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Abstract. Let X be a smooth irreducible projective variety over a field k
with dimX = d. Let τ : Ql → C be any field embedding. Let f : X → X be
a surjective endomorphism. We show that for every i = 0, . . . , 2d, the spectral
radius of f∗ on the numerical group N i(X)⊗R and on the l-adic cohomology
group H2i(Xk,Ql) ⊗ C are the same. As a consequence, if f is q-polarized
for some q > 1, we show that the norm of every eigenvalue of f∗ on the j-th
cohomology group is qj/2 for all j = 0, . . . , 2d. This proves a conjecture of Tate.
We also get some apply applications for the counting of fixed points and its
“moving target” variant.

Indeed we studied the more general actions of certain cohomological coore-
spondences and we get the above results as consequences in the endomorphism
setting.

1. Introduction

The aim of the paper is to compare the eigenvalues on numerical groups and
on l-adic cohomology groups for actions of endomorphisms or more generally for
certain cohomological coorespondences on smooth projective varieties.

1.1. Action of endomorphisms. Let X be a smooth irreducible projective va-
riety over a field k with dimX = d. Let f : X → X be a surjective endomorphism.

Numerical spectrum. For every i = 0, . . . , d, the i-th numerical spectrum of f is
Sp num

i (f) the multi-set of eigenvalues of

f ∗ : N i(X)⊗ R → N i(X)⊗ R.

where N i(X) the group of numerical cycles of codimension i of X. The i-th
numerical spectral radius is

βi(f) := max{|a|| a ∈ Sp num
i (f)}.

By [Tru20, Theorem 1.1(3)] (see also [DS05, Dan20]), the sequence βi(f), i =
0, . . . , d is log-concave i.e.

βi(f)
2 ≥ βi−1(f)βi+1(f)

for i = 1, . . . , d− 1.
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Remark 1.1. There is an important notion of dynamical degrees λi(f), i =
0, . . . , d, which are well define even when f is merely a dominant rational self-map.
[RS97, DS05, DS04, Tru20, Dan20]. In our setting where f is an endomorphism,
these two notion coincide i.e. λi(f) = βi(f).

By projection formula and the Poincaré duality, we have [c.f. Proposition 2.17]

β−
i (f) := min{|a|| a ∈ Sp num

i (f)} = deg f/βd−i(f).

Cohomological spectrum. Let l be a prime number with l ̸= chark. Let

G(X) := {j = 0, . . . , 2d| Hj(Xk,Ql) ̸= 0}.
By Poincaré duality, j ∈ G(X) if and only if 2d− j ∈ G(X). Moreover

{2i| i = 0, . . . , d} ⊆ G(X).

For j = 0, . . . , 2d, the j-th cohomological spectrum Sp j(f) is the multi-set of
eigenvalues of

f ∗ : Hj(Xk,Ql) → Hj(Xk,Ql).

By Fact 2.1, which is a consequence of Deligne’s proof of Weil conjecure [KM74,
Theorem 2], all elements in Sp j(f) are algebraic integers and moreover Sp j(f) is
Gal(Q̄/Q)-invariant.
Fix any embedding τ : Ql ↪→ C and view Ql as a subfield of C via τ. The image

of Sp j(f) in C does not depend on the choice of τ. We may view Sp j(f) as a
subset of C. For j = 0, . . . , 2d, the j-th cohomological spectral radius is

αj(f) := max{|b|| b ∈ Sp j(f)}.
In particular, if j ̸∈ G(X), then αj(f) = 0. For j ∈ G(X), we have

α−
j (f) := min{|b|| b ∈ Sp j(f)} =

deg(f)

α2d−j(f)
.

Main result and consequences. The following is our main result in the endomor-
phism case, which is indeed a consequence of the more general result Theorem
1.14 for bi-finite correspondences.

Theorem 1.2 (=Corollary 2.18). For every i = 0, . . . , d, we have

logα−
2i(f) = log β−

i (f) and log βi(f) = logα2i(f).

For every odd j ∈ G(X), we have

log β−
j−1(f) + log β−

j+1(f)

2
≤ logα−

j (f) ≤ logαj(f) ≤
log βj−1(f) + log βj+1(f)

2
.

Remark 1.3. Theorem 1.2 can be state in a more geometric way as follows:
Consider the following sets of points in R2:

Fnum := {(2i, log |u|)| u ∈ Sp num
i (f)} and Fcoh := {(j, log |u|)| u ∈ Sp j(f))}.

Let Cnum and Ccoh be their convex envelops. Then we have

Cnum = Ccoh.

Moreover for every i = 0, . . . , d, the end points of Cnum∩ ({2i}×R) are contained
in Fnum.
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Theorem 1.14 answers a question of Truong [Tru24, Question 2] positively for
endomorphisms. By a tensoring product trick originally due to Dinh [Din05,
Proposition 5.8], positive answer of [Tru24, Question 2] implies positive answer
of [Tru24, Question 4].

Historical notes. When k = C, by comparison theorem between singular and
Ql-cohomologies, we can consider the singular cohomology instead of the Ql-
cohomology. After such translation, Theorem 1.2 is well known in complex dy-
namics (see for example [DS17, Section 4]).

In positive characteristic, the first progress was due to Esnault-Srinivas [ES13].
They showed that when f is an automorphism on a smooth projective surface,
then α2 = β1. Later Truong [Tru24] generated Esnault-Srinivas’s result in any
dimension by showing that

max
j=0,...,2d

αj = max
i=0...,d

βi.

