

We note that (X, f, L) can be defined on a finitely generated field. The follow-
ing remark shows that the mixed degrees are computable if we represent (X, f)
in a reasonable form.

Remark 1.3. Assume that k is a finitely generated field. We represent X and
f as follows: Write k as

k := Frac (Z[t1, . . . , tl]/P )

where P = (G1, . . . , Gm) is a prime ideal of Z[t1, . . . , tl]. Write X as the subvariety
of PNk defined by a homogenous prime ideal (H1, . . . , Hs). The rational map
f : X 99K X extends to a rational self-map F : PN 99K PN sending [x0 : · · · : xN ]
to [F0 : · · · : FN ] where F0, . . . , FN are homogenous polynomials of the same
degree in k[x0, . . . , xN ].

We represent X, f using the following datas as inputs:

(i) the polynomials G1, . . . , Gm with integer coefficients;
(ii) the polynomials H1, . . . , Hs, F0, . . . , FN , whose coefficients are represented

as rational functions in t1, . . . , tl with integer coefficients.

In this case, we may ask L to be the restriction of OPN (1) to X. For every
mixed degree (Lr1m1

· · ·Lrsms), there is an algorithm compute its exact value. So our
assumption is satisfied and we may use Theorem 1.4 to compute the dynamical
degrees of f.
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In Section 4, we affirmatively answer Question 1.1, under the assumption that
all the mixed degrees (Lr1m1

· · ·Lrsms) are computable.

Theorem 1.4. For any given number l ∈ Z>0, there is an explicit algorithm to

output numbers λ̃i, i = 0, . . . , d such that λi ∈ (λ̃i, λ̃i + 1
2l

), using finitely many
mixed degrees.

Previous results. Here we ignore the difficulty from the computability theory as
in Example 1.2, and we assume that (X, f) is represented in a reasonable form.

There are plenty of works concerning the computation of dynamical degrees in
special cases.

If X is a smooth projective variety and f : X → X is an endomorphism, we
have that

λi(f) = ρ(f ∗ : N i(X)R → N i(X)R)

where N i(X)R is the R-vector space spanned by the numerical classes of i-cocycles
of X. As N i(X)R is a finite dimensional vector space, the sequence degi,L f

n, n ≥ 0

satisfies a linear recursive equation of order ≤ dimRN
i(X)R. In particular, λi(f)

is an algebraic integer of degree ≤ dimRN
i(X)R. In this case, λi(f) should be

computable for a given (X, f). On the other hand, there is a lot of interesting
works on constructing examples of endomorphisms (especially automorphisms)
having certain properties on the dynamical degrees, e.g. [Can99, McM02, McM07,
McM11, McM16, Dol18, Ogu10, Ogu14, CO15, Ogu09, OT15, OY20, Ueh16,
Res17, Les21].

When f is merely rational, most of the previous work focus on the first dy-
namical degree λ1(f). In [Sib99], Sibony introduced the important notion of al-
gebraically stable maps. If (X, f) is algebraically stable, as in the endomorphism
case, we still have

λ1(f) = ρ(f ∗ : N1(X)→ N1(X)),

and one can compute λ1(f) using linear algebra. In most of the works, the
strategy to compute λ1(f) is to construct a birational model (X ′, f ′) of (X, f) for
which (X ′, f ′) is algebraicaly stable. For certain classes of maps, such as birational
self-maps of surfaces [DF01] or endomorphism of A2 [FJ07, FJ11], we can find
such birational models, after a suitable iterate. On the other hand, it was proved
by Favre [Fav03] that algebraically stable model may not exist even for monomial
self-maps on P2. However, the dynamical degrees λi(f), i = 0, . . . , d are computed
for monomial self-maps on PN by Favre-Wulcan and Lin [FW12, Lin12]. Dinh and
Sibony [DS] computed the dynamical degrees for automorphisms f : Am → Am

on complex affine spaces that are regular (i.e. the indeterminacy loci of f and
its inverse f−1 are disjoint on the hyperplane at infinity in Pm). As far as we
know, these are the only non-trivial cases for which higher dynamical degrees
are computed. See [BK04, BK08, Ngu06, AdMV06, AAdBM99, BV99, MHV97,
DF01, FJ11, BDJ20, DF21, BDJK23] and the reference therein for more related
works.

In the above cases, the dynamical degrees are always algebraic. Moreover, as
(X, f) can be defined on a finitely generated field, the set of all possible values of
dynamical degrees are countable [BFs00, Ure18]. However, in the breakthrough
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work [BDJ20], Bell, Diller and Jonsson give examples of rational self-maps of P2
C

whose first dynamical degrees are transcendental numbers. In their examples,
λ1(f) is the unique positive real zero of certain transcendental power series. So
we do not expect the existence of an algorithm (stoping in finite time) computing
the exact value of λi(f) in general.

The surface case. In [Xie15, Key Lemma], the author proved the following result.1

Theorem 1.5. Let k be a field. Let X be a projective surface over k. Let f :
X 99K X be a dominant rational self-map. Let L be a big and nef line bundle.
Then we have

λ1(f) ≥
deg1,L f

2

2
1
2 × 318 deg1,L f

.

We will see, in Section 4.3, that this indeed implies a positive answer of Ques-
tion 1.1 for rational self-maps of surfaces.

The proof of Theorem 1.5 relies on the theory of hyperbolic geometry and the
natural linear action of f on a suitable hyperbolic space of infinite dimension.
This space is constructed as a set of cohomology classes in the Riemann-Zariski
space of X and was introduced by Cantat [Can11]. Unfortunately, such a space

can only be constructed in dimension two. Also the coefficient 2
1
2 × 318 is quite

large. In this paper, we give a new proof of Theorem 1.5 with a better coefficient
i.e. from 2

1
2 × 318 to 4.

Theorem 1.6. Let k be a field. Let X be a projective surface over k. Let f :
X 99K X be a dominant rational self-map. Let L be a big and nef line bundle.
Then we have

λ1(f) ≥
deg1,L f

2

4 deg1,L f
.

The proof of Theorem 1.6 does not rely on hyperbolic geometry and is much
simpler (c.f. Section 4.3).

1.3. Lower semi-continuity of dynamical degrees. Besides the the dynam-
ical degrees of a single map, we also study the behavior of the dynamical degree
in families.

Let S be an integral noetherian scheme and d ∈ Z≥0. Initially, a family of
self-maps on S should be a collection of dominant rational self-maps fp : Xp 99K
Xp, p ∈ S on varieties p ∈ S. So we introduce the following definition.

Definition 1.7. A family of d-dimensional dominant rational self-maps on S is
a flat and projective scheme π : X → S satisfying dimX/S = d with a dominant
rational self-map f : X 99K X over S such that for every p ∈ S,

(i) the fiber Xp of π at p is geometrically reduced and irreducible;
(ii) Xp 6⊆ I(f);

(iii) the induced map fp : Xp 99K Xp is dominant.

1In [Xie15, Key Lemma], the result is stated only for birational self-maps. However, its proof

indeed works for any dominant rational self-map, replacing all f∗ by f∗

λ
1/2
2

.
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We prove the following result in Section 5.

Theorem 1.8. Let S be an integral noetherian scheme and π : X → S be a flat
and projective scheme over S with dimX/S = d. Let f : X 99K X be a family
of d-dimensional dominant rational self-maps on S. Then for every i = 0, . . . , d,
the function p ∈ S 7→ λi(fp) is lower semi-continuous in the Zariski topology on
S.

A special case of Theorem 5.1 is the following result.

Corollary 1.9. Let f : PdZ 99K PdZ be a dominant rational self-map over Z. Then
for every i = 0, . . . , d, we have

λi(f ⊗Z Q) = lim
p prime,p→∞

λi(fp).

Theorem 1.8 generalizes [Xie15, Theorem 4.3] from dimension two to any di-
mension. The special case where i = 1 and X = PNS of Theorem 1.8 implies Call-
Silverman’s conjecture [SC18, Conjecture 1] and its generalized version [BIJ+19,
Conjecture 14.13]. Corollary 1.9 gives a positive answer to [BIJ+19, Question
14.10].

In [Xie15, Section 4.3], the author provided the following example showing that
Corollary 1.9 cannot be strengthened to the statement that λi(f ⊗Z Q) = λi(fp)
for infinitely many prime p.

Example 1.10. Let f : P2
Z 99K P2

Z be the rational self-map sending [x : y : z] to
[xy : xy − 2z2 : yz + 3z2]. Then λ1(f ⊗Z Q) = 2, but λ1(fp) < 2 for all primes p.

Strategy of the proof. There are three steps in the proof. In the first step, we get
a simple criterion for lower semi-continuity functions on noetherian schemes (c.f.
Lemma 5.2). Next we show that the mixed degrees are lower semi-continuous
(c.f. Lemma 5.5). This step can be shown using our criterion Lemma 5.2,
Raynaud-Gruson flattening theorem [RG71, Theorem 5.2.2], and the constancy
of intersection numbers on flat families [Ful84, Proposition 10.2]. The function
p ∈ S 7→ λi(fp) of the i-th dynamical degree is the point-wise limit of the functions
p ∈ S 7→ (degi,Lp fp)

1/n. By the second step, the later function is lower semi-
continuous. However, as shown in Remark 5.3, limit of lower semi-continuous
functions may not be lower semi-continuous. To complete the proof of Theorem
5.1, we need to show that the dynamical degrees are continuous at the generic
point of S. In this step, the main ingredient is the lower bounds of the dynamical
degrees obtained in Section 3.

1.4. Periodic points. One of the most basic problem in algebraic dynamics is
to determine when the set of periodic points is Zariski dense.

Question 1.11. Under which condition does f admit a Zariski dense set of
periodic points?

We give a positive answer to Question 1.11 for cohomologically hyperbolic self-
maps in Section 6.
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Theorem 1.12. If f is cohomologically hyperbolic i.e. there is a unique i ∈
{1, . . . , d} such that λi(f) = maxj=0,...,d λj(f), then the set of periodic closed points
is Zariski dense.

We indeed prove a stronger statement in Theorem 6.1.

When f is not cohomologically hyperbolic, the answer to Question 1.11 can be
either positive or negative. Indeed, in Section 6.4, we give examples to show that
for cohomologically non-hyperbolic maps, one can not determine whether the set
of periodic points are Zariski dense from their dynamical degrees.

Historical notes. The first fundamental result for Question 1.11 is the positive
answer for polarized endomorphisms2, which can be achieved both by analytic
and algebraic method.

Suppose thatX is smooth projective over C and f is a polarized endomorphism.
Using complex analytic methods, Briend-Duval [BD01] and subsequently Dinh-
Sibony [DS10] have proved that the set of periodic points is Zariski dense in X.
By the Lefschetz principle, these results hold true whenever k has characteristic
zero. Later, Hrushovski and Fakhruddin [Fak03] gave a purely algebraic proof of
the Zariski density of periodic points over any algebraically closed field3.

The complex analytic methods alluded to above have been used to give a
positive answer to Question 1.11 for several other classes of maps. For exam-
ple, building on the work of Guedj [Gue05b], Dinh, Nguyên and Truong [TCD]
proved it when f is (dimX)-cohomologically hyperbolic. See [DS, BD05, Duj06,
DDG10, BLS93, JR18] for other cases obtained using complex analytic method.
All these cases are cohomologically hyperbolic, hence implied by our Theorem
1.12. However, when the complex analytic method works, usually it not only
proves the Zariski density of periodic points, but also show that the periodic
points equidistribute to the maximal entropy measure in the complex topology.

In [Xie15, Theorem 1.1], the author classified the birational self-maps on sur-
faces whose periodic points are not Zariski dense by algebraic method. The
essential step of [Xie15, Theorem 1.1], is the case where λ1(f) > 1 (hence coho-
mologically hyperbolic). An advantage of the algebraic method is that it works
in arbitrary characteristic.

Strategy of the proof. We follow the original method of Hrushovski and Fakhrud-
din [Fak03] by reducing our result to the case of finite fields. This method was
also used in the proof of [Xie15, Theorem 1.1].

For the sake of simplicity, we shall assume thatX = PN and f = [f0 : · · · : fN ] is
a rational self-map having integral coefficients. Assume that f is cohomologically
hyperbolic. By Corollary 1.9, we can find a prime p ≥ 2 such that the reduction
fp modulo p of f is cohomologically hyperbolic. Then the set of periodic closed

2Recall that an endomorphism f on a projective variety X is said to be polarized if there
exists an ample line bundle L on X satisfying f∗L = qL for some integer q ≥ 2. In this case,
λi(f) = qi for i = 0, . . . , d. Hence polarized endomorphisms are cohomologically hyperbolic.

