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Abstract. We study the algbraic dynamics for endomorphisms of projective
spaces with coefficients in a p-adic field whose reduction in positive charac-
teritic is the Frobenius. In particular, we prove a version of the dynamical
Manin-Mumford conjecture and the dynamical Mordell-Lang conjecture for
the coherent backward orbits for such endomorphisms. We also give a new
proof of a dynamical version of the Tate-Voloch conjecture in this case. Our
method is based on the theory of perfectoid spaces introduced by P. Scholze.
In the appendix, we prove that under some technical condition on the field of
definition, a dynamical system for a polarized lift of Frobenius on a projective
variety can be embedding into a dynamical system for some endomorphism of
a projective space.
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1. Introduction

In this paper, we write Cp for the completion of the algebraically closure of Qp

with the induced norm. Denote by C◦p its valuation ring and C◦◦p the maximal

ideal of C◦p. Let F : PNCp
→ PNCp

be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [xq0 + p′P0(x0, · · · , xN) : · · · : xqN + p′PN(x0, · · · , xN)]

where q is a power of p, p′ ∈ C◦◦p , and P0, · · · , PN are homogeneous polynomials

of degree q in C◦p[x0, · · · , xN ]. We say that F is a lift of Frobenius on PNCp
.

In this paper we present a new argument to study the algebraic dynamics
for such maps, which is based on the theory of perfectoid spaces introduced
by Scholze. In particular, we study some dynamical analogues of diophantine
geometry for such maps.

Dynamical Manin-Mumford conjecture. At first, we recall the dynamical Manin-
Mumford conjecture proposed by Zhang [36].

Dynamical Manin-Mumford Conjecture. Let F : XC → XC be an endo-
morphism of a quasi-projective variety defined over C. Let V be a subvariety of
X. If the Zariski closure of the set of preperiodic1 (resp. periodic2 ) points of F
contained in V is Zariski dense in V , then V itself is preperiodic (resp. periodic).

This conjecture is a dynamical analogue of the Manin-Mumford conjecture on
subvarieties of abelian varieties. More precisely, let V be an irreducible subvariety
inside an abelian variety A over C such that the intersection of the set of torsion
points of A and V is Zariski dense in V . Then the Manin-Mumford conjecture
asserts that there exists an abelian subvariety V0 of A and a torsion point a ∈
A(C) such that V = V0 + a.

The Manin-Mumford conjecture was first proved by Raynaud [26, 27]. Var-
ious versions of this conjecture were proved by Ullmo [32], Zhang [37], Buium
[6], Hrushovski [18] and Pink-Roessler[25]. Observe that the dynamical Manin-
Mumford conjecture for the map x 7→ 2x on A implies the classical Manin-
Mumford conjecture.

The dynamical Manin-Mumford conjecture does not hold in full generality,
as we have some counterexamples [17, 23, 24]. In particular, Pazuki [24] shows
that counterexamples can come from a lift of Frobenius crossed with a lift of
its Verschiebung. This motivated the proposal of several modified versions of it
[17, 35].

However, this conjecture is now known to hold in some special cases [1, 8, 22,
13, 17, 7, 15, 14]. It seems that the dynamical Manin-Mumford conjecture may
be true except a few families of counterexamples.

In this paper, we prove the dynamical Manin-Mumford conjecture for periodic
points of lifts of Frobenius on PN .

1A preperiodic point x is a point satisfying Fm(x) = Fn(x) for some m > n ≥ 0.
2A periodic point x is a point satisfying Fn(x) = x for some n > 0.
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Theorem 1.1. Let F : PNCp
→ PNCp

be a lift of Frobenius on PNCp
. Denote by Per

the set of periodic closed points in PNCp
. Let V be any irreducible subvariety of

PNCp
such that V ∩Per is Zariski dense in V . Then V is periodic i.e. there exists

` ≥ 1 such that F `(V ) = V.

We note that in [22], Medvedev and Scanlon have proved Theorem 1.1 in the
case

F : [x0 : · · · : xN ] 7→ [xq0 + pP (x0, xN) : · · · : xqN−1 + pP (xN−1, xN) : xqN ]

where q is a power of p and P ∈ Zp[x, y] is a homogenous polynomial of degree
q. In [24], Pazuki have studied the lifts of Frobenius on abelian varieties.

We should mention that, recently Scanlon got a new proof of this theorem with-
out using pefectoid spaces. Since this proof is unpublished and it is completely
different from ours, we will discuss it briefly in Section 4 of this paper.

Dynamical Tate-Voloch Conjecture. Let V be an irreducible subvariety of PNCp
.

There are homogenous polynomials Hi ∈ Cp[x0, . . . , xN ], i = 1, . . . ,m satisfying
‖Hi‖ = 1 which define V . For any point y ∈ PNCp

(Cp), we may write y = [y0 : · · · :
yN ], max{|yi|}0≤i≤N = 1. Then we denote by d(y, V ) := max{|Hi(y0, . . . , yN)|}1≤i≤m.
Observe that d(y, V ) does not depend on the choice of {Hi}1≤i≤m and the coor-
dinates [y0 : · · · : yN ] of y. It can be viewed as the distance between y and V .
Moreover for any quasi-projective variety X and subvariety V of X, by choosing
an embedding X ↪→ PNCp

, d(•, V ) defines a distance between V and a point in X.

In [31], Tate and Voloch made the following conjecture.

Tate-Voloch Conjecture. Let A be a semiabelian variety over Cp and V a
subvariety of A. Then there exists c > 0 such that for any torsion point x ∈ A,
we have either x ∈ V or d(x, V ) > c.

This conjecture is proved by Scanlon in [28] when A is defined over a finite
extension of Qp.

In [5], Buium proved a dynamical version of this conjecture for periodic points
of lifts of Frobenius on any algebraic variety. Here we state it only for the lifts of
Frobenius on PNCp

.

Theorem 1.2. Let F : PNCp
→ PNCp

be a lift of Frobenius on PNCp
. Let V be any

irreducible subvariety of PNCp
. Then there exists δ > 0 such that for any point

x ∈ Per , either d(x, V ) > δ or x ∈ V.

In this paper, we give a new proof of this theorem by using the theory of
perfectoid spaces.

Dynamical Mordell-Lang conjecture. The Mordell-Lang conjecture on subvari-
eties of semiabelian varieties (now a theorem of Faltings [10] and Vojta [33]) says
that if V is a subvariety of a semiabelian variety G defined over C and Γ is a
finitely generated subgroup of G(C), then V (C)

⋂
Γ is a union of at most finitely

many translates of subgroups of Γ.
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Inspired by this, Ghioca and Tucker proposed the following dynamical analogue
of the Mordell-Lang conjecture.

Dynamical Mordell-Lang Conjecture ([16]). Let X be a quasi-projective
variety defined over C, let f : X → X be an endomorphism, and V be any
subvariety of X. For any point x ∈ X(C) the set {n ∈ N| fn(x) ∈ V (C)} is a
union of at most finitely many arithmetic progressions3.

Observe that the dynamical Mordell-Lang conjecture implies the classical Mordell-
Lang conjecture in the case Γ ' (Z,+).

The dynamical Mordell-Lang conjecture is proved in many cases. For example,
Bell, Ghioca and Tucker proved this conjecture for étale maps [2], and the author
proved it for the endomorphisms on A2

Q̄ [34]. We refer to the book [3] for a good
survey of this conjecture.

We note that the dynamical Mordell-Lang conjecture is not a full generaliza-
tion of the Mordell-Lang conjecture. In particular, it considers only the forward
orbit but not the backward orbit. In an informal seminar, S-W Zhang asked the
following question to me.

Question 1.3. Let X be a quasi-projective variety over C and F : X → X be a
finite endomorphism. Let x be a point in X(C). Denote by O−(x) := ∪∞i=0F

−i(x)
the backward orbit of x. Let V be a positively dimensional irreducible subvariety
of X. If V ∩O−(x) is Zariski dense in V , what can we say about V ?

We note that if V is preperiodic, then V ∩O−(x) is Zariski dense in V . As the
dynamical Manin-Mumford conjecture, the converse is not true. Indeed, we have
the following example. Let X = A1

C × A1
C and f : X → X be the endomorphism

defined by (x, y) 7→ (x4, y6). Let V be the diagonal and x = (1, 1). Then V ∩O−(x)
is Zariski dense in V , but V is not preperiodic. We have counterexamples even
when F is a polarized4 endomorphism. The following example is given by Ghioca,
which is similar to [17, Theorem 1.2].

Example 1.4. Let E be the elliptic curve over C defined by the lattice Z[i] ⊆ C.
Let F1 be the endomorphism on E defined by the multiplication by 10 and F2 be
the endomorphism on E defined by the multiplication by 6+8i. Set X := E×E,
F := (F1, F2) on X. Since |10| = |6 + 8i|, F is a polarized endomorphism on X.
Let V be the diagonal in X and x be the origin. We may check that V ∩ O−(x)
is Zariski dense in V , but V is not preperiodic.

As a special case of Question 1.3, we propose the following conjecture.

Conjecture 1.5. Let X be a quasi-projective variety over C and F : X → X
be a finite endomorphism. Let {bi}i≥0 be a sequence of points in X(C) satisfying
f(bi) = bi−1 for all i ≥ 1. Let V be a positively dimensional irreducible subvariety
of X. If the {bi}i≥0 ∩ V is Zariski dense in V , then V is periodic under F .

3An arithmetic progression is a set of the form {an + b| n ∈ N} with a, b ∈ N. In particular,
when a = 0, it contains only one point

4An endomorphism F : X → X on a projective variety is said to be polarized if there exists
an ample line bundle L on X satisfying F ∗L = L⊗d, d ≥ 2.
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Remark 1.6. This conjecture can be viewed as the dynamical Mordell-Lang con-
jecture for the coherent backward orbits. In fact, it is easy to see that Conjecture
1.5 is equivalent to the following:

Conjecture 1.5*. Let X be a quasi-projective variety over C and F : X → X
be a finite endomorphism. Let {bi}i≥0 be a sequence of points in X(C) satisfying
f(bi) = bi−1 for all i ≥ 1. Let V be a subvariety of X. Then the set {n ≥ 0| bn ∈
V } is a union of at most finitely many arithmetic progressions.

Conjeture 1.5⇒ Conjecture 1.5*. Set W := ∩n≥0{bi| bi ∈ V, i ≥ n}. Then there

exists N ≥ 0 such that W = {bi| bi ∈ V, i ≥ N}. We note that {n ≥ 0| bn ∈ V } \
{n ≥ 0| bn ∈ W} ⊆ {0, . . . , N} is finite. After replacing b0 by bN , we may assume
that N = 0. If W is empty, then {n ≥ 0| bn ∈ V } = {n ≥ 0| bn ∈ W} = ∅. If W
is not empty, then every irreducible component of W has positive dimension and
{bi}i≥N ∩W is Zariski dense in W . Conjeture 1.5 implies that there exists r ≥ 1
such that F r(W ) = W . If for some index i ∈ {0, . . . , r − 1}, there exists s ≥ 0
such that bi+sr 6∈ V , then bi+nr 6∈ V for all n ≥ s. Denote by Ti, i = 0, . . . , r − 1
the set of j ≥ 0 satisfying bj ∈ V and j = i mod r. Then Ti is either finite or
equal to {i+ rn| n ∈ N}. It follows that

{n ≥ 0| bn ∈ V } = {n ≥ 0| bn ∈ W} = ∪r−1
i=0Ti

is a union of at most finitely many arithmetic progressions.

Conjeture 1.5⇒ Conjeture 1.5*. Assume that V is a positively dimensional ir-
reducible subvariety of X such that {bi}i≥0 ∩ V is Zariski dense in V . Then
{n ≥ 0| bn ∈ V } is infinite. Conjeture 1.5 shows that {n ≥ 0| bn ∈ V } takes
form {n ≥ 0| bn ∈ V } = F ∪ (∪sj=1Tj) where F is finite and Tj, j = 1, . . . , s are
infinite arithmetic progressions. There exists j ∈ {1, . . . , s} such that {bi| i ∈ Tj}
is Zariski dense in V. Write Tj = a + rN where a ≥ 0, r ≥ 1. Since F ({bi| i ∈
Tj}) \ {bi| i ∈ Tj} = {a}, we have F r(V ) = V.