Shuddhodan [Shu19] gave an alternative approach towards this equality using
dynamical zeta functions. Recently, Hu proved Theorem 1.2 for endomorphisms
of abelian varieties [Hu19, Hu].

Next we apply Theorem 1.2 to endomorphisms satisfying some numerical con-
ditions.

Definition 1.4. For q ≥ 1, we say that f is q-straight, if βi(f) = qi for all
i = 0, . . . , d. We say that f is straight if it is q-straight for some q ≥ 1.

Recall that an endomorphism f : X → X is called q-polarized for some q > 1,
if there is an ample line bundle L such that f ∗L = qL. For example, if k = Fq, the
q-Frobenius is q-polarized. If f is q-polarized, then βi(f) = qi for i = 0, . . . , d. So
all polarized endomorphisms are straight. By Theorem 1.2, we get the following
consequence.

Corollary 1.5. Assume that f : X → X is a q-straight endomorphism for some
q ≥ 1. Then for every j ∈ G(X), we have

α−
j (f) = αj(f) = qj/2.

This result generalizes Deligne’s theorem [Del74], which proves Weil’s Riemann
Hypothesis, for any straight endomorphisms. However, Deligne’s theorem [Del74]
plays a key role in our proof of Theorem 1.2 (hence Corollary 1.5).

Our Corollary 1.5 proved a conjecture proposed by Tate in 1964 [Tat64, §3,
Conjecture (d)], see also [Tat65, §3, Conjecture (d)]. In [HT, Conjecture 1.4],
Hu and Truong proposed the same conjecture and call it the Generalized Weil’s
Riemann Hypothesis. When k = C and f is polarized, this theorem was proved
by Serre [Ser60] using the Hodge structure and Serre viewed his result as an
Kählerian analogy of Weil’s conjecture.

An endomorphism f : X → X is called int-amplified if there is an ample line
bundle L of X such that f ∗L − L is ample [Men20]. The following fact was
observed by Matsuzawa.
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Fact 1.6. [MZ, Proposition 3.7] A surjective endomorphism f : X → X is int-
amplified if and only if βd(f) > βd−1(f).

Indeed the log-concavity of βi(f), i = 0, . . . , d implies that the sequence βi(f), i =
0, . . . , d is strictly increasing in the int-amplified case.

By [Fak03, Theorem 5.1], if f is int-amplified, then for every n ≥ 1, the set
of n-periodic points Fix(fn) is isolated. Denote by #Fix(f) the number of fixed
points counting with multiplicity. Combine the Lefschetz fixed point theorem
with Corollary 1.5, we get the following estimates.

Corollary 1.7. Assume that f : X → X is an int-amplified amplified endmor-
phism. Then we have

#Fix(fn) = βn
d +O((βdβd−1)

n/2).

In particular, if f is q-straight for some q > 1, then we have

#Fix(fn) = qdn +O(q(d−1/2)n).

Remark 1.8. When k = C, stronger results can be proved. For example, in the
recent work [DZ], Dinh-Zhong can counted the periodic points without multiplic-
ity when f is merely a rational map with dominant topological degree.

We also proved a “moving target” version of Corollary 1.7, see Proposition
2.19.

Proposition 1.9 (=Proposition 2.19). Assume that f : X → X is an int-
amplified amplified endmorphism. Let L be an ample line bundle on X. Let
hn : X → X,n ≥ 0 be a sequence of endomorphisms of X with

lim sup
n→∞

(h∗
nL · Ld−1)1/n < βd(f)/βd−1(f).

Then for n ≫ 0, fn intersects hn properly in X ×X. Moreover, for every ϵ > 0
we have

#{fn(x) = h(x)} = qdn + o((βdβd−1)
(1+ϵ)n)

counting with multiplicity.

1.2. Action of cohomological correspondences. Let X be a smooth irre-
ducible projective variety over a field k with pure dimension dimX = d. Here X
may not be irreducible.

Denote by C(X,X)Z the space of degree 0 cohomological correspondences (for
the Ql-cohomology) from X to itself i.e. the image of the cycle class map

cl : CHd(X ×X) → Hd(Xk ×Xk)(d).

With the composition ◦, it forms a ring. Denote by C(X,X) := C(X,X)Z ⊗Q.

For c ∈ C(X,X), we define the numerical and cohomological spectral radius
βi(c), i = 0, . . . , d, αj(c), j = 0, . . . , d in the same way as the case for endomor-
phisms. See Section 2.2 and 2.4 for details.

Every endomorphism f : X → X can be viewed as a d-cycle in X ×X via its
graph, hence induces a cohomological correspondences.
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Definition 1.10. A finite correspondence (resp. bi-finite correspondence) Γ is
defined to be an effective cycle in X ×X with Q-coefficients of dimension d such
that the projection from Γ to the first (resp. each factor) is finite.

The above notions are generalizations of the notions of endomorphisms and
finite endomorphisms.

Definition 1.11. We call a cohomological correspondence c ∈ C(X,X) finite
(resp. bi-finite) if it takes form

c = cl(Γ)

where Γ is a finite (resp. bi-finite) correspondence.