3Their proof indeed works for amplified endomorphisms which are more general than polar-
ized ones.
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points of fp is Zariski dense in PN(Fp) by an argument of Fakhruddin based on
Hrushovski’s twisted Lang-Weil estimate c.f. Theorem 6.3. We show that most
of the fp-periodic points are “isolated” in a certain sense (c.f. Corollary 6.6). The
main ingredient of this step is a recursive inequality proved in Theorem 3.7 and
[MW, Proposition 3.5]. By Lemma 6.4 (which generalizes [Fak03, Theorem 5.1]),
we can lift isolated periodic points from the special fiber to the generic fiber. This
concludes the proof.

1.5. Kawaguchi-Silverman conjecture. Assume that k = Q. Let X be a
projective variety over Q and let L be an ample line bundle on X. We denote by
hL : X(Q)→ R a Weil height associated to L c.f. [HS00, BG06]. It is unique up
to adding a bounded function. Set h+

L := min{1, hL}.
Let Xf (Q) be the set of points x ∈ X(Q) whose orbit is well-defined i.e.

fn(x) 6∈ I(f) for every n ≥ 0. In [KS16], Kawaguchi and Silverman introduced
the fundamental notion of arithmetic degree to describe the arithmetic complexity
of an orbit. For x ∈ X(Q), the upper/ lower arithmetic degree for X, f, x are

αf (x) := lim sup
n→∞

h+
L(fn)1/n and αf (x) := lim inf

n→∞
h+
L(fn)1/n.

If αf (x) = αf (x), we set

αf (x) := αf (x) = αf (x).

In this case, we say that αf (x) is well-defined and call it the arithmetic degree of
f at x.

The following conjecture was proposed by Kawaguchi and Silverman [Sil14,
KS16]. It connects the arithmetic degree with the first dynamical degree.

Conjecture 1.13 (Kawaguchi-Silverman conjecture). Let X be a projective va-
riety over Q. Let f : X 99K X be a dominant rational self-map. Then for every
x ∈ Xf (Q), αf (x) is well defined. Moreover, if Of (x) is Zariski dense, then we
have αf (x) = λ1(f).

The general form of the Kawaguchi-Silverman conjecture is wildly open. How-
ever many special cases are known especially when f is well-defined everywhere.
When f is a polarized endomorphism, the Kawaguchi-Silverman conjecture is
implied by the Northcott property. It was completely solved when X is a pro-
jective surface and f is a surjective endomorphism by Kawaguchi, Silverman,
Matsuzawa, Sano, Shibata, Meng and Zhang [Kaw08, KS14, MSS18, MZ22]. Ex-
cept Kawaguchi’s automorphism case, the proof heavily relies on classification (or
minimal model theory) of surfaces. In higher dimension, serval cases are proven
by minimal model theory. These results are on surjective endomorphisms on pro-
jective varieties (c.f. [MZ23]). Few results are known when f is merely rational.
The following are two remarkable cases.

(1) Conjecture 1.13 was proved for regular affine automorphisms on AN by
Kawaguchi [Kaw06, Kaw13].

(2) Conjecture 1.13 holds by Matsuzawa and Wang [Wan23, MW] when X
is a smooth projective variety, f is a 1-cohomologically hyperbolic rational
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map, and the f -orbit of x is generic i.e. for every proper subvariety Y of
X, the set {n ≥ 0| fn(x) ∈ Y } is finite.

The Dynamical Mordell-Lang conjecture proposed by Ghioca and Tucker asserts
that for every x ∈ Xf (Q), if Of (x) is Zariski dense, then the f -orbit of x is
generic c.f. [GT09] (see also [Xie23a, Conjecture 1.2]). So (2) implies that the
Kawaguchi-Silverman conjecture for 1-cohomologically hyperbolic self-maps as-
suming the Dynamical Mordell-Lang conjecture. For more results, see [Mat23]
and the references therein.

In Section 7, we prove the following result (the case λ2(f) = λ1(f)2 was already
proved by Wang and Matsuzawa [MW, Theorem 1.17]).

Theorem 1.14. Let X be a projective surface over Q and f : X 99K X be a
dominant rational self-map such that λ1(f) > λ2(f) or λ2(f) = λ1(f)2. Let
x ∈ Xf (Q). If the orbit Of (x) of x is Zariski dense, then αf (x) = λ1(f).

In particular, Theorem 1.14 implies the Kawaguchi-Silverman conjecture for
birational self-maps on projective surfaces. We first explain how to prove Theorem
1.14 assuming the Dynamical Mordell-Lang conjecture (which was done in (2)).
In the proof of (2), Matsuzawa and Wang construct some recursive inequality for
the heights h(fn(x)) when fn(x) is not contained in the base locus B of some
big line bundle. Applying the Dynamical Mordell-Lang conjecture, one can show
that the orbit meets B in at most finitely many times. So we may ignore the
base locus and assume that the recursive inequality holds for all n. This implies
our result easily. As the Dynamical Mordell-Lang conjecture is wildly open in
general, we can not ignore the base locus. This is the main difficulty of our proof.
Our idea is to construct a weaker recursive inequality when fn(x) is contained in
B. We then combine this inequality with the one when fn(x) ∈ B to get a lower
bound of the growth of the height. We apply the Weak dynamical Mordell-Lang
[BGT15, Corollary 1.5] (see also [Fav00, Theorem 2.5.8], [Gig14, Theorem D,
Theorem E],[Pet15, Theorem 2], [BHS20, Theorem 1.10], [Xie23b, Theorem 1.17]
and [Xie23a, Theorem 5.2]) to show that the density of n with fn(x) ∈ B is zero.
Using this, one can show that we can ignore B asymptotically and conclude the
proof.

1.6. Further problems. Though our Theorem 1.4 gives an algorithm to com-
pute the dynamical degrees to any given precision, it seems that our algorithm
is not so efficient. Either theoretically, or practically, it is interesting to have a
more efficient algorithm. In a private communication with Silverman, he asked
the following more precise question:

Question 1.15. Is there an algorithm to compute the dynamical degrees λi(f)
to within 1/2l using only O(le) storage for some “not too large” e?

Blanc, Cantat and McMullen [McM07, Can11, BC16] showed that there is a gap
on the first dynamical degree for surface birational self-maps. More precisely, for
every surface birational self-map f , we have λ1(f) 6∈ (1, λL), where λL ' 1.176280
is the Lehmer number i.e. the unique root > 1 of the irreducible polynomial
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x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1. This result relies on the existence
of algebraically stable models for surface birational self-maps proved by Diller-
Favre [DF01]. It is interesting to ask whether such a gap exists for general rational
self-maps and for higher dynamical degrees.

Question 1.16. Is there a λ > 1 depending on d ≥ 1 and i ∈ {1, . . . , d} such that
for every dominant rational self-maps f on a d-dimensional projective variety X,
we have λi(f) 6∈ (1, λ)?

When i = d, Question 1.16 has positive answer by taking λ = 2. Corollary 5.8
gives positive answer to Question 1.16 for self-maps coming from a given family.
In particular, Corollary 5.8 shows that for every d ≥ 1, D ≥ 1, there is λ > 1
depending on d and D, such that for every i = 0, . . . , d and every dominant
rational self-map f of Pd with deg1,O(1) f ≤ D, we have λi 6∈ (1, λ).

The same question can be asked for the cohomological Lyapunov exponents.

Question 1.17. Is there a µ > 1 depending on d ≥ 1 and i ∈ 1, . . . , d such that
for every dominant rational self-maps f on a d-dimensional projective variety X,
we have µi(f) 6∈ (µ−1, 1) ∪ (1, µ).
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discussion on the Kawaguchi-Silverman conjecture. The author would like to
thank Zhiqiang Li and Xianghui Shi for interesting discussion on computability
theory. The author would like to thank Tien Cuong Dinh, Keiji Oguiso, Mattias
Jonsson, Claude-Michel Viallet, Guolei Zhong and Fei Hu for helpful comments
on the first version of this work. The author would like to thank Joseph Silverman
for proposing Question 1.15. The author would like to thank Serge Cantat for
his careful reading of first version and his helpful comments. The author would
like to thank Matsuzawa, who found a mathematical mistake in the first version
of the paper.

2. Birational models

In this section, we introduce the terminology of cocycles on birational models.
This terminology is not completely necessary for our paper, but it naturally fits
our setting and it simplifies the notations a lot and makes the presentations
clearer.

Let k be a field. Let X be a projective variety of dimension d over k. A
birational model of X is a projective variety Xπ with a birational morphism
π : Xπ → X. For two birational models Xπ and Xπ′ , we say that Xπ′ dominates
Xπ and write Xπ′ ≥ Xπ if the birational map µ := π−1 ◦ π′ : Xπ′ → Xπ is a
morphism.

2.1. Line bundles. Let P̃ic(X) and P̃ic(X)R be the inductive limits

P̃ic(X) := lim−→
π

Pic(Xπ)

and
P̃ic(X)R := lim−→

π

Pic(Xπ)R.



12 JUNYI XIE

with respect to pullback arrows. In particular, P̃ic(X)R = P̃ic(X) ⊗Z R. To

simplify the notations, for L ∈ P̃ic(X), we still denote by L its image in P̃ic(X)R.

For every element L ∈ P̃ic(X) (resp. L ∈ P̃ic(X)R) there is a birational model
Xπ of X such that L is represented by some Lπ ∈ Pic(Xπ) (resp. Lπ ∈ Pic(Xπ)R);
we say that L is defined on Xπ by (π−1 ◦ π′)∗Lπ. For every Xπ′ ≥ Xπ, L is also

defined on Xπ′ . We say that L ∈ P̃ic(X)R is big (resp. nef, effective, pseudo-
effective) if it is represented by Lπ ∈ Pic(Xπ)R for some birational model Xπ of

X such that Lπ is big (resp. nef, effective, pseudo-effective). For L,M ∈ P̃ic(X)R,
write L >big M if L−M is big and L ≥M if L−M is pseudo-effective.

For L ∈ P̃ic(X) and every birational model Xπ of X, define the stable base
locus as follows: Pick any model π0 : Xπ0 → X such that L is defined on Xπ0 ,
Xπ0 is normal and Xπ0 dominates Xπ. Define BXπ0

(L) := ∩n≥0BsXπ0 (nL) where
BsXπ0 (·) is the usual base locus, and let BXπ(L) be the image of BXπ0

(L) in Xπ.
It is easy to check that this definition does not depend on the choice of π0. If L
is effective, then BXπ(L) 6= Xπ.

Let C be a curve in X and L ∈ Pic(X)R. Assume that L is represented by some
Lπ ∈ Pic(Xπ)R on some birational model Xπ of X such that C is not contained

in the indeterminacy locus I(π−1) of π−1 : X 99K Xπ. Let Cπ := π−1(C \ I(π−1))
be the strict transform of C by π. We define (C ·L) to be (Cπ ·Lπ). It is easy to
see that this definition does depend on the choice of Xπ, Lπ.

Let f : X 99K X be a rational self-map and C be a curve in X. Assume that
C is not contained in I(f). Define f∗(C) as follows: Pick a birational model Xπ

of X such that fπ := f ◦ π : Xπ → X is a morphism and C 6⊆ I(π−1). Such a
model exists, as we can pick Xπ to be the graph of f in X ×X and let π be the
projection to the first factor. Define f∗(C) := (fπ)∗(Cπ). This definition does not
depend on the choice of Xπ. Let M ∈ Pic(X)R. We pick Xπ as above. Then M
is defined on Xπ. The previous paragraph shows that the intersection (f ∗(M) ·C)
is well-defined and is equal to (Cπ · f ∗πM). By projection formula, we get

(2.1) (f ∗(M) · C) = (M · f∗(C)).

2.2. Cocycles. For i = 0, . . . , d, let C̃Hi(X)R be the inductive limit

C̃Hi(X)R := lim−→
π

CHi(Xπ)R

with respect to pullback arrows, where CHi(·) is the Chow group of degree i

cocycles [Ful84]. In particular, C̃H1(X)R = P̃ic(X)R.