In this paper, we prove Conjecture 1.5 for the lifts of Frobenius of PNCp
.

Theorem 1.7. Let F : PNCp
→ PNCp

be a lift of Frobenius on PNCp
. Let {bi}i≥0 be

a sequence of points in PNCp
(Cp) satisfying f(bi) = bi−1 for all i ≥ 1. Let V be a

positively dimensional irreducible subvariety of PNCp
. If the {bi}i≥0 ∩ V is Zariski

dense in V , then V is periodic under F .

In fact, we prove a stronger statement.

Theorem 1.8. Let F : PNCp
→ PNCp

be a lift of Frobenius on PNCp
. Let {bi}i≥0 be

a sequence of points in PNCp
(Cp) satisfying f(bi) = bi−1 for all i ≥ 1. Let V be a

subvariety of PNCp
. If there exists a subsequence {bni

}i≥0 such that |d(bni
, V )| → 0

when n → ∞, then bni
∈ V for i large enough and there exists r ≥ 0, such that

{bi}i≥0 ⊆ ∪ri=0F
i(V ).

It implies the following Tate-Voloch type statement.
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Corollary 1.9. Let F : PNCp
→ PNCp

be a lift of Frobenius on PNCp
. Let {bi}i≥0 be

a sequence of points in PNCp
(Cp) satisfying f(bi) = bi−1 for all i ≥ 1. Let V be a

subvariety of PNCp
. Then there exists c > 0 such that for all i ≥ 0, either bi ∈ V

or d(bi, V ) > c.

Overview of the proofs. Let us now see in more detail how our arguments work.

Denote by K := Cp and K[ := F̂p((t)) the completion of the algebraic closure
of Fp. We denote by K◦ (resp. K[◦) the valuation ring of K (resp. K[) and
denote by K◦◦ (resp. K[◦◦) the maximal ideal of K◦ (resp. K[◦). Denote by
k := Fp. We have k = K◦/K◦◦ = K[◦/K[◦◦. Moreover, we have an embedding
k ↪→ K[.

Let F : PNK → PNK be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [xq0 + p′P0(x0, · · · , xn) : · · · : xqN + p′PN(x0, · · · , xN)]

where p′ ∈ K◦◦, q is a power of p, and P0, · · · , PN are homogeneous polynomials
of degree q in K◦[x0, · · · , xN ].

We associate to PNK ( resp. PN
K[) a non archimedean analytic space PN,ad

K (resp.

PN,ad

K[ ) with a natural embedding PNK(K) ⊆ PN,ad
K (resp. PN

K[(K
[) ⊆ PN,ad

K[ ). The

endomorphism F extends to an endomorphism F ad on PN,ad
K .

Denote by lim←−−
F ad

PN,ad
K the inverse limit PN,ad

K ’s where transition maps are F ad.

Then we may construct a perfectoid space PN,perf
K with an endomorphism F perf for

which the topological dynamical system (PN,perf
K , F perf) is isomorphic to (lim←−−

F ad

PN,ad
K , T )

where T : (x0, x1, · · · ) → (F ad(x0), x0, · · · ) is the shift map on lim←−−
F ad

PN,ad
K . More-

over, we have a natural morphism π : PN,perf
K → PN,ad

K defined by the projection
to the first coordinate. This construction has been stated by Scholze [30, Section
7].

Similarly, we construct a perfectoid space PN,perf

K[ which is isomorphic to the

inverse limit lim←−
Φs

PN,ad

K[ where Φ is the Frobenius endomorphism on PN,ad

K[ , and q =

ps. Denote by π[ : PN,perf

K[ → PN,ad

K[ the morphism defined by the projection to the
first coordinate. Since Φ is a homeomorphism on the underlying topological space,
π[ induces an isomorphism from the topological dynamical system (PN,perf

K[ ,Φs,perf)

to (PN,ad

K[ ,Φs,ad), where Φperf is the Frobenius on PN,perf

K[ .
By the theory of perfectoid spaces, there is a natural homeomorphism of topo-

logical space ρ : PN,perf
K → PN,perf

K[ satisfying Φs,perf ◦ ρ = ρ ◦ F perf .

As an example, we explain the proof of Theorem 1.1. Let V be any subvariety
of PNCp

such that V ∩ Per is Zariski dense in V .

It is easy to see that the map π ◦ ρ−1 ◦ (π[)−1 induces a bijection from the set
Per [ of periodic points of Φs in PN

K[(K
[) to the set Per of periodic points of F in

PNK(K). We note that the set of periodic points of Φs in PN
K[(K

[) is exactly the
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set of points defined over k i.e. the image of η : PNk (k) ↪→ PN
K[(K

[). We have a

reduction map red : PNK(K)→ PNk (k). The map η◦red : Per → Per [ is bijective.
Moreover, we have that (η ◦ red) ◦ (π ◦ ρ−1 ◦ (π[)−1) is identity on Per [.

Denote by S[ the Zariski closure of η ◦ red(V ∩ Per ). Since S[ is defined over
k, it is periodic under Φs. The main ingredient of our proof is to show that S[

is a subset of π[(ρ(π−1(V ))). If π[(ρ(π−1(V ))) is algebraic, this is obvious. But a
priori, π[(ρ(π−1(V ))) is not algebraic, since the map ρ is very transcendental. Our
strategy is to approximate π[(ρ(π−1(V ))) by algebraic subvarieties of PN

K[ . For

simplicity, assume that V is an hypersurface of PNK . Applying the approximation
lemma [29, Corollary 6.7] of Scholze, for any ε > 0, there exists an algebraic
hypersurface Hε of PN

K[ which is ε-close to π[(ρ(π−1(V ))). Then η ◦ red(V ∩Per )

is ε-close to Hε. Since S[ the Zariski closure of η ◦ red(V ∩ Per ) in PN
K[ , we

can show that it is ε-close to Hε. Then we can show that S[ is contained in
π[(ρ(π−1(V ))) by letting ε tends to 0.

Then we have S := π(ρ−1((π[)−1(S[))) ⊆ V . Since S is periodic and Zariski
dense in V , then V is periodic.

In this paper, we mainly consider the lifts of Frobenius on PNCp
for the sim-

plicity, since we think that the aim of this paper is to present this new method
in dynamics. We suspect that our method can be applied to the more general
case where F is a lift of Frobenius on any projective variety over Cp. On the
other hand, it is often that a lift of Frobenius on a projective variety X can be
extended to some lift of Frobenius on PNCp

for some embedding τ : X ↪→ PNCp
.

In the appendix, we prove the existence of such embedding for polarized lifts of
Frobenius on some projective varieties under some technical condition on the field
of definition. Once this happens, many questions can be reduced to the special
case where X = PNCp

.

The plan of the paper. The paper is organized as follows. In Section 2, we gather a
number of results on the perfectoid spaces in Scholze’s papers [29, 30]. In Section
3, we construct the inverse limit and make it to be a perfectoid space with an
automorphism. We also construct its tilt and give the isomorphism between these
two topological dynamical systems. In Section 4, we study the periodic points
of F . In particular, we prove Theorem 1.1 and Theorem 1.2. In Section 5, we
study the coherent backward orbits of a point. In particular, we prove Theorem
1.7, Theorem 1.8 and Corollary 1.9. In the apprendix, we study the polaried lift
of Frobenius on projective varieties over Cp.
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2. Preliminary: perfectoid spaces

In this section, we introduce some necessary background in perfectoid spaces.
All the results in this section can be found in Scholze’s papers [29, 30]. The per-
fectoid spaces are some nonarchimedean analytic spaces. Following the technique
of Scholze in [29], we work with Huber’s adic spaces [19, 20, 21].

2.1. Adic spaces. In this section, we denote by k a complete nonarchimedean
field i.e. a complete topological field whose topology is induced by a nontrivial
norm |·| : k → [0,∞). Denote by R a topological k-algebra. Moreover we suppose
that R is a Tate k-algebra i.e. there exists a subring R0 ⊆ R, such that aR0,
a ∈ k×, forms a basis of open neighborhoods of 0.

A subset M ⊆ R is call bounded if M ⊆ aR0, for some a ∈ k×. An element
x ∈ R is called power-bounded if {xn| n ≥ 0} ⊆ R is bounded. Let R◦ ⊆ R be
the subring of power-bounded elements.

Definition 2.1 ([29]). An affinoid k-algebra is a pair (R,R+), where R is a Tate
k-algebra and R+ is an open and integrally closed subring of R◦.

A valuation on R is a map | · | : R → Γ ∪ {0}, where Γ is a totally ordered
abelian group, such that, |0| = 0, |1| = 1, |xy| = |x||y| and |x+y| ≤ max{|x|, |y|}.
We say that | · | is continuous, if for all γ ∈ Γ, the subset {x ∈ R| |x| < γ} ⊆ R
is open.

To a pair (R,R+), Huber associates a space Spa(R,R+) of equivalence classes
of continuous valuations | · | on R such that |R+| ≤ 1, and call it an affinoid space.

For a point x ∈ Spa(R,R+), we denote by f → |f(x)| the associated valuation.
It is a fact [29, Proposition 2.12. (iii)] that

R+ = {f ∈ R| |f(x)| ≤ 1 for all x ∈ Spa(R,R+)}.

We equip Spa(R,R+) with the topology generated by rational subsets:

U(f1, · · · , fn; g) = {x ∈ Spa(R,R+)| |fi(x)| ≤ |g(x)|} ⊆ Spa(R,R+)

where f1, · · · , fn ∈ R generate R as an idea and g ∈ R.

The completion (R̂, R̂+) of an affinoid algbra (R,R+) is also an affinoid algebra.
Then we recall [19, Proposition 3.9].

Proposition 2.2. We have Spa(R̂, R̂+) ' Spa(R,R+), identifying rational sub-
sets.

We say a point x ∈ Spa(R,R+) is a k-point, if the valuation x is induced by a
morphism from R to k i.e. there exists a morphism φ : R→ k such that for any
f ∈ R, |f(x)| = φ(f)|.

Roughly speaking, adic spaces over K are the objects obtained by gluing affi-
noid spaces. The morphisms betweens the adic spaces are the morphisms glued
by the morphisms between affinoid spaces. Because in this paper we only consider
some very concrete adic spaces, we just give a very brief definition of the adic
spaces. One may find a detailed definition in [20].
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On an affinoid spaceX = Spa(R,R+), one may define a pre-sheaves OX and O+
X

on X. Since we do not use these pre-sheaves in this paper, we omit its definition.
We do not know whether OX is a sheaf in general. We note that once OX is a
sheaf, O+

X is a sheaf also. However, if (R,R+) is of topological finite type5 then
OX is a sheaf. Assume that OX is a sheaf on X. For any x ∈ X, the valuation
f 7→ |f(x)| extends to the stalk OX,x, and we have O+

X,x = {f ∈ OX,x| |f(x)| ≤ 1}.
The affinoid spaces X defines a triple (X,OX , | · (x)| | x ∈ X).

An adic space over k is a triple (Y,OY , | · (x)| | x ∈ Y ), consisting of a locally
ringed topological space (Y,OY ) where OY is a sheaf of complete topological k-
algebras, and a continuous valuation | · (x)| on OX,x for every x ∈ X, which is
locally on Y an affinoid adic space.

Let X be an affinoid space. We say a point x ∈ X is a k-point if it is a k-point
in any (and thus all) affinoid neighbourhood of X.

2.2. Perfectoid fields. Denote by K a complete nonarchimedean field of residue
characteristic p > 0 with norm |·| : K → R≥0. Denote by K◦ := {x ∈ K| |x| ≤ 1}
its valuation ring.

Definition 2.3. We say K is a perfectoid field if |K| ⊆ R≥0 is dense in R≥0 and
the Frobenius map Φ : K◦/p→ K◦/p is surjective.