Here are some examples of bi-finite cohomological correspondences which I feel
especially interesting:

Example 1.12 (Random product). Let f1, . . . , fm be finite endomorphisms on
X. Define

c :=
m∑
i=1

aifi +
m∑
i=1

bi
⊤fi

with ai, bi ∈ Q≥0. It is clear that c is bi-finite.
If

∑m
i=1(ai + bi) = 1, we may think that c is a random product of f1, . . . , fm

and their transports ⊤f1, . . . ,
⊤ fm with probability a1, . . . , am, b1, . . . , bm.One may

rely the study of cn to the random product of matrices.

Example 1.13 (Extensions of endomorhisms). Let f : X → X be a surjective
endomorphism. Let Y be a smooth projecitve variety of pure dimension d. Let
π : Y → X be a finite surjective morphism. Let c1, . . . , cm be all irreducible
components of (π × π)−1(f). For ai ∈ Q≥0, i = 0, . . . ,m, the cohomological cor-
respondence c induced by

∑m
i=1 aici is bi-fnite. Assume that

f ⊆ Supp (π × π)∗c.

Then by Lemma 2.9 and the projection formula, we may check that βi(c) = βi(f)
for every i = 0, . . . , d.

For c ∈ C(X,X). Define the Cohomologcial polygon for c to be the minimal
concave function

CPc : [0, 2d] → R ∪ {−∞}
such that

CPc(j) ≥ logαj(c)

for all j = 0, . . . , 2d.

Similarly, define the numerical polygon for c is the minimal concave function

NPc : [0, 2d] → R ∪ {−∞}
such that

NPc(2i) ≥ log βi(c)

for all i = 0, . . . , d.
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As the numerical equivalence is weaker than the cohomological one, we have
NPc ≤ CPc. The following result shows that in the finite case, the above two
polygons are indeed coincide.

Theorem 1.14 (=Theorem 2.12). If c is finite, then NPc = CPc.

Acknowledgement. The author would like to thank Xinyi Yuan, Weizhe Zheng
and Qizheng Yin for helpful discussion. I especially thank Fei Hu and Tuyen
Trung Truong for their helpful comments for the first version of the paper.

1.3. Notations.

• Let V be a finitely dimensional vector space over a fieldK of characteristic
0 and f : V → V be an endomorphism. We denote by Sp (f) the spectrum
of f , i.e. the multi-set of eigenvalues of f and P (f) the characteristic
polynomial. If K is R or C and V ̸= {0}, we denote by

ρ(f) := max{|b|| b ∈ Sp (f)}
the spectral radius of f . For the convenience, if V = {0}, we define
ρ(f) = 0. If we fix any norm ∥ · ∥ and denote by ∥fn∥ the operator norm
of fn for n ≥ 0, we have

ρ(f) = lim
n→∞

∥fn∥1/n.

• A variety is a separated reduced scheme of finite type over a field.
• For any projective variety Y of dimension d and i = 0, . . . , d, denote by
Ni(X) the group of numerical cycles of dimension i. Denote by

Ni(X)R := Ni(X)⊗ R.

If Y is further smooth, denote

N i(Y ) := Nd−i(Y ) and N i(Y )R := Nd−i(Y )R.

2. Cohomological and numerical eigenvalues

Let X be a smooth projective variety over a field k with pure dimension
dimX = d. Let l be a prime number with l ̸= chark. We fix an embedding
τ : Ql ↪→ C and view Ql as a subfield of C via τ. Let

G(X) := {i = 0, . . . , 2d| H i(Xk,Ql) ̸= 0}.
By Poincaré duality, i ∈ G(X) if and only if 2d− i ∈ G(X).

Denote by C(X,X)Z the space of degree 0 cohomological correspondences (for
the Ql-cohomology) from X to itself i.e. the image of the cycle class map

cl : CHd(X ×X) → Hd(Xk ×Xk)(d).

With the composition ◦, it forms a ring. Denote by C(X,X) := C(X,X)Z ⊗ Q.
For every endomorphism f : X → X, we still denote by f its graph in X × X
and also the cohomological correspondences induced by it.
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2.1. Cohomological and numerical spectrum. For c ∈ C(X,X) and j =
0, . . . , 2d, define

Sp j(c) := Sp (c∗ : Hj(Xk,Ql) → Hj(Xk,Ql))

and

Pj(c) := P (c∗ : Hj(Xk,Ql) → Hj(Xk,Ql)).

For j ̸∈ G(X), we have Sp j(c) = ∅ and Pj = 1.

Fact 2.1. For every j = 0, . . . , 2d, Pj(c) has coefficients in Q. In particular,
all elements of Sp j(c) are algebraic. Moreover, if c ∈ C(X,X)Z, then Pj(c) has
coefficients in Z. In particular, all elements of Sp j(c) are algebraic integers.

Proof. By the proper base change of étale cohomology and the spreading out
argument, we may assume that k = Fq is a finite field. We conclude the proof by
[KM74, Theorem 2]. □

For c ∈ C(X,X), and i = 0, . . . , d, define

Sp num
i (c) := Sp (c∗ : N i(X)⊗ R → N i(X)⊗ R).

and

P num
j (c) := P (c∗ : N i(X)⊗ R → N i(X)⊗ R).

It is clear that Sp num
i (c) ⊆ Sp 2i(c),

1 and P num
j (c) has coefficient in Q. Moreover

if c ∈ C(X,X)Z, then P num
i (c) has coefficients in Z.

Easy to see the following fact.