For L1, . . . , Li ∈ P̃ic(X)R and Z ∈ C̃Hj(X)R, we define the intersection L1 · · ·Li·
Z ∈ C̃Hi+j(X)R as follows: There is a birational model Xπ of X such that
L1, . . . , Li and Z are all defined on Xπ. Let L1,π, . . . , Li,π ∈ Pic(Xπ) and Zπ ∈
CHj(Xπ)R represent L1, . . . , Li and Z. Define L1 · · ·Li · Z to be the element in

C̃Hi+j(X)R represented by L1,π · · ·Li,π ·Zπ ∈ CHi+j(Xπ). This definition does not
depend on the choice of the birational model Xπ.
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For P ∈ C̃Hd(X)R, define (P ) to be the degree of Pπ where Pπ ∈ CHd(Xπ) for
some birational model Xπ of X which defines P. This does not depend on the
choice of birational model Xπ.

Let g : Y 99K X be a rational map. We define the pullback g∗ : C̃Hi(X)R →
C̃Hi(Y )R as follows: For every Z ∈ C̃Hi(X)R, there is a birational model Xπ of X
and Zπ ∈ CHi(XR) such that Zπ defines Z. There is a birational model Yφ of Y
such that g induces a morphism g′ : Yφ → Xπ. We define f ∗Z to be the element

in C̃Hi(X)R defined by (g′)∗Zπ ∈ CHi(Yφ)R. This definition does not depend on
the choice of Xπ and Yφ.

For Z,W ∈ C̃Hi(X)R, write Z ≥n W if for every dominant and generically
finite rational map g : Y 99K X and (d− i)-tuple of nef line bundles H1, . . . , Hd−i

in P̃ic(Y )R, (g∗(Z −W ) ·H1 · · ·Hd−i) ≥ 0. Write Z >n W if for some big and nef

line bundle L ∈ P̃ic(X)R, Z ≥n W + Li.

Remark 2.1. Note that Z ≥n W with Z 6>n W does not imply Z = W.

For Z,W ∈ C̃Hi(X)R, with Z ≥n W (resp. Z >n W ), and a dominant
and generically finite rational map g : Y 99K X, we have g∗Z ≥n W , (resp.
g∗Z >n g

∗W ).

2.3. Siu’s inequalities. Siu’s inequality [Laz04, Theorem 2.2.13] for nef line
bundles is useful in our paper. For the convenience of the applications, we write

it in the following form for nef line bundles in P̃ic(X)R.

Theorem 2.2. Let L,M be nef line bundles in P̃ic(X)R. Assume that (Md) > 0,
then

L ≤ d
(L ·Md−1)

(Md)
M.

In particular, for every ε ∈ (0, 1), εL <big d
(L·Md−1)

(Md)
M.

Applying Siu’s inequality inductively, Dang proved a version of Siu’s inequality
in arbitrary codimension [Dan20, Corollary 3.4.6]. In [JL23, Theorem 3.5], Jiang
and Li give another proof using (multipoint) Okounkov bodies and get the optimal
coefficient. For the convenience of the applications, we write [JL23, Theorem 3.5]

in the following form for nef line bundles in P̃ic(X).

Theorem 2.3. Let i = 0, . . . , d, and L1, . . . , Li,M be nef line bundles in P̃ic(X)R.
Then we have

(Md)L1 · · ·Li ≤n
(
d

i

)
(L1 · · ·Li ·Md−i)M i

i.e. for every (d− i)-tube of nef line bundles H1, . . . , Hd−i in P̃ic(X)R, we have

(L1 · · ·Li ·H1 · · ·Hd−i)(M
d) ≤

(
d

i

)
(L1 · · ·Li ·Md−i)(M i ·H1 · · ·Hd−i).
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In particular, for every ε ∈ (0, 1),

ε(Md)L1 · · ·Li <n

(
d

i

)
(L1 · · ·Li ·Md−i)M i.

3. Recursive inequalities for degree sequences

Let k be a field. Let X be a projective variety of dimension d over k. Let
f : X 99K X be a dominant rational self-map. Let L be a big and nef line bundle

in P̃ic(X).
To simplify the notations, we write

λi := λi(f), µi := µi(f), degi f
n := degi,L f

n, and Ln := (fn)∗L

for every n ≥ 0.

3.1. A lemma on recursive inequalities. The following simple lemma on re-
cursive inequalities is useful.

Lemma 3.1. Let an, n ≥ 0 be a sequences of non-negative real numbers. Let
α, β, γ be real numbers with α ≥ 0 and γ ≥ α + β. Assume that a1 > βa0 and

an+2 + αβan ≥ γan+1

for every n ∈ {0, . . . , N} where N ∈ Z≥0∪{+∞}. Then for every n ∈ {0, . . . , N},
we have

an+2 > βan+1 and an+2 ≥ αn(a1 − βa0).

In particular, if N = +∞, then lim inf
n→∞

a
1/n
n ≥ α.

Proof. As γ ≥ α + β and an+1 ≥ 0, we have an+2 + αβan ≥ (α + β)an+1. Hence
we have (an+2 − βan+1) ≥ α(an+1 − βan), which concludes the proof. �

3.2. Mixed degrees. Let s ≥ 1, consider two sequence of non-negative integers:
m1 > · · · > ms ≥ 0 and r1, . . . , rs ≥ 0 with

∑s
i=1 ri = d. We will compute the

mixed degree, which is defined to be

(Lr1m1
· · ·Lrsms).

Our computation is based on a direct application of the higher codimensional
Siu’s inequality.

Lemma 3.2. Let r1, r2 ≥ 0 with r1 + r2 ≤ d. Let A be a product of d − r1 − r2

nef line bundles in P̃ic(X). Let n1, n2 ≥ 0 and 0 ≤ t ≤ r1. If n1 ≥ n2, then we
have

(Lr1n1
· Lr2n2

· A) ≤
(
d− r1 − r2 + t

t

)
degr1 f

n1−n2

degr1−t f
n1−n2

(Lr1−tn1
· Lr2+t

n2
· A);

if n2 ≥ n1, then we have

(Lr1n1
· Lr2n2

· A) ≤
(
d− r1 − r2 + t

t

)
degd−r1 f

n2−n1

degd−r1+t f
n2−n1

(Lr1−tn1
· Lr2+t

n2
· A).
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Proof. Up to some small pertubations of L of the form L+ εH for some H ample
and positive rational ε→ 0, we can suppose that L is ample on X. After replacing
L by some positive multiple, we may further assume that L is very ample.

Replace X by a sufficiently large model, we may assume that Ln1 and Ln2

are defined over X. Hence they are generated by global sections. Let V be the
intersection of (r1−t) general sections of Ln1 and r2 general sections of Ln2 . Then
V = Lr1−tn1

· Lr2n2
in CHr1+r2−t(X).

By Theorem 2.3, we have

Ltn1
|V ≤

(
d− r1 − r2 + t

t

)
((Ln1|V )s · (Ln2|V )d−r1−r2)

((Ln2|V )d−r1−r2+t)
Ltn2
|V .

Hence

Ltn1
· V ≤

(
d− r1 − r2 + t

t

)
(Ltn1

· Ld−r1−r2n2
· V )

(Ld−r1−r2+t
n2 · V )

Lr1−tn1
· Lr2+t

n2
.

Intersecting with A, we conclude the proof by the projection formula. �

Applying Lemma 3.2, we get upper and lower bounds on the mixed degrees.

Proposition 3.3. Let li := r1 + · · ·+ ri, we have

(Lr1m1
· · ·Lrsms) ≤ (Ld)

s∏
i=1

(
d− ri+1

li

) s∏
i=1

degli,L(fmi−mi+1)

(Ld)

and

degd(f
m1)

s−1∏
i=1

(
d− li
ri+1

)−1 s−1∏
i=1

degli(f
m1−mi+1)

degli+1(fm1−mi+1 )
≤ (Lr1m1

· · ·Lrsms)

Proof. Apply the first inequality in Lemma 3.2 for Lr1m1
, Lr2m2

, t = r1 and A :=
Lr2m2
· · ·Lrsms , we have

(Ll1m1
· · ·Lls−ls−1

ms ) ≤
(
d− r2

l1

)
degl1(f

m1−m2)

(Ld)
(Ll2m2

· · ·Lls−ls−1
ms ).

We get the first inequality by induction.

Apply the first inequality in Lemma 3.2 for Ll2m1
, L0

m2
, t = r2 and A :=

Ll3−l2m3
· · ·Lls−ls−1

ms , we have

(Ll2m1
· Ll3−l2m3

· · ·Lls−ls−1
ms ) ≤

(
d− l1
r2

)
degl2(f

m1−m2)

degl1(f
m1−m2)

(Ll1m1
· · ·Lls−ls−1

ms ).

Hence we have

(Ll1m1
· · ·Lls−ls−1

ms ) ≥
(
d− l1
r2

)−1 degl1(f
m1−m2)

degl2(f
m1−m2)

(Ll2m1
· Ll3−l2m3

· · ·Lls−ls−1
ms ).

We get the second inequality by induction, which concludes the proof. �

By Proposition 3.3, we get the following corollary directly.
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Corollary 3.4. For every δ ∈ (0, 1), there is a constant Dδ ≥ 1 such that

D−1
δ δm1

s∏
i=1

λli(f)mi−mi+1 ≤ (Lr1m1
· · ·Lrsms) ≤ Dδδ

−m1

s∏
i=1

λli(f)mi−mi+1 .

where li := r1 + · · ·+ ri.

3.3. Recursive inequalities. For two functions θ1, θ2 : Z≥0 → R>0, define θ1 &
θ2 if

lim sup
n→∞

(θ2/θ1)1/n ≤ 1.

This defines a partial ordering on the space of functions from Z≥0 to R>0. Define
θ1 ≈ θ2 if θ1 & θ2 and θ2 & θ1. This is an equivalence relation.

Theorem 3.5. For r1, r2 ≥ 0 with r1 + r2 + 1 ≤ d, set

t := min{i ≥ 1| µr1+1+iµr1+r2+1+i < µr1+1µr1+r2+1}.
Set

ηr1,r2 := µr1+tµr1+r2+t+1.

Then for every ε ∈ (0, 1), there is mε > 0, such that for every m ≥ mε,

(L2m + ηmr1,r2L)d−r2 · Lr2m
µmr1+1(L2m + ηmr1,r2L)d−r2−1 · Lr2+1

m

> (d− r2)εm.

In particular, we have

L2m · Lr2m + ηmr1,r2L · L
r2
m >n ε

mµmr1+1L
r2+1
m .

Remark 3.6. We note that ηr1,r2 in Theorem 3.7 is at most µr1+1µr1+r2+1. More-
over, if µr1+1 = µr1+r2+1 or µr1+r2+1 > µr1+r2+2, then ηr1,r2 is strictly leas than
µr1+1µr1+r2+1.

Proof of Theorem 3.5. Set η := ηr1,r2 . We note that µr1+1+i and µr1+r2+1+i are
constant when i ∈ [0, t− 1]. In particular µr1+1 = µr1+t.

The decreasing of µi implies that η(d−r2−j)mλmj λ
m
j+r2

, j = 0, . . . , d − r2 takes
maximal value when j = r1 + t. By Corollary 3.4, we have

(L2m + ηmL)d−r2 · Lr2m ≈
d−r2∑
j=0

η(d−r2−j)m(Lj2m · Lr2m · Ld−j)

≈ d−r2
max
j=0

η(d−r2−j)mλmj λ
m
j+r2

≈η(d−r2−r1−t)mλmr1+tλ
m
r1+r2+t(3.1)

By Corollary 3.4, we have

µmr1+1(L2m + ηmL)d−r2−1 · Lr2+1
m ≈µmr1+1

d−r2−1∑
j=0

η(d−r2−1−j)m(Lj2m · Lr2+1
m · Ld−j)

≈µmr1+1

d−r2−1∑
j=0

η(d−r2−1−j)mλmj λ
m
j+r2+1.
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The maximal taken when j = r1 + t− 1. Then we have

µmr1+1(L2m + ηmL)d−r2−1 · Lr2+1
m ≈µmr1+1η

(d−r2−r1−t)mλmr1+t−1λ
m
r1+t+r2

=µmr1+tη
(d−r2−r1−t)mλmr1+t−1λ

m
r1+t+r2

=η(d−r2−r1−t)mλmr1+tλ
m
r1+t+r2

(3.2)

By (3.1) and (3.2), we conclude the proof by Theorem 2.2. �

For every i = 1, . . . , d, define U(i) := max{j = 0, . . . , d| µj = µi}. If we take
r1 = i− 1 and r2 = 0 in Theorem 3.5, we have ηr1,r2 = µiµU(i)+1 and we get the
following special case for line bundles.

Theorem 3.7. For i = 1, . . . , d and every ε ∈ (0, 1), there is mε > 0, such that
for every m ≥ mε,

L2m + µmi µ
m
U(i)+1L− εmµmi Lm

is big.