Observe that Cp and F̂p((t)) are perfectoid fields. Set Qp(p
1/p∞) := ∪i≥0Qp(p

1/pi)

and Fp((t))(t1/p
∞

) := ∪i≥0Fp((t))(t1/p
i
). Then their completions ̂Qp(p1/p∞) and

̂Fp((t))(t1/p∞) are perfectoid fields. Note that Qp is not a perfectoid field, since
|Qp| = 0 ∪ {pi| i ∈ Z} ⊆ R≥0 is not dense.

For any perfectoid field K, we choose some element ω ∈ K× such that |p| ≤
|ω| < 1. We define

K[◦ := lim←−−−−−
x 7→Φ(x)

K◦/ω.

Recall [29, Lemma 3.2].

Lemma 2.4. (i) There exists a multiplicative homeomorphism

lim←−−−
x 7→xp

K◦ '−→ lim←−−−−−
x 7→Φ(x)

K◦/ω = K[◦

given by projection. Moreover, we have a map

K[◦ = lim←−−−
x7→xp

K◦ = {(x(0), x(1), · · · )| x(i) ∈ K◦, (x(i+1))p = xi} → K◦

defined by

x = (x(0), x(1), · · · )→ x# := x(0).

We may define a norm on K[◦ by |x#| = |x| for all x ∈ K[◦.

5An affinoid k-algebra (R,R+) is said to be of topological finite type if R is a quotient of
k{T1, . . . , Tn} for some n, and R+ = R◦.
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(ii) The addition on

K[◦ = {x := (x(0), x(1), · · · )| x(i) ∈ K◦, (x(i+1))p = xi}
given by (x+ y)i = limn→∞(x(i+n) + y(i+n))p

n
.

(iii) There exists an element ω[ ∈ lim←−−−
x 7→xp

K◦, satisfying (ω[)# = ω. Define

K[ := K[◦[(ω[)−1].

Then norm | · | on K[◦ extends to a norm on K[ which makes K[◦ to be
the valuation ring of K[.

(iv) There exists a multiplicative homeomorphism

K['−→ lim←−−−
x 7→xp

K.

Then K[ is a perfectoid field of characteristic p. We have |Kb×| = |K×|,
K[◦/ω[ ' K◦/ω, and K[◦/m[ ' K◦/m, where m, resp. m[, is the maximal
ideal of K◦, resp. K[◦.

(v) If K is of characteristic p, then K[ = K.

We note that (i) and (ii) of Lemma 2.4 implies that the definition of K[◦ is
independent of ω.

We call K[ the tilt of K.

Example 2.5. The tilt of Cp is C[
p = F̂p((t)).

Then we have the following theorem, which was known by the classical work
of Fontaine-Wintenberger [11]

Theorem 2.6. (i) Let L be a finite extension of K. Then L with its natural
topology induced by K is a perfectoid field.

(ii) The tilt functor L 7→ L[ induces an equivalence of categories between the
category of finite extensions of K and the category of finite extensions of
K[. This equivalence preserves degrees.

2.3. Almost mathematics. Let K be a perfectoid field and m be the maximal
ideal of K◦.

A K◦-module M is said to be almost zero if mM = 0. Define the category of
almost K◦-modules as

K◦a-mod := K◦-mod/(m-torsion).

We have a localization functor M 7→Ma from K◦-mod to K◦a-mod, whose kernel
is the thick subcategory of almost zero modules.

For two K◦a-modules X, Y , we define alHom(X, Y ) = Hom(X, Y )a.

Proposition 2.7 ([12]). The Category K◦a-mod is an abelian tensor category,
where we define kernels, cokernels and tensor products in the unique way com-
patible with their definition in K◦ − mod , that is

Ma ⊗Na = (M ⊗N)a
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for any two K◦-modules M,N . For any L,M,N ∈ K◦a-mod there is a functo-
rial isomorphism

Hom(L, alHom(M,N)) = Hom(L⊗M,N).

This means that K◦a-mod has all properties of the category of modules over a
ring and thus one can define the notion of K◦a-algebra. Any K◦-algebra R defines
a K◦a-algebra Ra as the tensor products are compatible. Moreover, localization
also gives a functor from R-modules to Ra-modules.

Proposition 2.8 ([12]). There exists a right adjoint functor

K◦a-mod→ K◦-mod : M 7→ M∗ := HomK◦a(K
◦a,M).

to the localization functor M 7→ Ma. The adjunction morphism (M∗)
a → M is

an isomorphism. If M is a K◦-module, then (Ma)∗ = Hom(m,M).

If A is a K◦a-algebra, then A∗ has a natural structure as K◦-algebra and
(Aa)∗ = A. In particular, any K◦a-algebra comes via localization from a K◦-
algebra. Furthermore the functor M 7→M∗ induces a functor from A-modules to
A∗-modules, and one can see also that all A-modules come via localization from
A∗-modules. The category of A-modules is again an abelian tensor category, and
all properties about the category of K◦a-modules stay true for the category of
A-modules.

Let A be any K◦a-algebra. As in [29], a A-module M is said to be flat if the
functor X 7→M ⊗A X on A-modules is exact.

Denote by ω an element in K◦ satisfying |p| ≤ |ω| < 1. Let A be a Ka-algebra,
we say A is ω-adically complete if A ' lim

←−
A/ωn.

2.4. Perfectoid algebras. Fix a perfectoid field K and an element ω ∈ K◦

satisfying |p| ≤ |ω| < 1.

Definition 2.9. (i) A perfectoid K-algebra is a Banach K-algebra R such
that the subset R◦ ⊆ R of powerbounded elements is open and bounded,
and the Frobenius morphism Φ : R◦/ω → R◦/ω is surjective. Mor-
phisms between perfectoid K-algebras are the continuous morphisms of
K-algebras.

(ii) A perfectoid K◦a-algebra is a ω-adically complete flat K◦a-algebra A on
which Frobenius induces an isomorphism

Φ : A/ω1/p ' A/ω.

Morphism between perfectoid K◦a-algebras are the morphisms of K◦a-
algebras.

(iii) A perfectoid K◦a/ω-algebra is a flat K◦a/ω-algebra Ā on which Frobenius
induces an isomorphism

Φ : Ā/ω1/p ' Ā.

Morphisms are the morphisms of K◦a/ω-algebras.
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Let K-Perf denote the category of perfectoid K-algebras and similarly for
K◦a-Perf and K◦a/ω-Perf. Let K[ be the tilt of K and ω[ is an element in
K[ satisfying (ωb)# = ω.

We recall [29, Theorem 5.2].

Theorem 2.10. We have the following series of equivalences of categories:

K-Perf ' K◦a-Perf ' (K◦a/ω)-Perf = (K[a/ωb)-Perf ' K[a-Perf ' K[-Perf.

In other words, a perfectoid K-algebra, which is an object over the generic
fibre, has a canonical extension to the almost integral level as a perfectoid K◦a-
algebra, and perfectoid K◦a-algebras are determined by their reduction modulo
ω.

Let R be a perfectoid K◦a-algebra, with A = R◦a. Define

A[ := lim←−
Φ

A/ω,

which we regard as a K[◦a-algebra via

K[◦a = (lim←−
Φ

K◦/ω)a = lim←−
Φ

(K◦/ω)a = lim←−
Φ

K◦a/ω,

and set R[ = Ab∗[(ω
[)−1].

Proposition 2.11. This defines a perfectoid K[-algebra R[ with corresponding
perfectoid K[◦a-algebra A[, and R[ is the tilt of R. Moreover,

R[ = lim←−−−
x 7→xp

R,A[∗ = lim←−−−
x 7→xp

A∗, and A[∗/ω
[ ' A∗/ω.

In particular, we have a continuous multiplicative map R[ = lim←−−−
x 7→xp

R→ R,

x = (x(0), x(1), · · · ) 7→ x# := x(0).

Then the equivalence K-Perf → K[-Perf in Theorem 2.10 is given by R 7→ R[.

Proposition 2.12. Let R = K〈T 1/p∞

1 , · · · , T 1/p∞
n 〉 = K◦

̂
[T

1/p∞

1 , · · · , T 1/p∞
n ][ω−1].

Then R is a perfectoid K-algebra, and its tilts R[ is given by K[〈T 1/p∞

1 , · · · , T 1/p∞
n 〉.

2.5. Perfectoid spaces. Fix a perfectoid field K and an element ω ∈ K◦ satis-
fying |p| ≤ |ω| < 1. Let K[ be the tilt of K and ω[ is an element in K[ satisfying
(ωb)# = ω.

Definition 2.13. An perfectoid affinoid K-algebra is an affinoidK-algebra (R,R+),
where R is a perfectoid K-algebra, and R+ ⊆ R◦ is an open and integrally closed
subring.

Proposition 2.14. The association (R,R+) 7→ (Rb, R[+), where R[+ = lim←−−−
x→xp

R+.

defines an equivalence between the category of perfectoid affinoid K-algebras and
the category of perfectoid affinoid K[-algebras.

Theorem 2.15. For any x ∈ Spa(R,R+), one may define a point x[ ∈ Spa(R[, R[+)
by setting |f(x[)| := |f#(x)| for f ∈ R[. This defines a homeomorphism ρ :
Spa(R,R+)'−→Spa(R[, R[+) preserving rational subsets.
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Denote by X := Spa(R,R+) and X[ := Spa(R[, R[+). We note that in general
the map R[ → R : f → f# is not surjective. For any f in R, ρ∗f := f ◦ ρ−1 is a
continuous function on X[ but in general is not contained in R[.

We have the following approximation lemma [29, Corollary 6.7].

Lemma 2.16. For any f ∈ R and any c ≥ 0, ε > 0, there exists gc,ε ∈ R[ such
that for all x ∈ X, we have

|f(x)− g#
c,ε(x)| ≤ |ω|1−ε max(|f(x)|, |ω|c).

Remark 2.17. Note that for ε < 1, the given estimate says in particular that
for all x ∈ X, we have

max{|f(x)|, |ω|c} = max{|g#
c,ε(x)|, |ω|c}.

Remark 2.18. Let R := K〈x1, . . . , xN〉 and R+ := R◦ = K◦〈x1, . . . , xN〉. Then
R[ = K[〈x1, . . . , xN〉 and R[+ = K[◦〈x1, . . . , xN〉.

By Lemma 2.16, for any c ∈ Z+, there exists an element gc ∈ K[◦〈x1/p∞

1 , . . . , x
1/p∞

N 〉
such that for all x ∈ Uperf

0 , we have

|H ◦ π(x)− g#
c (x)| ≤ |p|1/2 max(|H ◦ π(x)|, |p|c).

There exists ` ∈ N and an element Gc ∈ K[◦[x
1/p`

1 , . . . , x
1/p`

N ] such that gc −Gc ∈
tc+1K[◦〈x1/p∞

1 , . . . , x
1/p∞

N 〉. It follows that for all x ∈ Uperf
0 , we have

|H ◦ π(x)−G#
c (x)| ≤ |p|1/2 max(|H(x)|, |p|c) = |p|1/2 max(|G#

c (x)|, |p|c),

and Gp` ∈ K[◦[x1, . . . , xN ].

Moreover, when K[ = F̂p((t)), we may make that Gc ⊆ E◦[x
1/p`

1 , . . . , x
1/p`

N ]
where E is a finite extension of Fp((t)).

Then we describe the structure sheaf OX on X := Spa(R,R+). Let U =
U(f1, · · · , fn; g) ⊆ X be a rational subset. Equip R[g−1] with the topology mak-
ing the image of R+[f1/g, · · · , fn/g] → R[g−1] to be open and bounded. Let
R〈f1/g, · · · , fn/g〉 be the completion of R[g−1] with respect to this topology. It
equip with a subring

R〈f1/g, · · · , fn/g〉+ ⊆ R〈f1/g, · · · , fn/g〉
which is the completion of integral closure of R+[f1/g, · · · , fn/g]. By [20, Propo-
sition 1.3], the pair (OX(U), O+

X(U)) := (R〈f1/g, · · · , fn/g〉, R〈f1/g, · · · , fn/g〉+)
depends only on the rational subset U ⊆ X ( and not on the choice of f1, · · · , fn, g ∈
R). The map

Spa(OX(U), O+
X(U))→ Spa(R,R+)

is a homeomorphism onto U , preserving rational subsets. Moreover, (OX(U), O+
X(U))

is initial with respect to this property.
By [29, Theorem 6.3], we have the following

Theorem 2.19. For any rational subset U ⊆ X, let U [ := ρ(U) ⊆ X[.