Fact 2.2. Let X1, X2 be smooth projective varieties of pure dimension d and
X := X1 ⊔X2. Let c1 ∈ C(X1, X1) and c2 ∈ C(X2, X2) be bi-finite cohomological
correspondences. Then c := c1 ⊔ c2 ∈ C(X,X) is bi-finite. Moreover, we have

Sp j(c) = Sp j(c1) ⊔ Sp j(c2)

for every j = 0, . . . , 2d and

Sp num
i (c) = Sp num

i (c1) ⊔ Sp num
i (c2)

for i = 0, . . . , d.2

If f : X → X is a surjective endomorphism of X, then there is m ≥ 1 such
that fm maps every irreducible component of X to itself. This is not true for
general correspondence. Using Fact 2.2, many problems on f can be reduced to
the case where X is irreducible.

1Here the inclusion is the inclusion for multi-sets i.e. for every element a ∈ Sp i(c), it is in
Sp 2i(c) with larger or equal multiplicity.

2Here the disjoint union is the disjoint union for multi-sets e.g. {a, a, b} ⊔ {a, c} =
{a, a, a, b, c}.



8 JUNYI XIE

2.2. Cohomological spectral radius. Fix any embedding τ : Ql ↪→ C and
view Ql as a subfield of C via τ. For c ∈ C(X,X) and j = 0, . . . , 2d, define

αj(c) := ρ(c∗ : Hj(Xk,Ql)⊗Ql
C → Hj(Xk,Ql)⊗Ql

C).

By Fact 2.1, αj(c) does not depend on the choice of τ. We call all αj(c) the i-th
cohomological spectral radius of c. Note that, if j ̸∈ G(X), then αj(c) = 0.

We say the c has Condition (A) if there is a unique i ∈ {0, . . . , 2d} such that

αi(c) = max
j=0,...,2d

αj(c).

Denote by ∆ ∈ C(X,X) the diagonal of X ×X.

Lemma 2.3. If Condition (A) holds for c ∈ C(X,X), then

lim sup
n→∞

⟨cn,∆⟩1/n = max
j=0,...,2d

αj(c).

Proof. We have

(2.1) ⟨cn,∆⟩ =
2d∑
j=0

(−1)jTr((cn)∗ : Hj(Xk,Ql)⊗Ql
C).

It is clear that for j = 0, . . . , d.

(2.2) lim sup
n→∞

|Tr((cn)∗ : Hj(Xk,Ql)⊗Ql
C)|1/n = αj(c).

There is a unique i ∈ {0, . . . , 2d} such that

(2.3) αi(c) = max
j=0,...,2d

αj(c).

Combine (2.2) with (2.3), we get

lim sup
n→∞

|Tr((cn)∗ : H i(Xk,Ql)⊗Ql
C)1/n| = αi(c)

and there is α < αi(c) such that for n ≫ 0, we have

|
∑
j ̸=i

Tr((cn)∗ : Hj(Xk,Ql)⊗Ql
C)| ≤ αn.

So we get

lim sup
n→∞

(
2d∑
j=0

Tr((cn)∗ : Hj(Xk,Ql)⊗Ql
C))1/n = αi(c),

which concludes he proof. □
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2.3. Finite cohomological correspondence.

Definition 2.4. We call a cohomological correspondence c ∈ C(X,X) effective
if it takes form

c = cl(Γ)

where Γ is an effective cycle in X ×X of dimension d.

If c ∈ C(X,X) is effective, then its transport ⊤c is also effective. If c1, c2 ∈
C(X,X) are effective and r1, r2 ∈ Q≥0, r1c1 + r2c2 is effective.

Definition 2.5. We call a cohomological correspondence c ∈ C(X,X) finite
(resp.bi-finite) if it takes form

c = cl(Γ)

where Γ is an effective cycle in X × X of dimension d such that the projection
from Γ to the first (resp. each) factor is finite.

It is clear that bi-finite correspondences are effective. We have the following
basic properties:

(i) If c ∈ C(X,X) is bi-finite, then its transport ⊤c is also bi-finite.
(ii) If c1, c2 ∈ C(X,X) are finite (resp. bi-finite), then c1 ◦ c2 is finite (resp.

bi-finite).
(iii) If c1, c2 ∈ C(X,X) are finite (resp. bi-finite) and r1, r2 ∈ Q≥0 then r1c1 +

r2c2 is finite (resp. bi-finite).

In particular, for every if c ∈ C(X,X) is finite (resp. bi-finite), then cn is finite
(resp. bi-finite) for every n ≥ 0.

For a bi-finite c ∈ C(X,X), we say the c has a bi-finite inverse if it has an
inverse c−1 ∈ C(X,X) which is also bi-finite. If a bi-finite c ∈ C(X,X) has a
bi-finite inverse, then for every n ∈ Z, cn is bi-finite.

Example 2.6. Let f : X → X be a surjective endomorphism. By [Fak03, Lemma
5.6], f is finite. If we view f as a cohomological correspondence in C(X,X), then
f is bi-finite. As

f−1 = (deg f)−1⊤f ∈ C(X,X),

f−1 is bi-finite.

Lemma 2.7. Let c1, c2, e ∈ C(X,X). Assume that c1, c2 are bi-fnite and e is
effective. Then c1 ◦ e ◦ c2 is effective.