A weaker version of Theorem 3.7 was proved in [MW, Proposition 3.5], when
λi = maxdj=0 λj.

Remark 3.8. As µi = µU(i) and µi+1 ≥ µU(i)+1, Theorem 3.7 can be reformulated
in the following form: For i = 1, . . . , d and every ε ∈ (0, 1), there is mε > 0, such
that for every m ≥ mε,

L2m + µmi µ
m
i+1L− εmµmi Lm

is big.

We define three families of conditions on X, f, L which depend only on some
intersection numbers. Let α1, . . . , αd ∈ R>0 be a sequence of decreasing numbers.
Let γ, ε ∈ (0, 1), and m ∈ Z≥1. Set βi :=

∏i
j=1 αi.

Definition 3.9. For i = 1, . . . , d, we say thatX, f, L has condition Ii(α1, . . . , αd; γ; ε;m)
if for every j = 0, . . . , i− 1, we have

(L2m + αmj+1α
m
i γ

mL)d−i+j+1 · Li−j−1
m

αmj+1(L2m + αmj+1α
m
i γ

mL)d−i+j · Li−jm

> (d− i+ j + 1)εm.

Definition 3.10. For i = 1, . . . , d, define

B(α1, . . . , αd; γ; ε;m) :=
i−1∑
j=0

(
d

j

)(
d

i− 1

)
αmi γ

m

εm(j+1)βmj

degj(f
m) degi−1(fm)

(Ld)2
.

We say that X, f, L has condition Ji(α1, . . . , αd; γ; ε;m) if

B(α1, . . . , αd; γ; ε;m) < ε2miβmi (1− εmi).

By Theorem 2.2, If (X, f, L) has condition Ii(α1, . . . , αd; γ; ε;m), then

L2m · Li−j−1
m + αmj+1α

m
i γ

mLi−j−1
m · L >n ε

mαmj+1L
i−j
m .



18 JUNYI XIE

Definition 3.11. For i = 1, . . . , d and N ≥ 0, we say that X, f, L has condition
Ki(α1, . . . , αd; γ; ε;m;N) if

degi(f
m(N+1)) > B(α1, . . . , αd; γ; ε;m)ε−mi degi(f

mN).

Condition Ii(α1, . . . , αd; γ; ε;m) and Ji(α1, . . . , αd; γ; ε;m) only depend on the
top intersection numbers using L2m, Lm, L. Condition Ki(α1, . . . , αd; γ; ε;m;N)
only depends on the top intersection numbers of LNm, L(N+1)m, L2m, Lm, L.

Remark 3.12. If we fixX, f, L, i,m and n, Ii(α1, . . . , αd; γ, ε,m), Ji(α1, . . . , αd; γ, ε,m)
and Ki(α1, . . . , αd; γ, ε,m;n) are open conditions on (α1, . . . , αd, γ, ε).

Lemma 3.13. If (X, f, L) has conditions Ii(α1, . . . , αd; γ; ε;m). Then for every
n ≥ 0, we have

degi(f
m(n+2)) +Bεmiβmi degi(f

mn) ≥ εmiβmi degi(f
m(n+1)),

where B := B(α1, . . . , αd; γ; ε;m). Assume further that the conditions Ji(α1, . . . , αd; γ; ε;m)
and Ki(α1, . . . , αd; γ; ε;m;N) are satisfied for some N ≥ 0. Then for every n ≥ 1,
we have

degi(f
m(N+n))−ε−miB degi(f

m(N+n−1)) ≥ (ε2miβmi )n−1(degi f
m(N+1)−ε−miB degi f

mN).

In particular, Ki(α1, . . . , αd; γ; ε;m;N + n) is satisfied for every n ≥ 0 and we
have

λi ≥ ε2iβi.

Proof. As Ii(α1, . . . , αd; γ; ε;m) is satisfied, for every j = 0, . . . , i− 1, we have

(3.3) Lj+1
2m · Li−j−1

m + αmj+1α
m
i γ

mLj2m · Li−j−1
m · L >big ε

mαmj+1L
j
2mL

i−j
m .

To simplify the notations, for u, v, w ≥ 0 with u+ v + w ≤ d, write

Du,v,w(n) := (Lu(2+n)m · Lvm(n+1) · Lwmn · Ld−u−v−w).

Apply (fn)∗ to (3.3) and intersect them with Ld−i, we get

Dj+1,i−j−1,0(n) + αmj+1α
m
i γ

mDj,i−j−1,1(n) > εmαmj+1D
j,i−j,0(n).

Dividing both side by ε(j+1)mβmj+1, we get

Dj+1,i−j−1,0(n)

ε(j+1)mβmj+1

+
αmi γ

mDj,i−j−1,1(n)

ε(j+1)mβmj
>
Dj,i−j,0(n)

εjmβmj
.

Then we get

Di,0,0(n)

εimβmi
+

i−1∑
j=0

αmi γ
mDj,i−j−1,1(n)

ε(j+1)mβmj
> D0,i,0(n).

We note that

Di,0,0(n) = degi(f
(n+2)m) and D0,i,0(n) = degi(f

(n+1)m).

By Proposition 3.3, we have

Dj,i−j−1,1(n) ≤
(
d

j

)(
d

i− 1

)
degj(f

m) degi−1(fm)

(Ld)2
degi(f

mn).
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Then we get

degi(f
m(n+2)) +B(α1, . . . , αd; γ; ε;m)εmiβmi degi(f

mn) ≥ εmiβmi degi(f
m(n+1)).

Now assume that conditions Ji(α1, . . . , αd; γ; ε;m), Ki(α1, . . . , αd; γ; ε;m;N) are
satisfied. Write

φ := ε2miβmi and ψ := B(α1, . . . , αd; γ; ε;m)ε−mi.

Condition Ji(α1, . . . , αd; γ; ε;m) implies that

εmiβmi > φ+ ψ.

Condition Ki(α1, . . . , αd; γ; ε;m;N) implies that

degi(f
m(N+1)) > ψ degi(f

mN).

We then conclude the proof by Lemma 3.1. �

Lemma 3.14. Fix i = 1, . . . , d. Assume that µi > µi+1. Then by Remark 3.6,
for every j = 0, . . . , i − 1, ηj,i−j−1 < µj+1µi. Pick γ ∈ [maxi−1

j=0
ηj,i−j−1

µj+1µi
, 1). Then

for every ε ∈ (γ
1
3d , 1) there is mε > 0, such that for every m ≥ mε, conditions

Ii(µ1, . . . , µd; γ; ε;m), Ji(µ1, . . . , µd; γ; ε;m) hold for (X, f, L) and moreover, for
every N ≥ 0, Ki(µ1, . . . , µd; γ; ε;m;N) is satisfied.

Proof. The case r1 = j, r2 = i− j − 1 of Theorem 3.5 implies that the condition
Ii(µ1, . . . , µd; γ; ε;m) holds for m� 0.

As (
d

j

)(
d

j − 1

)
µmi γ

m

εm(j+1)λmj

degj(f
m) degi−1(fm)

(Ld)2
≈ µmi γ

m

εm(j+1)λmj
λmj λ

m
i−1

.
γm

εmd
λmi ,

we get

(3.4) B(µ1, . . . , µd; γ; ε;m) .
γm

εmd
λmi .

Then we have

B(µ1, . . . , µd; γ; ε;m)

ε2miλmi (1− εmi)
. (

γ

ε3d
)m.

Since γ
ε3d

< 1, Ji(µ1, . . . , µd; γ; ε;m) holds for m� 0.
By (3.4),

degi(f
m)

B(α1, . . . , αd; γ; ε;m)ε−mi
&
λmi ε

md

γm

εmd
λmi

= (
ε2d

γ
)m.

So Ki(α1, . . . , αd; γ; ε;m; 0) is holds for m� 0. Hence there is mε > 0, such that
for every m ≥ mε, conditions Ii(µ1, . . . , µd; γ; ε;m), Ji(µ1, . . . , µd; γ; ε;m) and
Ki(α1, . . . , αd; γ; ε;m; 0) hold for (X, f, L). By Lemma 3.13, for every m ≥ mε

and N ≥ 0, Ki(α1, . . . , αd; γ; ε;m;N) holds. �
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4. Algorithm to compute the dynamical degrees

We keep the notations of Section 3. Let k be a field. Let X be a projective
variety of dimension d over k. Let f : X 99K X be a dominant rational self-map.

Let L be a big and nef line bundle in P̃ic(X).

The aim of this section is to give an algorithm to compute the dynamical
degrees to arbitrary precision. In other words, we will give an algorithm, such
that for any given number l ∈ Z>0, the algorithm gives a rational number λ̃ such
that λi ∈ (λ̃, λ̃ + 1

2l
). For a given precision l, the algorithm will stop in finitely

many steps and it only uses certain intersection numbers between Ln, n ≥ 0.

4.1. Upper and lower bounds. By [JL23, Corollary 1.3] (or Theorem 2.3), for
every m,n ≥ 0, we have

(4.1) degi(f
m+n) ≤

(
d
i

)
(Ld)

degi(f
m) degi(f

n).

Then we get the following fact:

Fact 4.1. The sequence

(

(
d
i

)
(Ld)

degi(f
n))1/n, n ≥ 0

tends to λi from above.

This controls the dynamical degrees from above.

Now we want to control the dynamical degrees from below. By Remark 3.12,
for i = 1, . . . , d, every β ≥ 1, the following two statements are equivalent:

(i) there are decreasing numbers α1, . . . , αd ∈ R>0, with βi :=
∏i

j=1 αj >

β, γ ∈ (0, 1), ε ∈ (( β
βi

)
1
2i , 1) and m ∈ Z≥1, such that the conditions

Ii(α1, . . . , αd; γ, ε,m), Ji(α1, . . . , αd; γ, ε,m) and Ki(α1, . . . , αd; γ, ε,m; 0)
are satisfied for (X, f, L);

(ii) there are decreasing numbers α1, . . . , αd ∈ Q>0, with βi :=
∏i

j=1 αj > β,

γ ∈ (0, 1) ∩Q, ε ∈ (( β
βi

)
1
2i , 1) ∩Q and m ∈ Z≥1; such that the conditions

Ii(α1, . . . , αd; γ, ε,m), Ji(α1, . . . , αd; γ, ε,m) andKi(α1, . . . , αd; γ, ε,m; 0) are
satisfied for (X, f, L);

By Lemma 3.14, Lemma 3.13, we have the following result.

Theorem 4.2. For i = 1, . . . , d, every β ≥ 1, (i) (or (ii)) above implies that
λi > β. On the other hand, if µi > µi+1, and λi > β then (i) (and (ii)) holds.

Combining Fact 4.1 with Theorem 4.2 and the log concavity of the dynamical
degrees, we can control λi both from above and form below. This give us an
algorithm to compute λi which only use certain intersection numbers. Now we
explain the algorithm in more details.
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4.2. Algorithm.

Proof of Theorem 1.4. For every t ≥ 0, and i = 0, . . . , d, we will construct upper
bounds λ+

i (t) and lower bounds λ−i (t) for λi. First, we set λ+
0 (t) = λ−0 (t) = 1 for

every t ≥ 0.

We first construct the upper bounds for i = 1, . . . , d. For t ≥ 1, define

U(t) := (

(
d
i

)
(Ld)

degi(f
t))1/t

and set
λ+
i (t) := min{U(0), . . . , U(t)}.

By Fact 4.1, λ+
i (t) tends to λi from above.

Next, we construct the lower bounds for λ−i (t), i = 1, . . . , d, t ≥ 0 induc-
tively. Set λ−i (0) := 1, i = 1, . . . , d. Let Ω be the set of (α1, . . . , αd, γ, ε,m) ∈
Qd
>0× ((0, 1)∩Q)2×Z>0. This is a countable set. We may fix a (computable) ar-

rangement to write Ω = {ωt, t ≥ 1}. Write ωt = (α1(t), . . . , αd(t), γ(t), ε(t),m(t)).

For i = 0, . . . , d, set βi(t) :=
∏i

j=1 αj(t). Not that β0(t) = 1. Define

β−i (t) = ε(t)2iβi(t)

if the conditions Ii, Ji hold for (α1(t), . . . , αd(t); γ(t), ε(t),m(t)) and the condition
Ki holds for (α1(t), . . . , αd(t); γ(t), ε(t),m(t); 0); and

β−i (t) := 1

otherwise. To compute β−i (t), we only need to compute finitely many intersection
numbers among L,Lm(t), L2m(t). By Theorem 4.2, we have λi ≥ β−i (t). Define

Xi(t) := max{λ−i (t− 1), β−i (t)}.
Then we have λi ≥ Xi(t). Define λ+

d (t) := Xd(t). For i = 1, . . . , d− 1, define

λ+
i (t) := max{Xi(t), max

1≤u≤i,1≤v≤d−i
{(Xi−u(t)

vXu
i+v)

1/(u+v)}}.