(i) The presheaves OX , OX[ are sheaves.
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(ii) For any rational subset U ⊆ X, the pair (OX(U), O+
X(U)) is a perfectoid

affinoid K-algebra, which tilts to (OX[(U [), O+
X[(U

[)).

The resulting spaces Spa(R,R+) equipped with the two structure sheaves of
topological rings OX , O

+
X are called affinoid perfectoid spaces over K. The mor-

phisms betweens the affinoid perfectoid spaces over K are the morphisms induced
by the morphisms between affinoid perfectoid K-algebras.

One defines perfectoid spaces over K to be the objects obtained by gluing
affinoid perfectoid spaces. The morphisms betweens the perfectoid spaces are the
morphisms glued by the morphisms between affinoid perfectoid spaces.

We say that a perfectoid space X[ over K[ is the tilt of a perfectoid space
X over K if there exists a functorial isomorphism Hom(Spa(R[, R[+), X[) =
Hom(Spa(R,R+), X) for all perfectoid affinoid K-algebras (R,R+) with tilts
(R[, R[+).

Theorem 2.20. Any perfectoid space X over K admits a tilt X[, unique up
to isomorphism. This induces an equivalence between the category of perfectoid
spaces over K and the category of perfectoid spaces over K[. The underly topo-
logical spaces of X and X[ are naturally identified by ρ. A perfectoid space X
is affinoid perfectoid if and only if its tilt X[ is affinoid perfectoid. Finally, for
any affinoid perfectoid subspace U ⊆ X, the pair (OX(U), O+

X(U)) is a perfectoid
affinoid K-algebra with tilt (OX[(U [), O+

X[(U
[)).

For any morphism F : X → Y between perfectoid spaces over K, denote by
F [ : X[ → Y [ the morphism between perfectoid spaces over K[ induced by the
equivalence of categories.

2.6. Points in perfectoid spaces. Fix a perfectoid field K and an element
ω ∈ K◦ satisfying |p| ≤ |ω| < 1. Let X be a perfectoid space over K.

For any point x ∈ X, let K(x) be the residue field of OX,x and K(x)+ ⊆ K(x)
be the image of O+

X,x. By [29, Proposition 2.25], the ω-adic completion of O+
X,x is

equal to the ω-adic completion K̂(x)
+

of K̂(x)
+

. By [29, Corollary 6.7], K̂(x) is
a perfectoid field.

Definition 2.21. An affinoid perfectoid field is a pair (K,K+) consisting of a
perfectoid field and an open valuation subring K+ ⊆ K.

Then (K̂(x), K̂(x)
+

) is an affinoid perfectoid field. Also note that affinoid
perfectoid fields (L,L+) for which K ⊆ L are affinoid K-algebra.

Then we have the following description of points [29, Proposition 2.27]

Proposition 2.22. The points of X are in bijection with maps ι : Spa(L,L+)→
X to affinoid fields (L,L+) such that the quotient field of the image of OX,x in L
is dense, where x is the image of Spa(L,L+) in X.

Any point x ∈ X associates to a map ι : Spa(K̂(x), K̂(x)
+

) → X. By the
equivalence of categories, the point x[ ∈ X[ associates to a map

ι[ : Spa(K̂(x)
[

, K̂(x)
[+

)→ X.
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By [29, Lemma 5.21], Spa(K̂(x)
[

, K̂(x)
[+

) is an affinoid perfectoid field. It

follows that K̂[(x[) = (K̂(x))[.
In particular, we have the following

Lemma 2.23. For any point x ∈ X, x is a K-point if and only if x[ is a K[-point
in X[.

3. Inverse limit of lifts of Frobenius

In this section, fix a perfectoid field K. Denote by p > 0 the characteristic of
the residue field K◦/K◦◦ of K.

Let F : PNK → PNK be a lift of Frobenius i.e. an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [xq0 + p′P0(x0, · · · , xN) : · · · : xqN + p′PN(x0, · · · , xN)]

where p′ ∈ K◦◦, q = ps is a power of p, and P0, · · · , PN are homogeneous poly-
nomials of degree q in K◦[x0, · · · , xN ]. Let ω ∈ K◦ be an element satisfying
max{|p′|, |p|} ≤ |ω| < 1.

3.1. Adic projective spaces. At first, we define an adic space PN,ad
K which

associates to the projective space PNK . In fact, by [29, Theorem 2.22], for any
projective variety X defined over K with an integral model X over K◦, we may
associate an adic space Xad. But in this paper, we don’t need the general theory
and we define PN,ad

K in the following explicit way:
For any i ∈ {0, · · · , N}, denote by

Uad
i := Spa(K〈zi,0, · · · , zi,i−1, zi,i+1, · · · , zi,N〉, K〈zi,0, · · · , zi,i−1, zi,i+1, · · · , zi,N〉◦)

the unit balls. Then we define PN,ad
K by gluing the unit balls Uad

i together in the
usual way: For any i 6= j, Uad

i ∩ Uad
j = U(1, zi,0, · · · , zi,i−1, zi,i+1, · · · , zi,N ; zi,j) ⊆

Uad
i . On Uad

i ∩ Uad
j , the transition map φi,j is defined by

φ∗i,j(zj,k) = zi,k/zi,j for k 6= i, j; and φ∗i,j(zj,i) = 1/zi,j.

Denote by R(PN,ad
K ) the set of K-points in PN,ad

K .

Lemma 3.1. There exists a natural embedding τ : PNK(K) ↪→ PN,ad
K . Moreover

its image τ(PNK(K)) = R(PN,ad
K ).

Proof of Lemma 3.1. For any point q ∈ PNK(K), there exists a finite extension
L of K, and a point q′ = [x0 : · · · : xN ] ∈ PNL (L), such that q is the image of
that q′ under the natural morphism πLK : PNL → PNK induced by the inclusion
K ↪→ L. Indeed, (πLK)−1 is exactly the Galois orbit of q′. We may suppose that
max{|x0|, · · · , |xN |} = 1 for all j = 0, . . . , N . Denote by Iq := {i| |xi| = 1}.
Observe that Iq depends only on q. Pick i ∈ Iq, we define τ(q) ∈ Ui to be the point
defined by f → |f(x1/xi, . . . , xn/xi)|, for all f ∈ K〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉.
Here f(x1/xi, . . . , xn/xi) ∈ L depends on the choice of q′ in its Galois obit, but the
value |f(x1/xi, . . . , xn/xi)| depends only on q. Moreover we may check that the
definition of τ(q) does not depend on the choice of i ∈ Iq. Then τ is well defined.

Moreover it is easy to check that τ is injective and τ(PNK(K)) ⊆ R(PN,ad
K ). By [4,

6.1.2 Corollary 3], the map τ : PNK(K)→ R(PN,ad
K ) is surjective. �
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3.2. Lifts of Frobenius on PN,ad
K . The endomorphism F induces a natural en-

domorphism F ad on PN,ad
K . We define F ad in the following explicit way. For any

i = 0, . . . , N , F ad|Uad
i

: Uad
i → Uad

i is defined to be

F ∗(zi,j) =
zqi,j + p′Pj(zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N)

1 + p′Pi(zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N)

for all j 6= i. We may write

zqi,j + p′Pj(zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N)

1 + p′Pi(zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N)
= zqi,j+p

′Qi,j(zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N)

where Qi,j ∈ K◦〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉. For any i 6= j, we may check that
F ad
i (Uad

i ∩ Uad
j ) ⊆ Uad

i ∩ Uad
j and

F ad
i |Uad

i ∩Uad
j

= F ad
j |Uad

i ∩Uad
j
.

Then we may glue these F ad
i to define F ad : PN,ad

K → PN,ad
K . Observe that we

have the following commutative diagram:

PNK(K)

F |PN
K

(K)

��

τ // PN,ad
K

F ad

��

PNK(K)
τ [ // PN,ad

K

Now we identify PNK(K) ( resp. PN
K[(K

[)) to the image of τ ( resp. τ [) in PN,ad
K (

resp. PN,ad

K[ ).

3.3. The inverse limit. The inverse limit lim←−−
F ad

PN,ad
K is the topological space

{(x0, x1, . . . ) ∈ (PN,ad
K )N| F ad(xi) = xi−1 for all i ≥ 1} with the product topol-

ogy. There exists a natural automorphism T on lim←−−
F ad

PN,ad
K defined by

T : (x0, x1, . . . )→ (F ad(x0), x0, x1, . . . ).

The aim of this section is to construct a perfectoid space (PNK)perf with an
automorphism F perf such that the topological dynamical system ((PNK)perf , F perf)

is isomorphic to (lim←−−
F ad

PN,ad
K , T ).

Since (F ad)−1(Uad
i ) ⊆ Uad

i for all i = 0, . . . , N, we have

lim←−−
F ad

PN,ad
K = ∪Ni=0(lim←−−

F ad

Uad
i ).

Moreover we have T (Uad
i ) ⊆ Uad

i . It follows that we only need to construct a per-

fectoid affinoid space Uperf
i with an automorphism F perf

i such that the topological

dynamical system (Uperf
i , F perf

i ) is isomorphic to (lim←−−
F ad

Uad
i , T |Uad

i
) and check that

they can be glued together.
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Denote by Rn
i := K〈z(n)

i,0 , . . . , z
(n)
i,i−1, z

(n)
i,i+1, . . . , z

(n)
i,N〉 for all i = 0, . . . , N and

n ≥ 0. We identify z
(0)
i,j and zi,j for i 6= j. For every n ≥ 0, we have an embedding

Rn
i ↪→ Rn+1

i defined by

z
(n)
i,j 7→ (z

(n+1)
i,j )q + p′Qi,j(z

(n+1)
i,0 , . . . , z

(n+1)
i,i−1 , z

(n+1)
i,i+1 , . . . , z

(n+1)
i,N )

where Qi,j is defined in Section 3.2. Then we denote by

Ri := K〈z(∞)
i,0 , . . . , z

(∞)
i,i−1, z

(∞)
i,i+1, . . . , z

(∞)
i,N 〉

the completion of ∪∞n=0R
n
i . Denote by ‖ · ‖ the norm on Ri induced by the norms

on Rn
i , n ≥ 0.

Lemma 3.2. For every i = 1, . . . , N , Ri is a perfectoid K-algebra with

R◦i = K◦〈z(∞)
i,0 , . . . , z

(∞)
i,i−1, z

(∞)
i,i+1, . . . , z

(∞)
i,N 〉.

Its tilt is given by R[
i = K[〈z1/p∞

i,0 , . . . , z
1/p∞

i,i−1 , z
1/p∞

i,i+1 , . . . , z
1/p∞

i,N 〉.

Proof of Lemma 3.2. Observe that K◦〈z(∞)
i,0 , . . . , z

(∞)
i,i−1, z

(∞)
i,i+1, . . . , z

(∞)
i,N 〉 is the com-

pletion of ∪∞n=0(Rn
i )◦. It is easy to check that

K◦〈z(∞)
i,0 , . . . , z

(∞)
i,i−1, z

(∞)
i,i+1, . . . , z

(∞)
i,N 〉 ⊆ R◦i .

For any f ∈ Ri, there exists a sequence fn ∈ Rn
i such that fn → f as n→∞.

There exists M ≥ 0, such that for all m,n ≥ M, ‖fn − fm‖ ≤ 1. It follows that

fn− fM ∈ (Rn
i )◦ for all n ≥M . Then f − fM ∈ ̂∪∞n=0(Rn

i )◦. If ‖fM‖ ≤ 1, we have

fM ∈ (RM
i )◦ and then f ∈ ̂∪∞n=0(Rn

i )◦. If ‖fM‖ > 1, we have ‖fn‖ = ‖fnM‖ → ∞
as n→∞. Then f is not power bounded. It follows that

R◦i ⊆ K◦〈z(∞)
i,0 , . . . , z

(∞)
i,i−1, z

(∞)
i,i+1, . . . , z

(∞)
i,N 〉.