Proof. It is clear that for every bi-finite c ∈ C(X,X) and effective e ∈ C(X,X),
e ◦ c is effective. Taking transport, we get that c ◦ e is also effective. Then we
conclude the proof. □
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2.4. Numerical spectral radius. For c ∈ C(X,X), define

βi(c) := ρ(c∗ : N i(X)R → N i(X)R),

and call it the i-th numerical spectral of c. As the cohomological equivalence is
finner than the numerical equivalence, we have

(2.4) βi(c) ≤ α2i(c).

Let Psefi(X) be the pseudo-effective cone in N i(X). It is a closed convex cone
with non-empty interior. Moreover it is salient i.e. Psefi(X) \ {0} is convex. Let
L be an ample line bundle on X. It induces a norm ∥ · ∥L on N i(X)R as follows:
for u ∈ N i(X)R,

∥u∥L := inf{(u+ · Ld−i) + (u− · Ld−i)| u+, u− ∈ Psefi(X), u = u+ − u−}.
Easy to check that ∥ · ∥L is a norm and for every u ∈ Psefi(X), ∥u∥L = (u ·Ld−i).
If c ∈ C(X,X) is bi-finite, then both c∗ and c∗ preserve Psefi(X). The following
lemma give another description of βi(c).

Lemma 2.8. If c ∈ C(X,X) is finite, then for every i = 0, . . . , d, we have

βi(c) = lim
n→∞

((cn)∗(Li) · Ld−i)1/n.

In particular, βi(c) ≥ 1.

Proof. For every u ∈ Psefi(X), there is C > 0 such that CLi − u ∈ Psefi(X).
Then for every n ≥ 0, we have (cn)∗(CLi − u) ∈ Psefi(X). So we have

(C∥(cn)∗Li∥L)1/n ≥ ∥(cn)∗u∥1/nL

for every n ≥ 0. As Psefi(X) has non-empty interior, the above inequality shows
that

lim
n→∞

∥(cn)∗Li∥1/nL = ρ(c∗ : N i(X)R → N i(X)R) = βi(c).

□

Let πi : X × X → X, i = 1, 2 be the projection to the first and the second
coordinate. Set Li := π∗

iL. Then L1 + L2 is ample on X ×X.

Lemma 2.9. Assume that c1, c2 ∈ C(X,X) are bi-finite and c1 − c2 is effective.
Then for every i = 0, . . . , d, we have βi(c1) ≥ βi(c2).

Proof. Set e := c1 − c2. Then for n ≥ 0,

cn1 − cn2 =
n−1∑
l=0

cl2 ◦ e ◦ cn−1−l
1

is effective. So we have ((cn1 − cn2 ) · Li
1 · Ld−i

2 ) ≥ 0. We conclude the proof by
Lemma 2.8. □

Denote by ∆ ∈ C(X,X) the diagonal of X ×X.

Lemma 2.10. Assume that c ∈ C(X,X) is finite. Then we have

lim sup
n→∞

⟨cn,∆⟩1/n ≤ d
max
i=0

βi(c).
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Proof. Consider the linear function I : Nd(X ×X)R → R defined by u 7→ (u ·∆).
There is C > 0 such that

I(u) ≤ C∥u∥L1+L2

for every u ∈ Nd(X ×X)R.
We still denote by cn the numerical class in Nd(X ×X) induced by cn. Then

we have

(2.5) ⟨cn,∆⟩ = (cn ·∆) = I(cn) ≤ C∥cn∥L1+L2 .

As

∥cn∥L1+L2 =
d∑

i=0

(
d

i

)
((cn)∗Li · Ld−i),

we get

lim
n→∞

∥cn∥1/nL1+L2
=

d
max
i=1

lim
n→∞

((cn)∗Li · Ld−i)1/n =
d

max
i=0

βi(c).

We conclude the proof by (2.5). □

By Lemma 2.10, Lemma 2.3 and (2.4), we get the following consequence.

Corollary 2.11. Assume that c ∈ C(X,X) is finite and has Condition (A). Then
we have

2d
max
j=0

αi(c) =
d

max
i=0

βi(c).

2.5. Cohomologcial and numerical polygons. Let c ∈ C(X,X). Define the
Cohomologcial polygon for c to be the minimal concave function

CPc : [0, 2d] → R ∪ {−∞}
such that

CPc(j) ≥ logαj(c)

for all j = 0, . . . , 2d. Observe that c has condition (A) if and only if there is a
unique j ∈ {0, . . . , 2d} such that CPc(j) takes the maximal value.

Similarly, define the numerical polygon for c is the minimal concave function

NPc : [0, 2d] → R ∪ {−∞}
such that

NPc(2i) ≥ log βi(c)

for all i = 0, . . . , d.

We note that
max
i=0,...d

NPc(2i) = max
i=0,...,d

βi(c)

and
max

j=0,...2d
CPc(j) = max

j=0,...,2d
αj(c).

By (2.4), we have

(2.6) NPc ≤ CPc.

By Lemma 2.8, if c is finite, then we have CPc ≥ NPc on [0, 2d]. Moreover, if
c is bi-finite, then NPc > −∞.
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Theorem 2.12. If c is finite, then NPc = CPc.

Proof. By the proper base change of étale cohomology and the spreading our
argument, we may assume that k = Fq is a finite field. The following lemma is
the key ingredient of our proof, which treats the even vertexes.

Lemma 2.13. We have NPc(2i) = CPc(2i) for all i = 0, . . . , d.