As λi, i = 0, . . . , d is log concave, we have λi ≥ λ+
i (t). Note that λ+

i (t) is increasing
when t increase. For each t ≥ 0, to compute λ+

i (t), we only need to use finitely
many mixed degrees.

Now we compute λ−i (t), λ+
i (t), i = 0, . . . , d for t ≥ 0 one by one until t reach

some value T such that
λ+
i (T )− λ−i (T ) < 1/2l

for every i = 0, . . . , d. Then we set λ̃i := λ−i (T ). Once such T exists, we get

λ̃ < λi ≤ λ+
i (T ) < λ̃+

1

2l
.

So the output λ̃ is what we need.

Now we only need to prove that there is t ≥ 0 such that λ+
i (t)− λ−i (t) < 1/2l

for every i = 0, . . . , d. As
lim
t→∞

λ+
i (t) = λi
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for every i ≥ 0, we only need to show that

(4.2) lim
t→∞

λ−i (t) = λi.

Let V := {0} ∪ {i = 1, . . . , d| µi+1 < µi}. It is clear that {0, d} ⊆ V. By Theorem
4.2, for every i ∈ V , (4.2) holds. For every i ∈ {0, . . . , d} \ S, set

ai := max{j ∈ V |j < i}

and

bi := min{j ∈ V |j > i}.
Then µj is constant when j ∈ [ai + 1, bi]. So we have

λi = (λbi−iai
λi−aibi

)1/(bi−ai).

The definition of λ−i (t) implies that

λ−i (t) ≥ (λ−ai(t− 1)bi−iλ−bi(t− 1)i−ai)1/(bi−ai).

As ai, bi ∈ V , we get

lim inf
t→∞

λ−i (t) ≥ lim
t→∞

(λ−ai(t− 1)bi−iλ−bi(t− 1)i−ai)1/(bi−ai) = λi.

As λ−i (t) ≤ λi for every t ≥ 0, (4.2) holds. This concludes the proof. �

4.3. Lower bounds in dimension two. By Fact 4.1, we have a direct upper
bound of dynamical degrees, but to get lower bounds we need to try many possible
parameters to see whether θ equal to 1. This makes the algorithm in Section 4.2
far from being efficient. I suspect that a direct way to get the lower bounds should
make the algorithm more efficient. In the surface case, a such lower bound was
proved by the author [Xie15, Key Lemma].

Theorem 4.3 (=Theorem 1.5). Let k be a field. Let X be a projective surface
over k. Let f : X 99K X be a dominant rational self-map. Let L be a big and nef

line bundle in P̃ic(X). Then we have

λ1 ≥
deg1 f

2

2
1
2 × 318 deg1 f

.

The proof relies on the theory of hyperbolic geometry and the natural linear
action of f on a suitable hyperbolic space of infinite dimension. This space is
constructed as a set of cohomology classes in the Riemann-Zariski space of X
and was introduced by Cantat [Can11]. Unfortunately, such space can be only

constructed in dimension two. Also the coefficient 2
1
2 × 318 is quite large.

In this section, we use the idea of constructing recursive inequalities to get a
better lower bound for the first dynamical degree in dimension two. This result
has the same form as Theorem 4.3, but it improves the coefficient a lot i.e. from
2

1
2 × 318 to 4. Moreover, the proof become much simpler.



23

Theorem 4.4 (=Theorem 1.6). Let k be a field. Let X be a projective surface
over k. Let f : X 99K X be a dominant rational self-map. Let L be a big and nef

line bundle in P̃ic(X). Then we have

λ1 ≥
deg1 f

2

4 deg1 f
.

Proof. Set Q := deg1 f
2

deg1 f
. As λ1 ≥ λ

1/2
2 , we may assume that Q/4 ≥ λ

1/2
2 . We claim

that the line bundle

L2 +
Q2

16
L− Q

2
L1

is big. For this, by Theorem 2.2, we only need to show that

(4.3)
(L2 + Q2

16
L)2

2(L2 + Q2

16
L)L1

≥ Q

2
.

Indeed,

(L2 + Q2

16
L)2

2(L2 + Q2

16
L)L1

≥
2Q

2

16
deg1 f

2

2(L2 + Q2

16
L)L1

≥
2Q

2

16
deg1 f

2

2(λ2 deg1 f + Q2

16
deg1 f)

≥
2Q

2

16
deg1 f

2

4Q
2

16
deg1 f

≥Q
2

Then we get (4.3). Apply (fn)∗ to L2 + Q2

16
L− Q

2
L1 and multiply it by L, we get

that for every n ≥ 0,

deg1(fn+2) +
Q2

16
deg1(fn) ≥ Q

2
deg1(fn+1).

By (4.1), deg1 f
2 ≤ 2

(L2)
(deg1 f)2. Then we have

deg1 f −
Q

4
(L2) ≥ Q

2
(L2)− Q

4
(L2) > 0.

We concludes the proof by Lemma 3.1. �

5. Lower semi-continuity of dynamical degrees

Let S be an integral noetherian scheme. Recall that A family of d-dimensional
dominant rational self-maps on S is a flat and projective scheme π : X → S
satisfying d := dimX/S with a dominant rational self-map f : X 99K X over S
such that the following hold:

(i) For every p ∈ S, the fiber Xp of π at p is geometrically reduced and
irreducible.

(ii) For every point p ∈ S, Xp 6⊆ I(f).
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(iii) The induced map fp : Xp 99K Xp is dominant.

The aim of this section is to prove the lower semi-continuity of dynamical
degrees for a family of dominant rational maps.

Theorem 5.1 (=Theorem 1.8). Let S be an integral noetherian scheme and
π : X → S be a flat and projective scheme over S. Let f : X 99K X be a family
of d-dimensional dominant rational self-maps on S. Then for every i = 0, . . . , d,
the function p ∈ S 7→ λi(fp) is lower semi-continuous.

5.1. Lower semi-continuity functions on noetherian schemes. The follow-
ing lemma gives a criterion for the lower semi-continuity.

Lemma 5.2. Let S be a noetherian scheme. Then a function θ : S → R is lower
semi-continuous if and only if the followings hold:

(i) for points x, y ∈ S with y ∈ {x}, we have θ(x) ≥ θ(y);

(ii) for every x ∈ S and a < θ(x), there is an open subset V of {x} containing
x such that V ⊆ θ−1((a,+∞)).

Proof. First assume that θ is lower semi-continuous. Then (ii) is obvious. Let

x, y ∈ S with y ∈ {x}. Note that θ−1((−∞, θ(x)]) is closed and it contains x.

Then we have y ∈ {x} ⊆ θ−1((−∞, θ(x)]). So (i) holds.

Now assume that (i) and (ii) hold. Let a ∈ R. Let Z := θ−1((−∞, a]). We
only need to show that Z = θ−1((−∞, a]). Otherwise, there is an irreducible
component Z ′ of Z such that Z ′ 6⊆ θ−1((−∞, a]). Let η be the generic point of
Z ′. By (i), η 6∈ θ−1((−∞, a]). By (ii), there is open subset V of Z ′ containing η
such that V ⊆ θ−1((a,+∞)). So V 6⊆ θ−1((−∞, a]). So θ−1((−∞, a]) is not dense
in Z ′, which is a contradiction. �

Remark 5.3. The following example shows that the limit of lower semi-continuous
functions may not be lower semi-continuous: Let S = SpecZ. Let η be the
generic point of S. For n ≥ 1, let Dn : S → R be the function as follows: Define
Dn(η) := 1. for every prime number p, Dn(p) := 0 if p < n; and Dn(p) := 1
if p ≥ n. Easy to check that Dn are lower semi-continuous. Easy to see that
Dn pointwisely converges to the function D : S → R satisfying D(η) = 1 and
D|S\{η} = 0, which is not lower semi-continuous.

Constructible topology. Let S be a noetherian scheme. Denote by |S| the under-
ling set of S with the constructible topology; i.e. the topology on a S generated
by the constructible subsets (see [Gro64, Section (1.9) and in particular (1.9.13)]).
In particular every constructible subset is open and closed. This topology is finer
than the Zariski topology on S. Moreover |S| is (Hausdorff) compact.

Lemma 5.4. Let S be a noetherian scheme. Let θ : S → R be a lower semi-
continuous function. Then θ is continuous in the constructible topology. Assume
further that θ(S) is discrete. Then θ(S) is finite and for every a ∈ R, θ−1(a) is a
constructible subset of S.

Proof. For every a ∈ R, θ−1((a,+∞)) is Zariski open in S, hence open in the
constructible topology. For every a ∈ R, θ−1((−∞, a)) = ∪n≥1θ

−1((−∞, a− 1
n
]).
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As θ−1((−∞, a − 1
n
]) is Zariski closed, it is open in the constructible topology.

So θ−1((−∞, a)) is open in the constructible topology. So θ is continuous in the
constructible topology.

Now assume that θ(S) discrete. As θ is continuous on |S| and |S| is compact,
θ(S) is compact and discrete, hence finite. If a 6∈ θ(S), then θ−1(a) = ∅. Assume
that a ∈ θ(S). There is b < a such that (b, a) ∩ θ(S) = ∅. Then

θ−1(a) = θ−1((−∞, a]) \ θ−1((−∞, b]),
which is a constructible set. �

5.2. Lower semi-continuity of mixed degrees. Let L be a π-ample line bun-
dle on X . For every p ∈ S, denote by Lp the restriction of L to the fiber Xp.

Lemma 5.5. Let (X , f) be a family of d-dimensional dominant rational self-maps
on S. Let L be a π-ample line bundle on X . Let m1, . . . ,md ∈ Z≥0. Then the
function

p 7→ ((fm1
p )∗Lp · · · (fmdp )∗Lp)

is lower semi-continuous on S. In particular, for every i = 0, . . . , d, the function

p 7→ degi,Lp fp

is lower semi-continuous on S.

Proof of Lemma 5.5. Denote by κ the generic point of S. By Lemma 5.2, we only
need to show that for any (π : X → S, f,L) satisfying our assumption, we have

((fm1
p )∗Lp · · · (fmdp )∗Lp) ≤ ((fm1

κ )∗Lκ · · · (fmdκ )∗Lκ)

on S with equality on a Zariski open subset of S.

Let Γκ be the closure of the image of the map Xκ 99K Xd
κ sending x to

(fm1
κ (x), . . . , fmdκ (x)). Let Γ be its closure in X d

/S.

By [RG71, Theorem 5.2.2], there is a blowup φ : S ′ → S such that the strict
transformation Γ′ → S ′ of Γ→ S by φ is flat. Set X ′ := X ×S S ′ with structure
morphism π′ : X ′ → S ′ and f ′ := f ×S id. Set ψ := id ×S φ : X ′ → X and
L′ := ψ∗L. Then (π′ : X ′ → S ′, f ′,L′) has the same property as (π : X → S, f,L).
Let κ′ be the generic point of S ′ and Γ′κ be the closure of the image of the map

X ′κ′ 99K X ′
d
κ′ sending x to ((f ′κ′)

m1(x), . . . , (f ′κ′)
md(x)). Then Γ′ is its closure in

X ′d/S. For every p′ ∈ S ′, (X ′p′ , f
′
p′ , L

′
p′) is a bass change of (Xp, fp, Lp). Moreover

ψ is an isomorphism over a Zariski dense open subset of S. So we may replace
(π : X → S, f,L) by (π′ : X ′ → S ′, f ′,L′) and assume further that the structure
morphism πΓ : Γ→ S is flat.