It follows that R◦i is open and bounded.

We have R◦i /ω = (K◦/ω)〈z(∞)
i,0 , . . . , z

(∞)
i,i−1, z

(∞)
i,i+1, . . . , z

(∞)
i,N 〉 is the completion of

∪∞n=0R
n
i /ω. The embedding Rn

i /ω → Rn
i /ω is given by

z
(n)
i,j mod ω 7→ (z

(n+1)
i,j )q + p′Qi,j(z

(n+1)
i,0 , . . . , z

(n+1)
i,i−1 , z

(n+1)
i,i+1 , . . . , z

(n+1)
i,N ) mod ω

= (z
(n+1)
i,j )q mod ω.

It follows that

R◦i /ω = (K◦/ω)〈z1/p∞

i,0 , . . . , z
1/p∞

i,i−1 , z
1/p∞

i,i+1 , . . . , z
1/p∞

i,N 〉.

Then the Frobenius morphism Φ : R◦i /ω → R◦i /ω is surjective. It follows that Ri

is a perfectoid K-algebra.
By Proposition 2.12 and the categorical equivalence in Theorem 2.10, we have

R[
i = K[〈z1/p∞

i,0 , . . . , z
1/p∞

i,i−1 , z
1/p∞

i,i+1 , . . . , z
1/p∞

i,N 〉. �

We define Uperf
i := Spa(Ri, R

◦
i ) and F perf

i : Uperf
i → Uperf

i the map induced by
the morphism Ri → Ri defined by

z
(n)
i,j → z

(n−1)
i,j for all n ≥ 1 and z

(0)
i,j → (z

(0)
i,j )q+p′Qi,j(z

(0)
i,0 , . . . , z

(0)
i,i−1, z

(0)
i,i+1, . . . , z

(0)
i,N).
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Then we define (PNK)perf by gluing Uperf
i together in the usual way: For any i 6= j,

Uperf
i ∩ Uperf

j = U(1, z
(0)
i,0 , . . . , z

(0)
i,i−1, z

(0)
i,i+1, . . . , z

(0)
i,N ; z

(0)
i,j ) ⊆ Uperf

i . On Uperf
i ∩ Uperf

j ,
the transition map φi,j is defined to be

(φperf
i,j )∗(z

(n)
j,k ) = z

(n)
i,k /z

(n)
i,j for k 6= i, j; and (φperf

i,j )∗(z
(n)
j,i ) = 1/z

(n)
i,j .

It is easy to check that for all i 6= j,

F perf
i (Uperf

i ∩ Uperf
j ) ⊆ Uperf

i ∩ Uperf
j

and F perf
i = F perf

j on Uperf
i ∩ Uperf

j . Then we define F perf by gluing F perf
i for

i = 0, . . . , N.
Then we have the following

Theorem 3.3. There exists a natural homeomorphism ψ : (PNK)perf → lim←−−
F ad

PN,ad
K

makes the following diagram to be commutative:

PN,perf
K

Fperf

��

ψ // lim←−−
F ad

PN,ad
K

T

��

PN,perf
K

ψ // lim←−−
F ad

PN,ad
K

In other words, the topological dynamical systems (PN,perf
K , F perf) and (lim←−−

F ad

PN,ad
K , T )

are isomorphic by ψ.
Moreover a point x ∈ PN,perf

K whose image ψ(x) = (x0, x1, . . . ) is a K-point if
and only if for every n ≥ 0, xn is a K-point.

Proof of Theorem 3.3. Denote by Bi := ∪∞n=0R
n
i . We have B◦i = ∪∞n=0R

n◦
i . Then

Spa(B,B◦) is an affinoid space and we have Ri = B̂i, R
◦
i = B̂◦i . By Proposition

2.2, then natural morphism µi : Spa(Ri, R
◦
i )→ Spa(Bi, B

◦
i ) is a homeomorphism.

Denote by ψni : Uperf
i → Uad

i the map induced by the morphism

K〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉 → Rn
i ⊆ Bi ⊆ Ri

by sending zi,j → z
(n)
i,j . It is easy to check that ψni could be glued to a map

ψn : PN,perf
K → PN,ad

K .
Since F ad ◦ ψn+1 = ψn for all n ≥ 0, it induces a map

ψ := lim←−n
ψn : PN,perf

K → lim←−−
F ad

PN,ad
K .

By checking in the affinoid spaces Uperf
i ’s, it is easy to check that T ◦ψ = ψ◦F perf .

So we only need to show that ψ is a homeomorphism. We only need to show
it in Ui. Denote by

ψi := ψ|Uperf
i

= lim←−n
ψni .
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Now we define a morphism θi : lim←−−
F ad

Uad
i → Spa(Bi, B

◦
i ) as the following.

Let (x0, x1, . . . ) be a point in lim←−−
F ad

Uad
i . For every n ≥ 0, we identify Ui →

Spa(Rn
i , R

n◦
i ) by zi,j → z

(n)
i,j . Then xn defines a valuation on Rn

i with valua-
tion group Γn := {|f(xn)|| f ∈ Rn

i }. Moreover, for any ` ≥ n, and f ∈ Rn
i , we

have |f(xl)| = |f(xn)|. Then we define θi((x0, x1, . . . )) to be the natural valua-
tion Bi = ∪∞n=0R

n
i → ∪∞n=0Γn by gluing all the valuations xn on Rn

i . Since all the
rational subset of Spa(Bi, B

◦
i ) are defined over some Rn

i , it is easy to check that θ
is continuous. It is easy to check that ψi ◦ (µ−1

i ◦ θi) = id and (µ−1
i ◦ θi) ◦ψi = id.

It follows that ψi is a homeomorphism.
Let x be a K-point in Uperf

i and ψi(x) = (x0, x1, . . . ). For any n ≥ 0, we have

K ⊆ Rn
i /{|f(xn)| = 0| f ∈ Rn

i } ⊆ Ri/{|f(x)| = 0| f ∈ Ri} = K.

It follows that xn is a K-point.
Let x be a point in Uperf

i and set ψi(x) = (x0, x1, . . . ). We suppose that all xn
are K-points. Then mn

i := {|f(xn)| = 0| f ∈ Rn
i } is a maximal ideal in Rn

i and
Rn
i /m

n
i = K. The valuation Rn

i /m
n
i → R induced by xi is the norm on K.

There exists a continuous morphism ∪∞n=0R
n
i → K by gluing the morphisms

Rn
i → Rn

i /m
n
i ↪→ K. We can extend this morphism to a continuous morphism

g : Rn
i = ∪̂∞n=0R

n
i → K. The valuation f → |g(f)| defines a point y ∈ Uperf

i .
Then y is a K-point. Observe that for all f ∈ Rn

i , |f(y)| = |f(xi)|. Then we have
ψ(y) = (x0, x1, . . . ) = ψ(x). Then y = x and so, x is a K-point. �

For every i = 0, . . . , N , the embedding K〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉 ⊆ Ri

induces a map Uperf
i → Uad

i . We define π : PN,perf
K → PN,ad

K by gluing these maps.
It is easy to check that

F ad ◦ π[ = π[ ◦ F perf .

For any point x ∈ PN,perf
K with ψ(x) = (x0, x1, . . . ), we have π(x) = x0.

3.4. Passing to the tilt. Denote by U [,perf
i := Spa(R[

i , R
b◦
i ) and Φs,perf

i : U [,perf
i →

U [,perf
i the s-th power of the Frobenius i.e. the map induced by the morphism

R[
i → R[

i : f → f q.

We define (PN
K[)

perf by gluing U [,perf
i together in the usual way: For any i 6= j,

U [,perf
i ∩ U [,perf

j = U(1, zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N ; zi,j) ⊆ U [,perf
i .

On U [,perf
i ∩ U [,perf

j , the transition map φ[i,j is defined to be

(φ[,perf
i,j )∗(z

1/pn

j,k ) = z
1/pn

i,k /z
1/pn

i,j for k 6= i, j; and (φ[,perf
i,j )∗(z

1/pn

j,i ) = 1/z
1/pn

i,j .

By reducing modulo ω and the categorical equivalence in Theorem 2.10, we see

that φ[,perf
i,j = (φperf

i,j )[ and Φs,perf
i = (F perf

i )[. It follows that (PN
K[)

perf = ((PNK)perf)[

and we can define Φs,perf by gluing Φs,perf
i together. Moreover, we have Φs,perf =

(F perf)[. Then we have the following
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Theorem 3.4. The following diagram is commutative:

PN,perf
K

Fperf

��

ρ // PN,perf

K[

Φs,perf

��

PN,perf
K

ρ // PN,perf

K[

In other words, the topological dynamical systems (PN,perf
K , F perf) and (PN,perf

K[ ,Φs)
are isomorphic by ρ.

For any i ∈ {0, . . . , N}, denote by

U [,ad
i := Spa(K[〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉, K[〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉◦).

As in Section 3.1, we define PN,ad

K[ by gluing U [,ad
i , i = 0, . . . , N . Denote by φs,ad

i

the s-th power of the Frobenius on Ui i.e. the map induced by the morphism
f → f q on K[〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉.

By Lemma 3.1, we have a natural embedding τ [ : PN
K[(K

[) ↪→ PN,ad

K[ . Then

τ(PNK(K)) = R(PN,ad
K ) and we have the following commutative diagram

PN
K[(K

[)

Φs|PN
K

(K)

��

τ // PN,ad

K[

Φs,ad

��

PN
K[(K

[)
τ // PN,ad

K[

where Φs is the s-th power of the Frobenius on PN
K[ .

For every i = 0, . . . , N , the embedding K[〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉 ⊆ R[
i

induces a map U [,perf
i → U [,ad

i . We define π[ : PN,perf

K[ → PN,ad

K[ by gluing these
maps. It is easy to check that

Φs,ad ◦ π[ = π[ ◦ Φs,perf (1).

By [29, Theorem 8.5], π[ is a homeomorphism. Moreover, we have the following

Lemma 3.5. The map π[ induces a bijection between R(PN,perf

K[ ) and R(PN,ad

K[ ).

Proof of Lemma 3.5. It is clear that if x is a K[-point then π[(x) is a K[-point.
Now we suppose that π[(x) is a K[-point. We suppose that x is contained in

U [,perf
i and then x0 := π[(x) ∈ U [,ad

i . Since x0 is a K[-point, it defines a morphism

g0 : R[,0
i := K[〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N〉 → K[.

It follows that the Frobenius map f → fp on K[ is a field automorphism. For any

f ∈ R[,n
i := K[〈z1/pn

i,0 , . . . , z
1/pn

i,i−1, z
1/pn

i,i+1, . . . , z
1/pn

i,N 〉, we have fp
n ∈ R[,0

i . Then the

morphism g0 extends to a morphism gn : R[,n
i → K[ by sending f to (g0(fp

n
))1/pn .

We glue gn to define a continuous morphism ∪∞n=0R
[,n
i → K[ and then extend it

to a continuous morphism g : R[
i =

̂
(∪∞n=0R

[,n
i )→ K[. Then g induces a K[-point

y ∈ U [,perf
i . Since π[(y) = x0 = π[(x), we have y = x. Then x is a K[-point. �
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4. Periodic points

In this section, we denote by K = Cp. Then K is a perfectoid field and
K[ is the completion of the algebraical closure of Fp((t)). We may suppose that
|p| = |t| = p−1.

Let F : PNK → PNK be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [xq0 + p′P0(x0, . . . , xN) : · · · : xqN + p′PN(x0, . . . , xN)]

where p′ ∈ K◦◦, q is a power of p, and P0, . . . , PN are homogeneous polynomials
of degree q in K◦[x0, . . . , xN ]. The aim of this section is to study the periodic
points of F . In particular, we prove Theorem 1.2 and Theorem 1.1.