For every l ≥ 2, consider the finite cohomological correspondence c(l) :=∏l
u=1 c ∈ C(X l, X l). Denote by L an ample line bundle on X. Let πj : X

l → X
the j-th projection. Set M(j) := π∗

jL. For every n ≥ 0, set

Mn(j) := (c(l)n)∗M(j) = π∗
j ((c

n)∗L).

For every i = 0, . . . , d and n ≥ 0, denote by

degi(c
n) := ((cn)∗Li · Ld−i).

By Lemma 2.8, we have

(2.7) lim
n→∞

degi(c
n)1/n = βi(c).

By projection formula, we get the following fact.

Fact 2.14. For sj, tj ≥ 0, j = 1, . . . , l with
∑l

j=1(sj + tj) = ld and n ≥ 0, we
have

(Mn(1)
s1 · · ·Mn(l)

sl ·M(1)t1 · · ·M(l)tl) ̸= 0

only when sj + tj = d for every j = 1 . . . , l. Moreover, for sj ∈ {0, . . . , d},
j = 1, . . . , l, we have

(Mn(1)
s1 · · ·Mn(l)

sl ·M(1)d−s1 · · ·M(l)d−sl) =
l∏

j=1

degsj(c
n).

By Fact 2.14, we have

((
l∑

j=1

Mn(j))
i·(

l∑
j=1

M(j))2d−i) =
∑

sj≥0,j=1,...,l and
∑l

j=1 sj=i

(
i

s1, . . . , sl

) l∏
j=1

degsj(c
n).

By Lemma 2.8, for every i = 0, . . . , ld, we have

(2.8) lim
n→∞

((
l∑

j=1

Mn(j))
i · (

l∑
j=1

M(j))2d−i)1/n = βi(c(l)).

So we get

(2.9) log βi(c(l)) = max
sj≥0,j=1,...,l and

∑l
j=1 sj=i

l∑
j=1

log(βsj(c)).

As log(βsj(c)) ≤ NPc(2sj), we get

(2.10) log βi(c(l)) ≤ max
sj≥0,j=1,...,l and

∑l
j=1 sj=i

l∑
j=1

NPc(2sj).
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Pick l := (2d)!. By (2.9), (2.10) and the concavity of NPc(j), for every i =
0, . . . , 2d, we get

lNPc(l)(li) =lmax{log βli/2(c(l)), max
0≤u<i<v≤ld

{v − li/2

v − u
log βu(c(l)) +

li/2− u

v − u
log βv(c(l))}}

≤ max
0≤tw,w=1,...,l and

∑l
w=1 tw=l2i/2

l∑
j=1

βtw(c(l))

≤ max
0≤tw,w=1,...,l and

∑l
w=1 tw=l2i

(
l∑

j=1

max
sj≥0,j=1,...,l and

∑l
j=1 sj=tw

l∑
j=1

NPc(sj))

≤ max
0≤sy ,y=1,...,l2 and

∑l2

y=1 sy=l2i

NPc(sy)

≤l2 ×NPc(i).

Hence

(2.11) NPc(l)(li) ≤ l ×NPc(i).

The definition of NPc implies that

NPc(i) =
1

l
log( max

sj≥0,j=1,...,l and
∑l

j=1 sj=li/2

l∏
j=1

βsj(c)).

By (2.9), we get

(2.12) l ×NPc(i) = βli/2(c(l)) ≤ NPc(l)(li).

Combine (2.12) with (2.11), we get

(2.13) NPc(l)(li) = l ×NPc(i) = βli/2(c(l)).

Apply Lemma 2.13 for c(l), we get

(2.14) l ×NPc(i) = NPc(l)(li) = CPc(l)(li).

By Künneth formula, we have

logαli(c(l)) ≥ l logαi(c).

Hence for every i = 0, . . . , 2d we get

(2.15) NPc(i) ≥ αi(c).

As NPc is concave, we get
NPc(i) ≥ CPc(i)

for all i = 0, . . . , 2d. This concludes the proof by equation (2.6). □

Proof of Lemma 2.13. We may approximate c by cm := c+m−1∆ with m → ∞.
For each m ≥ 1, as c = cm −m−1∆ is effective. As m−1∆ is bi-finite, and m−1∆
commutes with cm, the proof of Lemma 2.9 indeed shows that

βi(cm) ≥ βi(m
−1∆) > 0

for every i = 0, . . . , d. After replacing c by cm,m ≥ 1, we may assume that
βi(c) > 0 for every i = 0, . . . , d.
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For i = 1, . . . , d, set

µi := NPc(i)−NPc(i− 1).

As NPc is concave, µi is decreasing on i. Set αj := CPc(j), j = 0, . . . , 2d and
βi := NPc(2i), i = 0, . . . , d.

By (2.6), we only need to show that βi ≥ α2i for all i = 0, . . . , d. If i = 0, it is
clear. So only need to prove it for i ≥ 1.

Denote by Φq the cohomological correspondence in C(X,X) induced by the q-
Frobenius on X. So Φq is bi-finite and Φ−1

q = q−d⊤Φq. Deligne’s theorem [Del74]

implies that all eigenvalues of Φ∗
q : H

j(Xk,Ql)⊗ C → Hj(Xk,Ql)⊗ C has norm

qj/2. For s ∈ Z, t ∈ Z≥0, define cs,t := Φs
q ◦ ct. As Φq commutes with c, we have

the following properties:

(i) for i = 1, . . . , d, NPcs,t(2i) = (s log q)i+ tβi;
(ii) for j = 1, . . . , 2d, CPcs,t(j) = (1

2
s log q)j + tαj.