For every p ∈ S, let Γ′′p be the closure of the image of the map Xp 99K Xd
p

sending x to (fm1(x), . . . , fmd(x)). Then Γ′′p is an irreducible component of Γp.
There is a Zariski dense open subset U of S such that for every p ∈ U , Γp = Γ′′p.
Let Fi : Γ→ X be the i-th projection. Then we have

(5.1) ((fm1
p )∗Lp · · · (fmdp )∗Lp) = (F ∗1L|Γ′′p · · ·F

∗
dL|Γ′′p ) ≤ (F ∗1L|Γp · · ·F ∗dL|Γp),

and the equality holds for p ∈ U. By [Ful84, Proposition 10.2], we have

(5.2) (F ∗1L|Γp · · ·F ∗dL|Γp) = (F ∗1L|Γκ · · ·F ∗dL|Γκ) = ((fm1
κ )∗Lκ · · · (fmdκ )∗Lκ).
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Combine (5.2) with (5.1), we concludes the proof. �

Remark 5.6. For every p ∈ S, we have ((fm1
p )∗Lp · · · (fmdp )∗Lp) ∈ Z. By Lemma

5.4, the set {((fm1
p )∗Lp · · · (fmdp )∗Lp)| p ∈ S} is finite and for every subset F ⊆ R,

{p ∈ S| ((fm1
p )∗Lp · · · (fmdp )∗Lp) ∈ F} is a constructible subset of S.

The following example shows that the map p 7→ degLp,i(fp) is not continuous
in general.

Example 5.7. [Xie15, Example 4.2] Consider the birational transformation

f : [x : y : z] 7→ [xz : yz + 2xy : z2]

of P2 over SpecZ. Denote by L the hyperplane line bundle on P2
Z. Then fp is

birational for every prime p ∈ SpecZ. We have that degLp(fp) = 1 for p = 2 and
degLp(fp) = 2 for any odd prime.

The function p ∈ S 7→ λi(fp) of the i-th dynamical degree is the point-wise
limit of the functions p ∈ S 7→ (degi,Lp fp)

1/n. By Lemma 5.5, the later function is
lower semi-continuous. However, as shown in Remark 5.3, this does not directly
imply the lower semi-continuity of the i-th dynamical degree. To complete the
proof of Theorem 5.1, we need to apply the lower bounds of the dynamical degrees
obtained in Section 3.

5.3. Lower semi-continuity of dynamical degrees.

Proof of Theorem 5.1. Let κ be the generic point of S. By Lemma 5.2, we only
need to show that for any (π : X → S, f) satisfying our assumption, the followings
hold:

(i) λi(fp) ≤ λi(fκ) for all p ∈ S
(ii) for any β < λi(fκ), there is a nonempty open set U of S, such that for

every point p ∈ U , λi(fp) > β.

Let L be a π-ample line bundle on X . For every p ∈ S, denote by Lp the
restriction of L to the fiber Xp. By Lemma 5.5, for every integer n > 0, we have

degi,Lp(f
n
p ) ≤ degi,Lκ(fnκ )

hence
λi(fp) ≤ λi(fκ).

This implies (i).
Set V := {0}∪{i = 1, . . . , d| µi+1(fκ) < µi(fκ)}. It is clear that {0, d} ⊆ V. We

first prove (ii) for i ∈ V. Let β < λi(fκ). By Theorem 4.2, there are decreasing

numbers α1, . . . , αd ∈ R>0, with βi :=
∏i

j=1 αj > β, γ ∈ (0, 1), ε ∈ (( β
βi

)
1
2i , 1) and

m ∈ Z≥1, such that the conditions Ii(α1, . . . , αd; γ, ε,m), Ji(α1, . . . , αd; γ, ε,m)
and Ki(α1, . . . , αd; γ, ε,m; 0) are satisfied for (Xκ, fκ, Lκ). Note that the condi-
tions Ii(α1, . . . , αd; γ; ε;m), Ji(α1, . . . , αd; γ; ε;m) and Ki(α1, . . . , αd; γ; ε;m; 0) for
(Xp, fp, Lp) only depend on the top intersection numbers of (f 2m

p )∗Lp, (f
m
p )∗Lp, Lp.

By Lemma 5.5, there is a Zariski dense open subset U of S, such that for every
p ∈ U , all top intersection numbers of (f 2m

p )∗Lp, (f
m
p )∗Lp, L are constant. Hence
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for every p ∈ U , the conditions Ii(α1, . . . , αd; γ, ε,m), Ji(α1, . . . , αd; γ, ε,m) and
Ki(α1, . . . , αd; γ, ε,m; 0) are satisfied for (Xp, fp, Lp). By Theorem 4.2, we get
λi(fp) > β. This implies (ii) for i ∈ V.

As in the proof of Theorem 1.4, for every i ∈ {0, . . . , d} \ V , set

ai := max{j ∈ V |j < i}

and

bi := min{j ∈ V |j > i}.
We have

λi(fκ) = (λai(fκ)
bi−iλbi(fκ)

i−ai)1/(bi−ai).

Pick θ ∈ (β/λi(fκ), 1). As ai, bi ∈ V , there is a nonempty open set U of S, such
that for every point p ∈ U ,

λai(fp) > θλai(fκ)

and

λbi(fp) > θλbi(fκ).

As λi(fp), i = 0, . . . , d is log concave, we have

λi(fp) ≥ (λai(fp)
bi−iλbi(fp)

i−ai)1/(bi−ai)

≥ θ(λai(fκ)
bi−iλbi(fκ)

i−ai)1/(bi−ai)

= θλi(fκ) > β.

This concludes the proof. �

Theorem 5.1 implies that for every family of dominant rational self-maps over
S, λi(fp) can not be arbitrarily closed to 1 if it is not equal to 1.

Corollary 5.8. Let (X , f) be a family of d-dimensional dominant rational maps
on S. For every i = 0, . . . , d, the set Λi((X , f)) := {λi(fp)| p ∈ S} is well-ordered
i.e. every subset of Λi((X , f)) has a minimal element. In particular, there is
λ ∈ (1,+∞) such that for every p ∈ S, if λi(fp) > 1, then λi(fp) ≥ λ.

Proof. Let F ⊆ Λi((X , f)). For every β ∈ R, define Zβ := λ−1
i ((−∞, β]) which is

Zariski closed. For β ∈ Λi((X , f)), we have

(5.3) β = sup
p∈Zβ

λi(fp).

Set b := inf F . There is a decreasing sequence βn ∈ F such that lim
n→∞

βn = b.

The noetherianity of S shows that there is N ≥ 0 such that Zβn = ZβN for all
n ≥ N. By (5.3), we get βn = βN for every n ≥ N . Hence b = βN . This implies
that Λi((X , f)) is well-ordered. As Λi((X , f)) ∩ (1,+∞) is well-ordered, the last
statement is true. �
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5.4. Decidability. Theorem 5.1 implies that for a family of dominant rational
self-maps over S. For every β > 0, i = 1, . . . , d, and p ∈ S, the question whether
λi(fp) > β is decidable.

Let (X , f) be a family of d-dimensional dominant rational maps on S. Let
L be a π-ample line bundle on X . For every p ∈ S, denote by Xp, fp, Lp the
specialization of X , f, L at p.

For t ≥ 0, let λ−i (fp, t) be the lower bounds for λi(fp) as defined in the proof
of Theorem 1.4 in Section 4.2. It has the following properties:

(i) for every i = 0, . . . , d, λ−i (fp, t), t ≥ 0 is increasing;
(ii) limt→∞ λ

−
i (fp, t) = λi(fp);

(iii) for every i, t, the value of λ−i (fp, t) only relies on finitely many mixed
degrees for Xp, fp, Lp.

For every t ≥ 0, by (iii) and Remark 5.6, the function p ∈ S 7→ λ−i (fp, t) is
locally constant on |S|. In particular, it only takes finitely many values.

Corollary 5.9. Let (X , f) be a family of d-dimensional dominant rational maps
on S. Let L be a π-ample line bundle on X . Then for every β ∈ R and i =
0, . . . , d, there is T ≥ 0 such that for every p ∈ S, λi(fp) > β if and only if
λ−i (fp, T ) > β.

Proof. Set Z := {p ∈ S| λi(fp) > β}. By Theorem 5.1, Z is Zariski open. For
every n ≥ 1, write Vt := {p ∈ S| λ−i (fp, t) > β}. By (i) and (ii) above, Vt is
increasing and Z = ∪t≥0Vt. By (iii) above and Remark 5.6, Vt is constructible in
S. As |Z| is compact and |Vt|, t ≥ 0 are open in the constructible topology, there
is T ≥ 0 such that Z = ∪Tt=0Vt = VT . This concludes the proof. �

6. Periodic points of cohomologically hyperbolic maps

Let X be a variety over a field k. Let f : X 99K X be a dominant rational
self-map. For i = 1, . . . , d, we say that f is i-cohomologically hyperbolic if λi(f)
is strictly larger than the other dynamical degrees i.e.

µi(f) > 1 and µi+1(f) < 1.

We say that f is cohomologically hyperbolic if it is i-cohomologically hyperbolic
for some i = 1, . . . , d i.e. µj(f) 6= 1 for every j = 1, . . . , d.

Let Xf be the set of (scheme-theoretic) points x whose orbit is well-defined i.e.
for every n ≥ 0, fn(x) 6∈ I(f). More generally, for every Zariski open subset V
of X, let Vf be the set of points x ∈ Xf whose orbit Of (x) is contained in V. Let

Xf (k) := Xf ∩ X(k). For every n ≥ 0, let Per n(f)(k) be the set of n-periodic

closed points in Xf (k). Set Per (f)(k) := ∪n≥1Per n(f)(k). For every Zariski open

subset V of X, let Per V (f)(k) be the set of x ∈ Per (f)(k) whose orbit Of (x) is
contained in V.

The aim of this section is to prove the following result, which implies Theorem
1.12.

Theorem 6.1. If f is cohomologically hyperbolic, then for every Zariski dense
open subset V of X, Per V (f)(k) is Zariski dense in X.
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6.1. Rational self-maps over finite fields. The following result shows that,
for dominant rational self-maps over finite fields, the periodic points are always
Zariski dense. It was originally proved by Fakhruddin and Poonen [Fak03, Propo-
sition 5.5] for endomorphisms. Their proof indeed works for arbitrary dominant
rational self-maps with minor modifications. For the convenience of the readers,
we provide a proof here in the general case. Our proof is based on the proof of
[Xie15, Proposition 5.2].

Proposition 6.2. Let p > 0 be a prime number. Let X be a variety over Fp. Let
f : X 99K X be a dominant rational self-map. Then for every Zariski dense open
subset W of X, PerW (f)(Fp) is Zariski dense in X.

The key ingredient to prove Proposition 6.2 is Hrushovski’s twisted Lang-Weil
estimate.

Theorem 6.3 ([Hru, SV22]). Let g : X → Spec k be an irreducible affine variety
of dimension r over an algebraically closed field k of characteristic p, and let q
be a power of p. We denote by φq the q-Frobenius map of k, and by Xφq the
same scheme as X with g replaced by g ◦φ−1

q . Let V ⊆ X ×Xφq be an irreducible
subvariety of dimension r such that both projections

π1 : V → X and π2 : V → Xφq

are dominant and the second one is quasi-finite. Let Φq ⊆ X ×Xφq be the graph
of the q-Frobenius map φq. Set

u =
deg π1

deginsep π2

,

where deg π1 denotes the degree of field extension K(V )/K(X) and deginsep π2 is
the purely inseparable degree of the field extension K(V )/K(X).

Then there is a constant C that does not depend on q, such that

|#(V
⋂

Φq)− uqr| ≤ Cqr−1/2.

Hrushovski’s original proof of Theorem 6.3 relies on model theory. See [SV22]
for an algebro-geometric proof.

Proof of Proposition 6.2. After replacing X, f by W, f |W , we may assume that

W = X. Let Z := Per (f)(Fp) and assume by contradiction that Z 6= X. Set
Y := Z

⋃
I(f). Then Y is a proper closed subset of X. Let q = pn be such that

X and f are defined over the subfield Fq of Fp having exactly q elements. Let
φq denote the Frobenius morphism acting on X and let Γf (resp. Γm) denote the
graph of f (resp. φmq ) in X × X. Let U be an irreducible affine open subset of
X \ Y that is also defined over Fq and such that f is an open embedding from U
to X. Set V = Γf

⋂
(U×U). By Theorem 6.3, there exists an integer m > 0 such

that (V
⋂

Γm)(Fp)6=∅ i.e. there exists u ∈ U(Fp) such that f(u) = φmq (u) ∈ U .

Since f is defined over Fq, it follows that f l(u) = φlmq (u) ∈ U for all l ≥ 0. This
contradicts the definition of Y and U . �
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6.2. Isolated periodic points. A periodic point x ∈ Per (f)(k) is called isolated
if it is isolated in Per r(f) for some period r ≥ 1 of x. The following result shows
we can lift isolated periodic points from the special fiber to the generic fiber. This
result was originally proved by Fakhruddin and Poonen [Fak03, Theorem 5.1] for
endomorphisms. However, its proof works for arbitrary dominant rational self-
maps with minor modifications. For the convenience of the reader, we provide
a proof here in the general case. Our proof is based on the proof of [Xie15,
Proposition 5.4].