Recall that Per is the set of periodic closed points in PNK .
Let V be any irreducible subvariety of PNK . Suppose that V is defined by the

equations Hj(x0, . . . , xN) = 0, j = 1, . . . ,m where Hj are homogenous polynomi-
als. We may suppose that ‖Hj‖ = 1 for all j = 1, . . . ,m. For any i = 0, . . . , N ,
denote by

V ad
i := {x ∈ Uad

i | |Hi,j(x)| = 0, j = 1, . . . ,m}
where Hi,j := H(zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N). Observe that ‖Hi,j‖ = 1.

Set R(V ad
i ) := R(PN,ad

K )∩ V ad
i , V ad := ∪Ni=0V

ad
i and R(V ad) := R(PN,ad

K )∩ V ad.
We have τ(R(V )) = R(V ad).

Observe that for all points x ∈ R(Uad
i ), we have d(x, V ) = max{|Hi,j(x)|}.

4.1. Passing to the reduction. SinceK is algebraically closed, we have PNK(K) =
PNK(K). Denote by k = Fp, we have k = K◦/K◦◦. At first, there exists a reduction
map

red : PNK(K)→ PNk (k)

defined by the following: For any point x ∈ PNK(K), we may write it as x = [x0 :
· · · : xN ] where xi ∈ K◦, i = 0, . . . , N and max{|xi|, i = 0, . . . , N} = 1. Then
we define red(x) = [x0 : · · · : xN ] where xi is the image of xi in k = K◦/K◦◦.
Observe that red ◦ F = Φ

s ◦ red, where φ is the Frobenius on PNk . For every
point y ∈ PNk (k), there exists m > 0 such that Φ

sm
(y) = y. Then we have

Dy := red−1(y) ' (K◦◦)N is a polydisc fixed by F . Since Fm|Dy is attracting,
Dy ∩ Per has exactly one point. It follows that red induces a bijection between
Per and PNk (k).

Similarly, we can define the reduction map red[ : PN
K[(K

[)→ PNk (k). This map

induces a bijection between Per [ and PNk (k) where Per [ is the set of Φs-periodic
closed points of PN

K[ .

Since k is a subfield of K[, there exists an embedding η : PNk (k) ↪→ PN
K[(K

[).

Observe that the image η(PNk (k)) is exactly Per [. Moreover we have red[◦η = id.
We may check that the map

φ := η ◦ red : Per → Per [

is a bijection satisfying Φs ◦ φ = φ ◦ F .
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4.2. Passing to the tilt. Denote by Per ad = τ(Per ). It is exactly the set of

periodic K-points in PN,ad
K . For any point x ∈ Per ad, denote by n > 0 a period of

x under F ad. We define a map χ : Per ad → lim←−−
F ad

PN,ad
K by sending x to (x0, x1, . . . )

where xi = (F an)kn−i(x) where kn ≥ i. We note that χ(x) does not depend on
the choice of n and k. Since π ◦ χ = id, χ is injective. We have that χ(Per ad) is

exactly the set of Per T , where Per T is the set of points (x0, x1, . . . ) ∈ lim←−−
F ad

PN,ad
K

which is periodic under T such that every xn is a K-point.
Denote by Per [,ad the set of K[-points in PN,ad

K[ which are periodic under Φs,ad.

By applying Lemma 3.1 over K[, there exists a bijection τ [ : PN
K[(K

[)→ R(PN,ad

K[ )
and we have

τ [ ◦ Φs = Φs,ad ◦ τ [.
It follows that τ [ induces a bijection between Per [,ad and the set Per [ of Φs-
periodic points in R(PN

K[) = PN
K[(K

[).
By Theorem 3.3, Theorem 3.4, Equation (1) and Lemma 3.5, the map

ι := π[ ◦ ρ ◦ ψ−1 ◦ χ : Per ad → Per [,ad

is bijective.

Denote by Per ad
i := Per ad ∩ Uad

i and Per [,ad
i := Per [,ad ∩ U [,ad

i for every i =

0, . . . , N . Then we have ι(Per ad
i ) = Per [,ad

i .

Observe that for every point x ∈ Per , we have red(x) = red[ ◦ ι ◦ τ(x). Then
we have

φ = η ◦ red = η ◦ red[ ◦ ι ◦ τ = ι ◦ τ
on Per .

4.3. Proof of Theorem 1.2. We only need to show this theorem for the periodic
points in Uad

i for all i = 0, . . . , N. Without the loss of generality, we only need to
show that there exists δ > 0 such that for all x ∈ Per ∩ Uad

0 , either d(x, V ) > δ
or x ∈ V.

At first, we prove our theorem for hypersurfaces.

Lemma 4.1. Let H ∈ K[x1, . . . , xN ] be a polynomial. Then there exists ε > 0,
such that for all x ∈ Per ∩ Uad

0 , either |H(x)| > ε or H(x) = 0.

By this lemma, for any H0,j, j = 1, . . . ,m, we have εj > 0 such that for all
x ∈ Per ∩ Uad

0 , either |H0,j(x)| > εj or H0,j(x) = 0. Set δ := min1≤j≤m{εj}. Let
x be a point in Per ∩ Uad

0 satisfying d(x, V ) ≤ δ. Then for all j = 1, . . . ,m, we
have H0,j(x) = 0. It follows that x ∈ V.

We only need to proof Lemma 4.1.
To do this, we need the following Lemma

Lemma 4.2. Let E/Fp((t)) be a finite extension. Then E = Fp((u)) for some

u ∈ E satisfying |u| = |t|1/[E:Fp((t))].
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Proof of Lemma 4.2. Observe that E is a discrete valuation field.
Since Fp is algebraically closed, the extension E/Fp((t)) is totally ramified. It

follows that E = Fp((t))(u) where the minimal polynomial of u over Fp((t)) is an

Eisenstein polynomial. It follows that |u| = |t|1/[E:Fp((t))] and uE◦ is the maximal
ideal of E◦. For every f ∈ E◦, f can be written as

∑
i≥0 aiu

i where ai ∈ Fp for
all i ≥ 0. Then we conclude our proof. �

Lemma 4.3. For any polynomial G ∈ K[◦[x1, . . . , xN ] and ε > 0, there exists a
polynomial Gε ∈ K[◦[x1, . . . , xN ] satisfying degGε ≤ degG, ‖G−Gε‖ < ε (resp.

≤ ε)and Gε takes the form Gε =
∑m

i≥0 u
igi where gi ∈ Fp[x1, . . . , xN ], u ∈ Fp((t))

◦

with norm |u| = |t|1/[Fp((t))(u):Fp((t))] and |u|m ≥ ε (resp. > ε).

Proof of Lemma 4.3. By Lemma 4.2, there exists u ∈ Fp((t))
◦

with norm |u| =

|t|1/[Fp((t))(u):Fp((t))] and H ∈ Fp((t))(u)[x1, . . . , xN ] such that degH ≤ degG, ‖G−
H‖ < ε and H takes form H =

∑∞
i≥0 u

igi where gi ∈ Fp[x1, . . . , xN ]. Let m be

the largest integer such that |u|m ≥ ε (resp. > ε). Set Gε =
∑m

i≥0 u
igi then we

conclude our proof. �

Proof of Lemma 4.1. We may suppose that H 6= 0 and ‖H‖ = 1.
By Remark 2.18, for any c ∈ Z+, there exists ` ∈ N and an element Gc ∈

K[◦[x
1/p`

1 , . . . , x
1/p`

N ] such that for all x ∈ Uperf
0 , we have

|H ◦ π(x)−G#
c (x)| ≤ |p|1/2 max(|H(x)|, |p|c) = |p|1/2 max(|G#

c (x)|, |p|c),

and Gp` ∈ K[◦[x1, . . . , xN ]. By Lemma 4.3, we may suppose that Gp`

c =
∑m

i≥0 u
igc,i

where gc,j ∈ Fp[x1, . . . , xN ], u ∈ Fp((t))
◦

with norm |u| = |t|1/[Fp((t))(u):Fp((t))] and

|u|m > |t|(c+1/2)p` .
Denote by Ic the ideal of K[[x1, . . . , xN ] generated by all gc,i.
If x ∈ R(U [

0) is a point such that for all g ∈ Ic, g(x) = 0, then we have

|H(π(ρ−1((πb)−1(x))))| = |H(π(ρ−1((πb)−1(x))))−G#
c (ρ−1((π[)−1(x)))|

≤ max{|p|1/2|G#
c (ρ−1((π[)−1(x))|, |p|c+1/2} = |p|c+1/2.

On the other hand we have the following lemma.

Lemma 4.4. Let x be a point in Per ∩ Uad
0 satisfying |H(x)| ≤ |p|c+1/2. Then

for all g ∈ Ic, we have g(φ(x)) = 0.

Proof of Lemma 4.4. Observe that |(H − G#
c )(χ(x))| ≤ |p|1/2 max(|H(x)|, |p|c)

and |H(x)| ≤ |p|c+1/2. We have |Gc(φ(x))| = |G#
c (χ(x))| ≤ |p|c+1/2. For all j ≥ 0,

we have gc,j(φ(x)) ∈ k. It follows that either |gc,j(φ(x))| = 1 or gc,j(φ(x)) =
0 for all j ≥ 0. If gc,j(φ(x)) = 0 for all j ≥ 0, then for all g ∈ Ic we have
g(φ(x)) = 0. Otherwise, let j0 be the smallest j satisfying |gc,j(φ(x))| = 1. It

follows that |Gc(φ(x))| = |u|j0/p` . Since |Gc(φ(x))| = |G#
c (χ(x))| ≤ |p|c+1/2, we

get a contradiction. �

Set I :=
∑

c≥1 Ic. Since K[[x1, . . . , xN ] is Noetherian, there exists M ∈ Z+,

such that I =
∑M

c=1 Ic. Set ε := |p|M+1/2. Let x be a point in Per ∩Uad
0 satisfying
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|H(x)| ≤ ε = |p|M+1/2. By Lemma 4.4, for all g ∈ I =
∑M

c=1 Ic, we have
|g(φ(x))| = 0. It follows that for all c ≥ 1 and g ∈ Ic, we have |g(φ(x))| = 0.
Then we have |H(x)| ≤ |p|c+1/2 for all c ≥ 0. Let c tend to infinity, we have
H(x) = 0. We conclude our proof. �

4.4. Proof of Theorem 1.1. Suppose that V ∩ Per is Zariski dense in V . We
claim the following

Lemma 4.5. There exists a Zariski dense subset S ⊆ V with the property that
F `(S) = S for some positive integer `.

Since S is Zariski dense in V and S = F `(S) is Zariski dense in F `(V ). It
follows that V = F `(V ). Then Lemma 4.5 implies Theorem 1.1.

Now we prove Lemma 4.5 in the rest of this section.
Since ∪Ni=0τ

−1(Per ad
i ∩ V ad

i ) = Per is Zariski dense in V , there exists i =
0, . . . , N , such that τ−1(Per ad

i ∩ V ad
i ) is Zarisi dense in V. We may suppose that

i = 0.
Let Z be the Zariski closure of φ(τ−1(Per ad

0 ∩V ad
0 )) ⊆ PN

K[ . Since φ(τ−1(Per ad
0 ∩

V ad
0 )) is defined over k and it is Zariski dense in Z, Z is defined over k = Fp.

Then Z is defined over a finite extension of Fp. It follows that there exists ` ≥ 1,
such that Φsl(Z) = Z.

Set S[,ad := τ [(Z(K[))∩U [
0. We have ι(Per ad∩V ad

0 ) ⊆ S[,ad∩π[(ρ(π−1(V ad))).
We claim the following

Lemma 4.6. We have S[,ad ⊆ π[(ρ(π−1(V ad
0 ))).

Remark 4.7. We note that if π[(ρ(π−1(V ad
0 ))) is algebraic, then our lemma is

easy. Since φ(τ−1(Per ad
0 ∩ V ad

0 )) is Zariski dense in Z, and π[(ρ(π−1(V ad
0 ))) is

algebraic, we have S[,ad ⊆ π[(ρ(π−1(V ad
0 ))).

But in general π[(ρ(π−1(V ad
0 ))) is not algebraic since the map ρ is not algebraic.