Set

E := {2(logαj+1 − logαj)

log q
| j = 0, . . . , 2d− 1},

which is finite. SetQ∗ := Q\E which is dense in R. Then for every (s, t) ∈ Z×Z≥0,
cs,t has condition (A). Now fix i ∈ {1, . . . , d}. Set ri := log µi/ log q. For every
m ≥ 1, pick (sm, tm) ∈ Z× Z≥0 such that sm/tm ∈ Q∗ and

ri < sm/tm < ri +
1

m
.

Then csm,tm has Condition (A). For l = 1, . . . , d,, set

θl := NPcsm,tm
(2l)−NPcsm,tm

(2l − 2) = tm(
sm
tm

log q + log µl),

which is decreasing. Then we have

θi = tm(ri log q + log µi) + tm(
sm
tm

− ri) log q = tm(
sm
tm

− ri) log q ∈ (0,
1

m
tm log q).

Then when l < i, we get

NPcsm,tm
(2l) < NPcsm,tm

(2i).

When l > i, we get

NPcsm,tm
(2l) = NPcsm,tm

(2i) + (θi+1 + · · ·+ θj)

≤ NPcsm,tm
(2i) + θi(j − i) < NPcsm,tm

(2i) +
1

m
(j − i)tm log q.

Combine the above two inequalities, we get

(2.16) NPcsm,tm
(2i) ≥ max

l=0,...,d
NPcsm,tm

(2l)− 1

m
dtm log q
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By Corollary 2.11 and (2.16), we get

CPcsm,tm
(2i) ≤ max

j=0,...2d
CPc(j)(2.17)

= max
l=0,...,d

NPcsm,tm
(2l)(2.18)

≤NPcsm,tm
(2i) +

1

m
dtm log q.(2.19)

Then we get

ism log q + tmα2i ≤ ism log q + tmβi +
1

m
dtm log q,

hence

α2i ≤ βi +
1

m
d log q.

Let m → ∞, we get conclude the proof. □

2.6. Case of endomorphisms. In this section, we assume that X is irre-
ducible. Let f : X → X be a surjective endomorphism. We still denote by
f the cohomological correspondence in C(X,X) induced by f .

For any bi-finite c ∈ C(X,X), we say that c is numerically log-concave, if

(2.20) NPc(2i) = log βi(c).

By [Tru20, Theorem 1.1(3)] (see also [DS05, Dan20]), if X is irreducible, the
sequence βi(f), i = 0, . . . , d is log-concave. So f is numerically log-concave. In-
deed, as the transport of the graph of fn is irreducible for all n ≥ 0, [Tru20,
Theorem 1.1(3)] also implies the ⊤f is numerically log-concave.

The following gives an example of bi-finite cohomological correspondence c ∈
C(X,X) which is not numerically log-concave.

Example 2.15. Let fi, i = 1, 2 be two surjective endomorphisms on Pd of alge-
braic degree qi ≥ 1 i.e. f ∗

i O(1) = O(qi). Define c := 1
2
(f1 + f2) ∈ C(X,X). We

may think c as a random product of f1, f2 independently of probability 1/2 for
each i. Set L := O(1). For i = 0, . . . , d, we have

(2.21) βi(c) = lim
n→∞

((cn)∗Li · Ld−i)1/n = lim
n→∞

(2−n(qi1 + qi2)
n)1/n = (qi1 + qi2)/2.

Cauchy inequality implies that for every x > 0, i ≥ 1, we have

(1 + xi−1)(1 + xi+1) ≥ (1 + xi)2,

and the equality holds if and only if x = 1. Applying the above inequality, we get
that for every i = 1, . . . , d− 1, we get

βi−1(c)βi+1(c) ≥ βi(c)
2,

and the equality holds if and only if q1 = q2. In particular, if q1 ̸= q2, then

NPc(2i) > log βi(c)

for all i = 1, . . . , d− 1.
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In general the sequence αi(f), i = 0, . . . , 2d may not be log-concave even when
X is irreducible. For example, it is possible that H i(Xk,Ql) vanishes for some
odd i. Then this case αi(f) = 0. As shown in the following example, every
when H i(Xk,Ql) ̸= 0 for every i = 0, . . . , 2d, αi(f), i = 0, . . . , 2d could not be
log-concave.

Example 2.16. Let X = P1 × E where E is an elliptic curve. Let g : P1 → P1

be the square map [x : y] 7→ [x2 : y2]. Set f := g × id : X → X. Easy to see that
H i(Xk,Ql) ̸= 0 for all i = 0, . . . , 4. Easy to compute that α0(f) = 1, α1(f) =
1, α2(f) = 2. As

1 = α1(f)
2 < α0(f)α1(f) = 2,

αi(f), i = 0, . . . , 4 is not log-concave.