Lemma 6.4. Let X be a quasi-projective scheme, flat over a discrete valuation
ring R with fraction field K and residue field kp. Let fR be a dominant rational
self-map X 99K X over R. Let Xp be the special fiber of X and X be the generic
fiber of X . Assume that Xp is reduced and Xp 6⊆ I(fR). Let f be the restriction
of fR to X, and fp be the restriction of fR to Xp. Let Up be a Zariski dense open
subset of Xp such that Up ∩ I(fR) = ∅. Let r ≥ 1 and xp ∈ Up be a closed point
in Per Up(fp) of period r. Assume that Xp is regular at xp and xp is isolated in
Per r(fp). Then there is a closed isolated periodic point x ∈ Per r(X) such that

xp ∈ {x}.
Moreover, if isolated closed periodic points in Per Up(Xp) are Zariski dense in

Xp, then the set of isolated f -periodic points is Zariski dense in X.

Proof. The set of periodic kp-points of fp of period n can be viewed as the set of

kp-points in ∆Xp

⋂
Γfnp , where ∆Xp is the diagonal and Γfnp is the graph of fnp in

Xp ×Xp.
For any positive integer r ≥ 1, consider the subscheme ∆X

⋂
ΓfrR of X ×R X ,

where ∆X is the diagonal and ΓfrR is the graph of f rR in X ×R X . Note that
(xp, xp) ⊂ ∆X

⋂
ΓfrR . As X ×R X is regular at (xp, xp), dim(xp,xp) ∆X

⋂
ΓfrR ≥ 1.

As Up ∩ I(fR) = ∅, and xp ∈ Per Up(fp), xp 6∈ I(f rR), ∆Xp

⋂
Γfnp and the special

fiber of ∆X
⋂

ΓfrR are locally the same at (xp, xp). As xp is isolated in ∆Xp

⋂
Γfnp ,

we have dim(xp,xp) ∆X
⋂

ΓfrR = 1 and every irreducible component of ∆X
⋂

ΓfrR
passing through (xp, xp) dominates SpecR. Pick an irreducible component V of
∆X

⋂
ΓfrR passing through (xp, xp). Let x′ be the generic point of V . Then

x′ ⊆ ∆X

⋂
Γfn , where ∆X is the diagonal and Γfn is the graph of fn in X ×X.

Identify ∆X with X, we get a closed isolated periodic point x ∈ Per r(X) such

that xp ∈ {x}.
Now assume that isolated closed periodic points in Per Up(Xp) are Zariski dense

in Xp. We identify X with ∆X . For any open subset U ′ of X, let Z be a Cartier
divisor of X containing X\U ′. Let Z be the closure of Z in X , then codim(Z) = 1
and every component of Z meets Z. Every irreducible component of Xp is of
codimension 1. If Xp ⊆ Z, every irreducible component of Xp is a component of
Z. Since X

⋂
Xp = ∅, we get Xp 6⊆ Z. Let V = X \ Z and Vp = V

⋂
Xp, then

V
⋂
X = U ′ and Vp 6= ∅. Hence Vp∩Up 6= ∅. As Xp is reduced, by our assumption,

there is a closed isolated periodic point xp of period r ≥ 1 in Per Up(Xp)∩Vp such
that X is regular at xp. The previous paragraph shows that there is a closed

isolated periodic point x ∈ Per r(X) such that xp ∈ {x}. Then x ∈ U ′, this
concludes the proof. �
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Next we show that for cohomologically hyperbolic self-maps, periodic points
under mild conditions are isolated.

Lemma 6.5. Assume that X is projective. Let L be an ample line bundle on
X. If f is i-cohomologically hyperbolic, then for every β < µi there is an affine
Zariski open subset U of X such that for every irreducible curve C, if C ∩Uf 6= ∅
and dim fn(C) = 1 for all n ≥ 0, we have

lim inf
n→∞

(Ln · C)1/n ≥ β.

Recall that the above intersections (Ln · C) are well-defined as in the last
paragraph of Section 2.1.

Proof. To simplify the notations, we write

λj := λj(f), µj := µj(f), and Ln := (fn)∗L

for every n ≥ 0.
We may assume that β > 1. Pick ε ∈ (0, 1), such that µiε

2 > β and µi+1ε
−2 < 1.

There is m0 ≥ 1 such that for every m ≥ m0, we have

(6.1) µmi ε
2m + µmi+1ε

−2m ≤ µmi ε
m.

By Theorem 3.7 or [MW, Proposition 3.5], there is m1 > m0, such that for
every m ≥ m1,

Mm := L2m + µmi µ
m
i+1L− εmµmi Lm

is big. Fix m ≥ m1. Set U := X \ BX(Mm). Let C be an irreducible curve
satisfying C ∩ Uf 6= ∅. Then for every n ≥ 0, fn(C) ∩ U 6= ∅. Then (Mm · fn∗ (C))
is well-defined and non-negative. So we get

(L(2+n)m · C) + µmi µ
m
i+1(Lnm · C) ≥ εmµmi (L(n+1)m · C).

As dim fn(C) = 1 for all n ≥ 0, (Ln ·C) = (L · (fn)∗C) ≥ 1 (c.f. (2.1) of Section
2.1). As µmi+1ε

−2m < 1, there is N ≥ 0 such that

(Lm(N+1) · C) > µmi+1ε
−2m(LmN · C).

By (6.1) and Lemma 3.1, we have

lim inf
n→∞

(Ln · C)1/n ≥ β.

This concludes the proof. �

Corollary 6.6. Let X be a variety over k. Let f : X 99K X be a dominant
rational self-map which is cohomologically hyperbolic. Then there is a Zariski
dense open subset U of X such that for every x ∈ Per U(f), x is isolate in Per r(f),
where r ≥ 1 is a period of x.

Proof. If Corollary 6.6 holds for one Zariski dense open subset U , it holds for any
Zariski dense open subset U ′ of U.

After replace X by a Zariski dense affine open subset X ′ and f by f |X′ , we may
assume that X is quasi-projective. Pick a projective compactification X ′′ of X.
Then f extends to an dominant rational self-map f ′′ on X ′′. After replace X, f
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by X ′′, f ′′, we may assume that X is projective. Let L be an ample line bundle
on X.

Let U as in Lemma 6.5. Let x ∈ Per U(f) of period r ≥ 1. If it is not isolated in
Per r(f) , then there is an irreducible curve C containing x such that f r|C = id.
It follows that for every n ≥ 0,

((f rn)∗L · C) = (L · C),

which is a contradiction. �

6.3. Periodic points of cohomologically hyperbolic self-maps.

Proof of Theorem 6.1. As we may replace X, f by V, f |V , we only need to prove
the case where X = V.

Assume that f is i-cohomologically hyperbolic for some i ≥ 0. After base
change by k, we may assume that k is algebraically closed. We may assume that
the transcendence degree of k over its prime field F is finite, since we can find a
subfield of k which is finitely generated over F such that X and f are all defined
over this subfield. We complete the proof by induction on the transcendence
degree of k over F .

If k is the closure of a finite field, we conclude the proof by Proposition 6.2.
If k = Q, there is a regular subring R of Q which is finitely generated over Z,

such that X and f are defined over R i.e. there is a flat R-scheme π : X → SpecR,
a dominant rational self-map fR : X 99K X such that X, f are the generic fiber of
X , fR. After shrinking SpecR, we may assume that for every point p ∈ SpecR,
the fiber Xp is reduced and irreducible, Xp 6⊆ I(fR) and fp := fR|Xp is a dominant
rational map. By Theorem 5.1, there is a closed point p ∈ SpecR such that fp is
i-cohomologically hyperbolic. Since R is regular and Frac (R) is a number field,

the localization Rp of R at p is a discrete valuation ring such that Frac (Rp) = Q.
So Rp/pRp = R/p is a finite field. Let Up be a Zariski dense open subset of Xp

with I(fR) ∩ Up = ∅. By Corollary 6.6, after shrinking Up, we may assume that
every periodic point in Per Up(fp) are isolated. By Proposition 6.2, Per Up(fp) is
Zariski dense. We then conclude the proof by Lemma 6.4.

If the transcendence degree of k over F is greater than 1, we pick an alge-
braically closed subfield K of k such that the transcendence degree of K over F
equals the transcendence degree of k over F minus 1. Then we pick a subring R
of k which is finitely generated over K, such that X and f are all defined over R.
Since SpecR is regular on an open set, we may assume that R is regular by adding
finitely many inverses of elements in R. We may repeat the same arguments as
in the case k = Q to conclude the proof. �

In the end, we give examples to show that for cohomologically non-hyperbolic
maps, one can not determine whether the set of periodic points are Zariski dense
from the dynamical degrees.

6.4. Examples of cohomologically non-hyperbolic maps. Let X be a pro-
jective variety over k of dimension d ≥ 1. Let i = 1, . . . , d and f : X 99K X be a
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i-cohomologically hyperbolic maps. Let g : PN → PN be an automorphism over
k. Consider the rational self-map F := f × g : X × PN 99K X × PN .

The product formula for relative dynamical degrees (c.f. [DN11], [Dan20] and
[Tru20, Theorem 1.3]) shows the following lemma.

Lemma 6.7. We have

λj(F ) = λj(f) for j ≤ i;

λj(F ) = λi(f) for i ≤ j ≤ i+N ;

λj(F ) = λj−N(f) for j ≥ i+N.

In particular, the dynamical degrees of F does not depend on g.

We note that Per (g) is Zariski dense if and only if g is of finite order i.e.
gm = id for some m ≥ 1. Combining this fact with Theorem 6.1, we get the
following statement.

Lemma 6.8. The set of periodic points of F is Zariski dense if and only if g is
of finite order i.e. gm = id for some m ≥ 1.

7. Applications to the Kawaguchi-Silverman conjecture

The aim of this section is to prove the Kawaguchi-Silverman conjecture for cer-
tain rational self-maps on projective surfaces. In particular, our result implies the
Kawaguchi-Silverman conjecture for birational self-maps on projective surfaces.
We first recall the arithmetic degree and the Kawaguchi-Silverman conjecture.

7.1. Arithmetic degree. The arithmetic degree was first defined in [KS16] over
a number field or a function field of characteristic zero. As in [Xie23b, Xie23a] and
[Mat20, Remark 1.14], this definition can be extended to characteristic positive.
Here we only recall the definition in the number fields cases.

Let X be a projective variety over Q. For every L ∈ Pic(X), we denote by
hL : X(Q) → R a Weil height associated to L. It is unique up to adding a
bounded function.

Let f : X 99K X is a dominant rational self-map and x ∈ Xf (k). As in [JSXZ21,
Xie23b, Xie23a], we will associate to (X, f, x) a subset

Af (x) ⊆ [1,∞]

as follows: Let L be an ample divisor on X, define

Af (x) := ∩m≥0{(h+
L(fn(x)))1/n| n ≥ m} ⊆ [1,∞]

to be the limit set of the sequence (h+
L(fn(x)))1/n, n ≥ 0, where h+

L(·) :=
max{hL(·), 1}. Indeed we have Af (x) ⊆ [1, λ1(f)] by [KS16, Mat20, JSXZ21,
Xie23b, Son23, Xie23a]. The following lemma shows that the set Af (x) does not
depend on the choice of L.
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Lemma 7.1. [Xie23b, Lemma 2.7] Let π : X 99K Y be a dominant rational map
between projective varieties. Let U be a Zariski dense open subset of X such that
π|U : U → Y is well-defined. Let L be an ample divisor on X and M an ample
divisor on Y . Then there are constants C ≥ 1 and D > 0 such that for every
x ∈ U , we have

(7.1) hM(π(x)) ≤ ChL(x) +D.

Moreover if V := π(U) is open in Y and π|U : U → V is an isomorphism, then
there are constants C ≥ 1 and D > 0 such that for every x ∈ U , we have

(7.2) C−1hL(x)−D ≤ hM(π(x)) ≤ ChL(x) +D.

As in [KS16], define

αf (x) := supAf (x), αf (x) := inf Af (x),

and call them upper/lower arithmetic degree. By Lemma 7.1, we have the follow-
ing basic properties:

Proposition 7.2. [Xie23a, Proposition 6.4] We have:

(1) Af (x) = Af (f
`(x)), for any ` ≥ 0.

(2) Af (x) =
⋃`−1
i=0(Af`(f

i(x)))1/`. In particular, αf`(x) = αf (x)`, αf`(x) =

αf (x)`.