Our proof of Lemma 4.6 is based on Lemma 2.16, which allows us to approximate
π[(ρ(π−1(V ad

0 ))) by algebraic subvarieties.

By assuming Lemma 4.6, we have π(ρ−1((π[)−1(S[,ad))) ⊆ V ad
0 . Set S =

τ−1(π(ρ−1((π[)−1(S[,ad)))). We have S ⊆ V is a Zariski dense subset of V . More-
over, we have F `(S) = S. This concludes the proof of Lemma 4.5.

Now we only need to prove Lemma 4.6.
At first, we need the following

Lemma 4.8. Let H ∈ Kb[z0,1, . . . , z0,N ] be a polynomial with norm 1. Suppose
that for every point x ∈ ι(Per ad ∩ V ad

0 ), we have |H(x)| ≤ 1/ps, where s ∈ Z+.
Then for every point y ∈ S[,ad, we have |H(y)| ≤ 1/ps.

Proof of Lemma 4.8. Observe that we have a map

R(Uad
0 ) = (K[◦)N → (K[◦/(ts))N = AN

K[◦/(ts)(K
[◦/(ts))
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defined by (x1, . . . , xn) 7→ (x1, . . . , xN) where xi = xi mod ts. Denote by

H := H mod ts.

For every point x ∈ ι(Per ad ∩ V ad
0 ), we have H(x) = 0. Observe that

ι(Per ad ∩ V ad
0 ) = (φ(τ−1(Per ad

0 ∩ V ad
0 )))×Spec k Spec (K[,◦/(ts))

is Zariski dense in Z ×Spec k Spec (K[,◦/(ts)). It follows that

Z ×Spec k Spec (K[,◦/(ts)) ⊆ {H = 0}.
Then we have

S[,ad = Z(k)×Spec k Spec (K[,◦/(ts)) ⊆ Z ×Spec k Spec (K[,◦/(ts)) ⊆ {H = 0}.
It follows that for every x ∈ S[,ad, we have H(x) = 0 mod ts. Then we have
|H(x)| ≤ 1/ps, for all x ∈ S[,ad. �

Now we apply Lemma 2.16 to H0,j ∈ K〈z0,1, . . . , z0,N〉 ⊆ Rperf
0 for every j =

1, . . . ,m. For any s ≥ 2 there exists hs ∈ R[,perf
0 such that for all x ∈ Uperf

0 , we
have

|H0,j(x)− h#
s (x)| ≤ |t|1/2 max(|H0,j(x)|, |t|s) = |t|1/2 max{|h#

s (x)|, |t|s} < 1 (2).

It follows that ‖hs‖ = ‖H0,j‖ = 1.
For every point x[ ∈ (π[)−1(ι(Per ad ∩ V ad

0 )), we have

x := ρ−1(x[) ∈ π−1(Per ad ∩ V ad
0 ).

Then we have H0,j(x) = 0. By (2), we have

|hs(x[)| ≤ |t|s+1/2 = |t|1/2 max{|hs(x[)|, |t|s} = 1/ps+1/2.

Since hs ∈ R[,perf
0 = K[〈z1/p∞

0,1 , . . . , z
1/p∞

0,N 〉, there are r ≥ 0 and a function

gs ∈ K[[z
1/pr

0,1 , . . . , z
1/pr

0,N ]

such that ‖hs − gs‖ < 1/ps. It follows that gp
r

s ∈ K[[z0,1, . . . , z0,N ] and

‖hprs − gp
r

s ‖ ≤ |p|sp
r

.

Then for every point x[ ∈ (π[)−1(ι(Per ad ∩ V ad
0 )), we have

|gprs (π[(x[))| = |gprs (x[)| = |hprs (x[) + (gp
r

s (x[)− hprs (x[))| ≤ |p|spr .
By Lemma 4.8, for all y ∈ S[,ad, we have |gprs (y)| ≤ |p|spr . Then we have
|hs((π[)−1(y)| ≤ 1/ps and

|h#
s (ρ−1((π[)−1(y))| = |hs((π[)−1(y)| ≤ 1/ps

for all y ∈ S[,ad.
By Equation (2), we have

|H0,j(x)− h#
s (x)| ≤ |t|1/2 max{|h#

s (x)|, |t|s} = 1/ps+1/2

for all x ∈ ρ−1((π[)−1(S[,ad)). It follows that for all x ∈ ρ−1((π[)−1(S[,ad)), we have
|H0,j(x)| ≤ 1/ps. Let s→∞, we have |H0,j(x)| = 0 for all x ∈ ρ−1((π[)−1(S[,ad)).
Since |H0,j(x)| = |H0,j(π(x))|, we have |H0,j(y)| = 0 for all j = 1, . . . ,m and
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y ∈ π(ρ−1((π[)−1(S[,ad))). It follows that π(ρ−1((π[)−1(S[,ad))) ⊆ V ad
0 . Then we

have S[,ad ⊆ π[(ρ(π−1(V ad
0 ))). �

4.5. Scanlon’s proof of Theorem 1.1. In this section, we discuss Scanlon’s
proof of Theorem 1.1. In this proof, we don’t need the perfectoid spaces.

Let V be a subvariety of PN such that Per ∩V is Zariski dense in V . We want
to show that V is periodic.

We first treat the case where F is defined over Qp
◦
. Since all points in Per are

defined over Qp and Per ∩ V is Zariski dense in V , V is defined over Qp. There
exists a finite extension Kp of Qp such that F is defined over Kp i.e. F takes form

F : [x0 : · · · : xN ] 7→ [xq0 + p′P0(x0, . . . , xn) : · · · : xqN + p′PN(x0, . . . , xN)]

where p′ ∈ K◦◦p , q is a power of p, P0, . . . , PN are homogeneous polynomials of
degree q = ps in K◦p [x0, . . . , xN ]. After replacing F by a suitable iterate, we may

assume that the residue field K̃ := K◦/K◦◦ is fixed by the q-power Frobenius.

By the structure of the absolute Galois group of Kp, there exists an element
σ ∈ Gal(Kp/Kp) which lifts the q-power Frobenius. Then we have the following
lemma.

Lemma 4.9 ([22]). We have Per = {x ∈ PN(Qp)| F (x) = σ(x)}.

Proof of Lemma 4.9. Recall that the reduction map

red : PN(Qp)→ PN(Fp)

gives a bijection between Per and PN(Fp).
Let x be any point in Per . We have that F (x) ∈ Per and red(F (x)) = red(x)q.

On the other hand, we have that σ(x) ∈ Per and red(σ(x)) = red(x)q. Then we
have F (x) = σ(x).

Let x be any point in PN(Qp) satisfying F (x) = σ(x). Since x is defined over
a finite extension of Kp, there exists n ≥ 1 such that σn(x) = x. It follows that

F n(x) = F n−1(σ(x)) = σ(F n−1(x)) = · · · = σn(x) = x.

Then x is periodic. �

Observe that σ(V ) is a subvariety of PN . Then we have

σ(V ∩ Per ) = F (V ∩ Per ) ⊆ σ(V ) ∩ F (V ).

Since V ∩Per is Zariski dense in V , we have σ(V ) = F (V ). Since V is defined
over a finite extension of Qp, there exists n ≥ 1 such that σn(V ) = V. It follows
that

F n(V ) = F n−1(σ(V )) = σ(F n−1(V )) = · · · = σn(V ) = V.

Then V is periodic.

Now we treat the general case.
There exists subring R ⊆ C◦p which is finitely generated and Z such that F is

defined over R. Let m := R∩C◦◦p be a maximal ideal of R. By Lemma 6.3, there

exists σ ∈ Gal(Cp/Q) such that σ(R) ⊆ Qp
◦ ⊆ C◦p and σ(m) = Qp

◦◦ ∩R.
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Denote by F σ the Galois conjugate of F by σ i.e. F σ is obtained by changing
every coefficient of F by its image under σ. Since F σ mod C◦◦p = F mod C◦◦p ,

F σ is a lift of Frobenius on PNCp
. Moreover it is defined over Qp

◦
.

Since V ∩ Per is Zariski dense in V , σ(V ) ∩ σ(Per ) is Zariski dense in σ(V ).
Moreover σ(Per ) is exactly the set of periodic points of F σ. Then the previous
argument shows that σ(V ) is Periodic under F σ. It follows that V is periodic
under F .

5. Coherent backward orbits

In this section, we let K = Cp. Then K is a perfectoid field and K[ is the
completion of the algebraical closure of Fp((t)). We may suppose that |p| = |t| =
p−1. Let k = Fp which is a subfield of K[.

Let F : PNK → PNK be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [xq0 + p′P0(x0, . . . , xN) : · · · : xqN + p′PN(x0, . . . , xN)]

where p′ ∈ K◦◦, q is a power of p, and P0, . . . , PN are homogeneous polynomials
of degree q in K◦[x0, . . . , xN ].

The aim of this section is to prove Theorem 1.7 and Theorem 1.8.

Without loss of generality, we may suppose that b0 ∈ R(Uad
0 ). It follows that

bi ∈ R(Uad
0 ) for all i ≥ 0. Set w := π[ ◦ ρ ◦ ψ−1((b0, b1 . . . )) ∈ PN

K[(Kb). Then

w ∈ R(U [,ad
0 ) := {[1 : x1 : · · · : xN ]| |xi| ≤ 1} ⊆ PN

K[(Kb). It follows that

w1/qn ⊆ R(U [,ad
0 ) for all n ≥ 0.

If {bi}i≥0 is infinite, we may suppose that b1 6= b0 and then bi, i ≥ 0 are all
different. Let Z be the reduced subvariety of U [

0 := SpecK[[x1, . . . , xN ], whose
support is the union of all positive dimensional irreducible components of the
Zariski closure of {w1/qni}i≥0.

There exists A ≥ 0, such that Z is the Zariski closure of {w1/qni}i≥A in U [
0.

Moreover, for all n ≥ A, Z is the Zariski closure of {w1/qni}i≥n in U [
0.

Denote by I(Z) the ideal in K[[x1, . . . , xN ] which defines Z.
For every polynomial f =

∑
I aIx

I ∈ K[[x1, . . . .xN ] and i ∈ Z, we denote

by fσ
i

:=
∑

I a
qi

I x
I . Observe that f(y1/qi) = (fσ

i
(y))1/qi for all i ≥ 0 and y ∈

R(U [,ad
0 ).

Then we have the following lemma

Lemma 5.1. Let f ∈ k[x1, . . . , xN ] be a polynomial defined over k. If there exists
c ∈ (0, 1) and B ≥ A, such that for all i ≥ B, |f(w1/qni )| ≤ c, then f ∈ I(Z).

Proof of Lemma 5.1. There exists L ≥ 1 such that f is defined over FqL . Then

we have fσ
nL

= f for all n ≥ 0. For t = 0, . . . , L − 1, set Tt := {i ≥ B| ni = t
mod L}.

For all t = 0, . . . , L− 1 satisfying #Tt =∞, we have

|f(w1/qt)|1/qni−t

= |fσni−t

(w1/qt)|1/qni−t

= |f(w1/qni )| ≤ c,



30 JUNYI XIE

for all i ∈ Tt. It follows that |f(w1/qt)| ≤ cq
ni−t

for all i ∈ Tt. Since Tt is infinite,
ni can be arbitrary large. Then we have |f(w1/qt)| = 0 for all i ∈ Tt. It follows
that

|f(w1/qni )| = |fσni−t

(w1/qt)|1/qni−t

= |f(w1/qt)|1/qni−t

= 0

for all i ∈ Tt. Set
T ′ := t0≤t≤L−1,#Tt=∞Tt.

It follows that f(w1/qni ) = 0 for all i ∈ T ′. Since {i ≥ A}\T ′ is finite, {w1/qni}i∈T ′
is Zariski dense in Z. Then f ∈ I(Z). �

Lemma 5.2. We have that Z is defined over k. In particular, there exists r ≥ 1
such that Φsr(Z) = Z and {w1/qi}i∈Z ⊆ ∪r−1

i=0 Φsi(Z).