For a finite multi-set A ⊆ C∗ and b ∈ C∗, write

A−1 = {a−1| a ∈ A}, bA := {ba| a ∈ A} and |A| = {|a|| a ∈ A}.
Now we fix an embedding τ : Ql ↪→ C. By Poincaré duality, we have the

following facts: For every j ∈ G(X), i = 0, . . . , d, we have

(i) 0 ̸∈ Sp j(f) and 0 ̸∈ Sp (f ∗ : N i(X)R → N i(X)R),
(ii) Sp j(

⊤f) = (deg f)Sp j(f)
−1 and

Sp ((⊤f)∗ : N i(X)R → N i(X)R) = (deg f)Sp (f ∗ : N i(X)R → N i(X)R)
−1;

(iii) Sp j(f) = Sp 2d−j(
⊤f) and

Sp (f ∗ : N i(X)R → N i(X)R) = Sp ((⊤f)∗ : Nd−i(X)R → Nd−i(X)R).

For j ∈ G(X), set
α−
j (f) := min |Sp j(f)|.

For i = 0, . . . , d, set

β−
i (f) := min |Sp (f ∗ : N i(X)R → N i(X)R)|.

By Fact 2.1, ρ−j (f) does not depend on the choice of the embedding τ . By the
above facts (ii) and (iii), we get the following result.

Proposition 2.17. For every j ∈ G(X), we have

α−
j (f) =

deg(f)

α2d−j(f)
and β−

i (f) =
deg(f)

βd−i(f)
.

By Theorem 2.12, we get the following consequence.

Corollary 2.18. For every j ∈ G(X), we have

NPf (2d)−NPf (2d− j) ≤ logα−
j (f) ≤ logαj(f) ≤ NPf (j)

Moreover, for every i = 0, . . . , d, we have

NPf (2d)−NPf (2d− 2i) = logα−
2i(f) = log β−

i (f)

and
log βi(f) = logα2i(f) = NPf (2i).

Note that log deg f = NPf (2d).
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In the end, we prove the “moving target” version of Corollary 1.7.

Proposition 2.19. Assume that f : X → X is an int-amplified amplified end-
morphism. Let L be an ample line bundle on X. Let hn : X → X,n ≥ 0 be a
sequence of endomorphisms of X with

lim sup
n→∞

(h∗
nL · Ld−1)1/n < βd(f)/βd−1(f).

Then for n ≫ 0, fn intersects hn properly in X ×X. Moreover, for every ϵ > 0
we have

#{fn(x) = hn(x)} = qdn + o((βdβd−1)
(1+ϵ)n)

counting with multiplicity.

Proof. Let πi : X×X → X, i = 1, 2 be the i-th projection. Set µd := βd(f)/βd−1(f).
As f is int-amplified amplified, µd > 1. By Corollary 2.18, every eigenvalue of
f ∗ : N1(X) ⊗ R → N1(X) ⊗ R has norm at least µd. Hence every eigenvalue of
f∗ : N

d−i(X) ⊗ R → Nd−i(X) ⊗ R has norm at least µd. So there is δ > 0, such
that for every Z ∈ Psefd−i(X) and n ≥ 0 we have

(2.22) (fn
∗ (Z) · L) = ∥fn

∗ (Z)∥L ≥ δµn
d∥Z∥L.

There is a constant A > 0, such that for for every M ∈ N1(X), Z ∈ Nd−1(X),
we have

(2.23) (Z ·M) ≤ A∥M∥L∥Z∥L.
Pick η ∈ (lim supn→∞(h∗

nL · Ld−1), µd). There is B > 0 such that

(2.24) (h∗
nL · Ld−1) < Bηn.

We first prove that fn intersects hn properly for n ≫ 0. Assume that there is
an irreducible curve C ′ ⊆ fn ∩ hn ⊆ X ×X for some n ≥ 0. Set C := π1(C

′). We
have (fn)∗L|C = (hn)

∗L|C . So we get

(L · fn
∗ (C)) = (h∗

nL · C).

By (2.22), (2.23) and (2.24), we get

δµn
d∥C∥L ≤ ∥fn

∗ (C)∥L = (L·fn
∗ (C)) = (h∗

nL·C) ≤ A(h∗
nL·Ld−1)∥C∥L ≤ ABηn∥C∥L.

Hence

n ≤ logA+ logB − log δ

log µd − log η
.

Fix a field embedding τ : Ql ↪→ C. For every i = 0, . . . , 2d, Vi := H i(Xk,Ql)⊗Ql

C. Fix a norm ∥ · ∥ on each Vi. For every endomorphism g : Vi → Vi, denote
by ∥g∥ the operator norm of g. There is a constant D > 0 such that for every
i = 0, . . . , 2d and g : Vi → Vi, we have

|Tr(g)| ≤ D∥g∥.
For n ≫ 0, we have

#{fn(x) = h(x)} = (fn · hn) =
2d∑
i=0

(−1)iTr((⊤h)∗ · (fn)∗ : Vi → Vi)
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= µn
d +

2d−1∑
i=0

(−1)iTr((⊤h)∗ · (fn)∗ : Vi → Vi).

We only need to bound
∑2d−1

i=0 (−1)iTr((⊤h)∗ · (fn)∗ : Vi → Vi). For every
i = 0, . . . , 2d− 1, we have

|Tr((⊤h)∗ · (fn)∗|Vi
)| ≤ D∥(⊤h)∗|Vi

∥∥(fn)∗|Vi
∥ ≤ D∥(⊤h)∗|Vi

∥αi(f)
(1+ϵ/2)n.

As βi, i = 1, . . . , d is increasing, by Corollary 2.18, for every i = 0, . . . , 2d− 1, we
get αi(f) ≤ (βd−1βd)

1/2. This concludes the proof. □
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