The following result is the Kawaguchi-Silverman-Matsuzawa’s upper bound.
See [KS16, Mat20, JSXZ21, Xie23b, Son23, Xie23a] for its proof.

Theorem 7.3. Let h be any Weil height on X associated to some ample line
bundle. Then for any x ∈ Xf (k), we have

αf (x) ≤ λ1(f).

If αf (x) = αf (x), we set

αf (x) := αf (x) = αf (x).

In this case, we say that αf (x) is well-defined and call it the arithmetic degree of
f at x.

7.2. Kawaguchi-Silverman conjecture. The following conjecture was pro-
posed by Kawaguchi and Silverman [Sil14, KS16].

Conjecture 7.4 (Kawaguchi-Silverman conjecture). Let X be a projective va-
riety over Q. Let f : X 99K X be a dominant rational map. Then for every
x ∈ Xf (Q), αf (x) is well defined. Moreover, if Of (x) is Zariski dense, then we
have

αf (x) = λ1(f).
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7.3. Our result. The following is the main result of this section.

Theorem 7.5 (=Theorem 1.14). Let X be a projective surface over Q and f :
X 99K X be a dominant rational self-map such that λ1(f) > λ2(f) or λ2(f) =
λ1(f)2. Let x ∈ Xf (Q). If the orbit Of (x) of x is Zariski dense, then αf (x) =
λ1(f).

In particular, Theorem 7.5 implies the Kawaguchi-Silverman conjecture for
birational self-maps on projective surfaces.

Proof. Let L be an ample line bundle on X. To simplify the notations, we write

λj := λj(f), µj := µj(f), and Ln := (fn)∗L

for every n ≥ 0. Let i := 1 if λ1 > λ2 and i := 2 if λ2
1 = λ2. Then we have

µi = λ1 > 1 and µi+1 < 1. If λ1 = 1, Theorem 7.5 trivially holds. So we assume
that λ1 > 1.

We denote by h : X(k)→ R a Weil height associated to L. It is unique up to
adding a bounded function. We may assume that h(y) ≥ 1 for every y ∈ X(Q).

Let x be a point in Xf (Q) whose orbit is Zariski dense. By Theorem 7.3,
αf (x) ≤ λ1. We only need to show that for every β ∈ (0, λ1), αf (x) ≥ β. Pick
ε ∈ (0, 1) such that

(7.3) ε2µi > β and ε−2µi+1 < 1.

There is m0 ≥ 1 such that for every m ≥ m0, we have

(7.4) (ε2µi)
m + (ε−2µi+1)m < εmµmi − 1.

Set
β1 := (ε2µi)

m and β2 := (ε−2µi+1)m.

By Theorem 3.7, there is m ≥ m0 such that

Mm := L2m + µmi µ
m
i+1L− εmµmi Lm

is big. There is a constant C > 0 such that for every y ∈ Xf (k) \ BX(Mm), we
have

h(f 2m(y)) + µmi µ
m
i+1h(y) ≥ εmµmi h(fm(y))− C.

By the Northcott property, after replacing x by some f l(x) for some l ≥ 0, we
may assume that h(fn(x)) ≥ C for every n ≥ 0. Set hn := h(fmn(x)). We only
need to show that

(7.5) lim inf
n→∞

h1/n
n ≥ βm.

By Lemma 7.1, there is a constant D > 1 such that for every n ≥ 0,

(7.6) hn+1 ≤ Dhn.

If fmn(x) 6∈ BX(Mm), we have

(7.7) hn+2 + µmi µ
m
i+1hn ≥ εmµmi hn+1 − C ≥ (εmµmi − 1)hn+1.

Hence we have

(7.8) hn+2 − β2hn+1 ≥ β1(hn+1 − β2hn).
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Let B0 be the union of irreducible components of BX(Mm) of dimension 0 and
B1 be the union of irreducible components of BX(Mm) of dimension 1. We have
BX(Mm) = B0 t B1. After replacing x by some f l(x) for some l ≥ 0, we may
assume that fn(x) 6∈ B0 for every n ≥ 0.

Let Cj, j = 1, . . . , s′ be the irreducible components of B1 such that Cj∩Xf 6= ∅.
As fn(x) ∈ Xf (Q) for every n ≥ 0, fn(x) ∈ BX(Mm) if and only if fn(x) ∈ Cj for
some j = 1, . . . , s′. We may assume that Cj, j = 1, . . . , s′′ are exactly the Cj such
that for every n ≥ 0, dim(fn(Cj)) = 1. After replacing x by some f l(x) for some
l ≥ 0, we may assume that fn(x) 6∈ ∪s′j=s′′+1Cj for every n ≥ 0. We may assume
that Cj, j = 1, . . . , s are exactly the Cj, j = 1, . . . , s′′ which are not preperiodic.
As Of (x) is Zariski dense, fn(x) ∈ BX(Mm) if and only if fn(x) ∈ Cj for some
j = 1, . . . , s.

Lemma 7.6. Let C be an irreducible curve in X with C ∩Xf 6= ∅. Assume that
dim fn(C) = 1 for every n ≥ 0 and C is not preperiodic. Recall that the above
intersections (Ln · C) are well-defined as in the last paragraph of Section 2.1.
Then the sequence (Ln · C), n ≥ 0 is not bounded.

Applying Lemma 7.6 for fm and f(Cj), j = 1, . . . , s, for every j = 1, . . . , s,
there is Nj ≥ 1 such that (LNjm · f(Cj)) > 3D3(L · f(Cj)). As f(Cj) is one
dimensional, there is C ′ > 0 such that for every j = 1, . . . , s, for every y ∈
Xf (k) ∩ f(Cj) we have h(fNjm(y)) > 3D3h(y)− C ′. By the Northcott property,
after replacing x by f l(x) for some l ≥ 0, we may assume that h(fn(x)) > C ′

for every n ≥ 0. Moreover, we may assume that h(fm(x)) > h(x). If fmn(x) ∈
f(Cj), j = 1, . . . , s, we have

(7.9) h(f (Nj+n)m(x)) > 3D3h(fmn(x))− C ′ > 2D3h(fmn(x)).

By (7.6), there is tn ∈ {0, . . . , Nj − 1} such that

h(f (tn+1+n)m(x)) > h(f (tn+n)m(x)) > h(fnm(x)).

Set N := max{Nj| j = 1, . . . , s}. The above discussion shows the following: If
fm(n−1)(x) ∈ BX(Mm), there is tn ∈ {0, . . . , N}, such that

(7.10) hn+tn+1 > hn+tn > hn.

Set W := {n ≥ 1| fm(n−1)(x) ∈ BX(Mm)}. By the Weak dynamical Mordell-
Lang [BGT15, Corollary 1.5] (see also [Fav00, Theorem 2.5.8], [Gig14, Theorem
D, Theorem E],[Pet15, Theorem 2], [BHS20, Theorem 1.10], [Xie23b, Theorem
1.17] and [Xie23a, Theorem 5.2]), we have

(7.11) lim
n→∞

wn
n

= 0

where wn := #({1, . . . , n}∩W ). We define a sequence p(n) by induction. Define
p(0) = 0. Assume that p(n) is defined for n ≤ n1. Define p(n1 + 1) = p(n1) + 1 if
p(n1) 6∈ W ; otherwise if n1 6∈ W , define p(n1 + 1) = p(n1) + tp(n1) + 1. It is clear
that p(n) is strictly increasing. As tp(n′) ≤ N for every n′ ≥ 0, for every n ≥ 0,
we have

(7.12) p(n) ≥ n and p(n+ 1) ≤ p(n) +N.
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For every n ≥ 0, there is a minimal r(n) ≥ 0 such that n ≤ p(r(n)). It is clear
that

(7.13) r(n) ≤ n and p(r(n)) ≤ n+N.

Lemma 7.7. We have

lim
n→∞

r(n)

n
= 1.

We note that r(p(n)) = n. By Lemma 7.7, we have

(7.14) lim
n→∞

p(n)

n
= 1.

The definition of p(n) shows that for n ≥ 1, if p(n−1) ∈ W , then hp(n) > hp(n)−1

and hp(n) > hp(n−1). Moreover, we have h1 > h0. For a set I of consecutive
integers, we say that I is of type 0 if p(n) 6∈ W for every n ∈ I and say that I is
of type 1 if p(n) ∈ W for every n ∈ I. Let n ≥ 1, write {1, . . . , n} as I1 t · · · t Is
where Ii are set of consecutive integers such that

• for i = 1, . . . , s− 1, max{Ii}+ 1 = min{Ii+1};
• for every i = 1, . . . , s, Ii are either of type 0 or of type 1;
• for i = 1, . . . , s− 1, the type of Ii and Ii+1 are different.

Write Ii = {ai, ai+1 . . . , bi}. As 0 6∈ W , we have a1 = 1 and p(a1) = 1. If i ≤ s−1,
then ai+1 = bi + 1. If further that Ii is of type 0, then p(ai+1) = p(bi) + 1.

By (7.8), if Ii is of type 0, then for every j ∈ p(ai), . . . , p(bi) + 1, we have

hj ≥ βj−ai1 (hp(ai) − β2hp(ai)−1).

If i = 1, we have hp(ai) = h1 > h0 = hp(ai)−1. If i ≥ 2, we have ai − 1 = bi−1 and
Ii−1 is of type 1. As p(ai − 1) ∈ W , we have hp(ai) > hp(ai)−1. Hence we have

(7.15) hp(bi)+1 ≥ βbi+1−ai
1 (1− β2)hp(ai) = β#Ii

1 (1− β2)hp(ai)

and

(7.16) hp(bi) ≥ βbi−ai1 (1− β2)hp(ai) = β#Ii−1
1 (1− β2)hp(ai)

When i ≤ s− 1, p(bi) + 1 = p(ai+1).
If Ii is of type 1, then for every n ∈ Ii, we have hp(n+1) > hp(n). So we have

(7.17) hp(bi+1) ≥ hp(bi+1) ≥ hp(ai)

When i ≤ s− 1, p(bi + 1) = p(ai+1).
Set On := {i = 1, . . . , s| Ii is of type 0}. Set e := 0 if s 6∈ O and e = 1 if

s ∈ On. Set ln :=
∑

i∈On #Ii. Combining (7.15), (7.16) and (7.17), we get

(7.18) hp(n) ≥ β
(
∑
i∈On #Ii)−e

1 (1− β2)#Onh1 ≥ βln−1
1 (1− β2)#Onh1.

Since
#On ≤ n− ln =

∑
i∈{1,...,s}\On

#Ii ≤ wp(n),

by (7.11) and (7.14), we get that

(7.19) lim
n→∞

ln
n

= 1 and
#On

n
= 0.
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Then by (7.18), we have

(7.20) lim inf
n→∞

h
1/n
p(n) ≥ β1.

By (7.13) and (7.6), for every n ≥ 1, we have hn ≥ D−Nhp(r(n)). By (7.20) and
Lemma 7.7, we get that

lim inf
n→∞

h1/n
n ≥ lim inf

n→∞
((D−Nhp(r(n)))

1/r(n))n/r(n) ≥ β1 ≥ βm.

Hence (7.5) holds. This concludes the proof. �

Proof of Lemma 7.6. If λ1 > λ2, then f is cohomologically 1-hyperbolic. If λ2
1 =

λ2, as λ1 > 1, f is cohomologically 2-hyperbolic. By Lemma 6.5, there is a
non-empty Zariski open subset V of X such that for every irreducible curve C ′′

of X, if dim fn(C ′′) = 1 for every n ≥ 0 and C ′′ ∩ Vf 6= ∅. Then the sequence
(Ln · C ′′), n ≥ 0 is not bounded.

As C is not preperiodic and dimX \ V ≤ 1, after replacing C by f l(C) for
some l ≥ 0, we may assume that fn(C) ∩ V 6= ∅. Hence the generic point of C is
contained in Vf . We conclude the proof by the previous paragraph. �

Proof of Lemma 7.7. For j = 0, . . . , r(n)− 1, we have

p(j + 1)− p(j) = 1

if j 6∈ W ; and
p(j + 1)− p(j) ≤ N

if j ∈ W. Hence we have

r(n) ≤ n ≤ p(r(n)) ≤ r(n) + (N − 1)wp(r(n)) ≤ r(n) + (N − 1)wn+N .

So we have

lim sup
n→∞

rn
n
≤ 1 ≤ lim inf

n→∞

rn
n

+ (N − 1) lim
n→∞

wn+N

n
= lim inf

n→∞

rn
n
.

This concludes the proof. �
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