Proof of Lemma 5.2. We only need to show that I(Z) is generated by finitely
many polynomials in k[x1, . . . , xN ] ⊆ K[[x1, . . . , xN ]. In fact, if I(Z) = (g1, . . . , gl)
and gi ∈ k[x1, . . . , xN ] for all i = 1, . . . , `, then there exists r ≥ 1 such that all
the coefficients of gi, i = 1, . . . , ` are defined over Fqr . Then we have Φsr(Z) = Z.

Moreover, there exists j ≥ 0, such that w1/pj ∈ Z. It follows that {w1/qi}i∈Z ⊆
∪i∈ZΦsi(Z) = ∪r−1

i=0 Φsi(Z).
Write I(Z) = (f1, . . . , fm) where m ≥ 1 and fi ∈ K[[x1, . . . , xN ] for all i =

1, . . . ,m. Denote by d := max0≤i≤m{deg(fi)}.
By Lemma 4.3, for all i = 1, . . . ,m, there exists a sequence of polynomial
{fi,n}n≥1 such that ‖fi − fi,n‖ ≤ |tn| and taking form fi,n =

∑mi,n

j=0 u
j
i,nfi,n,j

where fi,n,j ∈ Fp[x1, . . . , xN ] of degree at most d, ui,n ∈ Fp((t))
◦

with norm

|ui,n| = |t|1/[Fp((t))(ui,n):Fp((t))] and |ui,n|mi,n > |t|n.

We claim that fi,j,n ∈ I(Z) for all j = 0, . . . ,mi,n.
We prove that claim by induction on j. For j = 0, we have

|fi,0,n(w1/qnl )| = |fi,n(w1/qnl )−
∑
j≥1

uji,nfi,j,n(w1/qnl )|

≤ max{|tn|, |ui,n|} < 1

for all ` ≥ A. By Lemma 5.2, we have fi,0 ∈ I(Z).
If j ≥ 1 and fi,0,n, . . . , fi,j−1,n ∈ I(Z), then

|fi,j,n(w1/qnl )| = |u−ji,n(fi,n(w1/qnl )−
∑

0≤t′≤j−1

ut
′

i,nfi,t′,n(w1/qnl ))−
∑
t′≥j+1

ut
′−j
i,n fi,j,n(w1/qnl )|

≤ max{|t|n/|ui,n|j, |
∑
t′≥j+1

ut
′−j
i,n fi,j,n(w1/qnl )|} ≤ max{|t|n/|ui,n|j, |ui,n|} < 1

for all ` ≥ A. By Lemma 5.2, we have fi,j,n ∈ I(Z). Then we conclude the proof
of the claim. It follows that fi,n ∈ I.

Set Id := {f ∈ I| deg(f) ≤ d}. Then Id is a finite-dimensional K[-vector
space. For all n ≥ 0, j = 0, . . . ,mi,n, denote by Ii,j,n the Kb-vector space
spanned by fi,0,0 . . . , fi,j,0, . . . , fi,0,n . . . , fi,j,n. Then ∪n≥0,j=0,...,mi,n

Ii,j,n is a sub-
space of Id. Since dim Id is finite, ∪n≥0,j=0,...,mi,n

Ii,j,n is closed. Observe that fi is
contained in the closure of ∪n≥0,j=0,...,mi,n

Ii,j,n, we have fi ∈ ∪n≥0,j=0,...,mi,n
Ii,j,n.

There exists li ≥ 0, such that fi ∈ Ii,mi,li
,li . It follows that I = (f1, . . . , fm) ⊆
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1≤i≤m(Ii,mi,li

,li) ⊆ I. Then we have I = (fi,j,n)1≤i≤m,0≤n≤li,0≤j≤mli
and fi,j ∈

k[x1, . . . , xN ] for all i, j. �

5.1. Proof of Theorem 1.8. Let V be a subvariety of PNCp
such that there

exists a subsequence {bni
}i≥0 such that |d(bni

, V )| → 0 when i → ∞. We need
to show that bni

∈ V for i large enough and there exists r ≥ 0, such that
{bi}i≥0 ⊆ ∪r−1

i=0F
i(V ).

If {bi}i≥0 is finite, Theorem 1.8 is trivial. So we suppose that {bi}i≥0 is infinite.
Denote by I(V ) the ideal in K[x1, . . . , xN ] which defines V ∩U1. Then for any

point in R(Uad
0 ), we have d(y, V ) = max{|H(y)|| H ∈ I(V ) and ‖H‖ = 1}.

Denote by Z the union of all positive dimensional irreducible components of
the Zariski closure of {w1/qni}i≥0. There exists A ≥ 0, such that Z is that Zariski
closure of {w1/qni}i≥A in U [

0 := SpecK[[x1, . . . , xN ]. Moreover, for all n ≥ A, Z
is the Zariski closure of {w1/qni}i≥n in U [

0.
Denote by I(Z) the ideal in K[[x1, . . . , xN ] which defines Z.
Let H be a polynomial in I(V ).

Lemma 5.3. For any point x ∈ Z∩R(U [,ad
0 ), we have H(π(ρ−1((π[)−1(x)))) = 0.

Proof of Lemma 5.3. By Remark 2.18, for any c ∈ Z+, there exists ` ∈ N and an

element Gc ∈ K[◦[x
1/p`

1 , . . . , x
1/p`

N ] such that for all x ∈ Uperf
0 , we have

|H ◦ π(x)−G#
c (x)| ≤ |p|1/2 max(|H(x)|, |p|c) = |p|1/2 max(|G#

c (x)|, |p|c),

and Gp`

c ∈ K[◦[x1, . . . , xN ]. By Lemma 4.3, we may suppose that Gp`

c =
∑m

i≥0 u
igi

where gi ∈ Fp[x1, . . . , xN ], u ∈ Fp((t))
◦

with norm |u| = |t|1/[Fp((t))(u):Fp((t))] and

|u|m > |t|(c+1/2)p` .
There exists A1 ≥ 0, such that for all i ≥ A1, |H(bni

)| ≤ |p|c+1.
For all i ≥ A1, we have

|Gc(w
1/qni )| ≤ max{|H(bni

)|, |H(bni
)−G#

c (ρ−1(w1/qni ))|} ≤ |p|c+1/2.

Then we have
|Gc(w

1/qni )p
` | ≤ |t|p`(c+1/2).

We claim that for all j = 0, . . . ,m, we have gj ∈ I(Z).
We prove this claim by induction on j. Suppose that for all 0 ≤ t′ < j ≤ m,

we have gt′ ∈ I(Z). For all i ≥ max{A,A1}, we have

|ujgj(w1/qni ) +
∑
t′≥j+1

ut
′
gt′(w

1/qni )| = |Gc(w
1/qni )p

`| ≤ |t|p`(c+1/2).

It follows that |gj(w1/qni )| ≤ max{|t|p`(c+1/2)/|u|j, |u|} < 1 for all i ≥ max{A,A1}.
Then Lemma 5.1 implies that gj ∈ I(Z) for j = 0, . . . ,m. Then we conclude our
claim.

Then for any x ∈ Z ∩R(U [,ad
0 ), we have

|H(π(ρ−1((πb)−1(x))))| = |H(π(ρ−1((πb)−1(x))))−G#
c (ρ−1((π[)−1(x)))|.

≤ max{|p|1/2|G#
c (ρ−1((π[)−1(x))|, |p|c+1/2} = |p|c+1/2
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Let c tends to infinity, then we have |H(π(ρ−1((πb)−1(x))))| = 0. We complete
the proof of our lemma. �

This lemma shows that S := π(ρ−1((πb)−1(Z ∩ R(U [,ad
0 )))) ⊆ V. Then bni

∈
V for i ≥ A. By Lemma 5.2, there exists r ≥ 1 such that Φsr(Z) = Z and

{w1/pi}i∈Z ⊆ ∪ri=0Φsi(Z). It follows that {bi}i≥0 ⊆ ∪r−1
i=0F

i(S) ⊆ ∪r−1
i=0F

i(V ).

5.2. Proof of Corollary 1.9. Let V be a subvariety of PNCp
of positive dimension.

We need to show there exists c > 0 such that for all i ≥ 0, either bi ∈ V or
d(bi, V ) > c.

Otherwise, there exists a subsequence {bni
}i≥0 ⊆ {bi}i≥0\V such that d(bni

, V )
tends to 0. By Theorem 1.8, we have bni

∈ V for sufficiently large i, which is a
contradiction.

5.3. Proof of Theorem 1.7. Let V be a positive subvariety of PNCp
such that

{bi}i≥0 ∩ V is Zariski dense in V . Let {n1 < n2 < . . . } be the set of n ≥ 0 such
that bn ∈ V. We need to show that V is periodic under F .

If {bi}i≥0 is finite, then all points in {bi}i≥0 are periodic. Moreover V is a union
of finitely many periodic points. Then V is periodic.

Now we may suppose that {bi}i≥0 is infinte.
Denote by I(V ) the ideal in K[x1, . . . , xN ] which defines V ∩ U1. Let H be a

polynomial I(V ).

By Lemma 5.3, for any point x ∈ Z∩R(U [,ad
0 ), we have H(π(ρ−1((πb)−1(x)))) =

0.
It follows that that S := π(ρ−1((πb)−1(Z ∩ R(U [,ad

0 )))) ⊆ V. Since bni
∈ S for

all i ≥ A, S is Zariski dense in V. Since Φrs(Z ∩ R(U [,ad
0 )) = Z ∩ R(U [,ad

0 ), we
have F r(S) = S. It follows that F r(V ) = V . Then we conclude the proof. �

6. Appendix

Let X be any projective variety over Cp and F : X → X be an endomorphism.
Let X → SpecC◦p be a finitely presented projective scheme which is flat over
SpecC◦p whose generic fiber is X and L an ample line bundle on X. If there exists

an endomorphism F̃ of X over C◦p such that F̃ ∗L = L⊗q where q = ps, s ≥ 1,

the restriction of F̃ on the generic fiber is F and the restriction F̄ of F̃ on the
special fiber X̄ is a power of the Frobenius, then we say that F is a polarized lift

of Frobenius on X w.r.t (X, F̃ ,L). In particular, a lift of Frobenius on PNCp
in the

previous sections is a lift of Frobenius on X w.r.t a pair (PNC◦p , F̃ , OPN
C◦p

(1)).

Now assume that F is a polarized lift of Frobenius on X w.r.t the pair (X, F̃ ,L)
and we identify X with the generic fiber of X.

In this appendix, we show that under a technical condition, the dynamical
system (X,F ) can be embedded in a lift of Frobenius on PNCp

( w.r.t some

(PNC◦p , F̃ , OPN
C◦p

(1)).)
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Theorem 6.1. Assume that X and F̃ are defined over Q◦p ⊆ C◦p. Then there

exists N ≥ 1, a lift of Frobenius G on PNCp
and an embedding τ : X ↪→ PNCp

such

that τ ◦ F l = G ◦ τ for some l ≥ 1.

This theorem can be viewed as a version of [9, Proposition 2.1] for the lifts of
Frobenius.

As an application, it implies the dynamical Manin-Mumford Conjecture and

Conjecture 1.5, for any polarized lift of Frobenius on X w.r.t some (X, F̃ ,L).

Corollary 6.2. Let V be any positively dimensional irreducible subvariety of X.
Denote by Per F the set of periodic closed points in X. Let {bi}i≥0 be a sequence
of closed points in X satisfying f(bi) = bi−1 for all i ≥ 1. Then we have that

(i) if V ∩ Per F is Zariski dense in V , then V is periodic;
(ii) if the {bi}i≥0 ∩ V is Zariski dense in V , then V is periodic under F .

Proof of Corollary 6.2. There exists subring R ⊆ C◦p which is finitely generated

over Z such that X, F̃ and L are defined over R i.e. there exists a projective

scheme XR over SpecR with an endomorphism F̃R and an ample line bundle LR
such that X = XR ⊗R C◦p, L = LR ⊗R C◦p, F̃ = F̃R ⊗R C◦p and F̃ ∗RLR = L⊗qR .

If R ⊆ Qp
◦
, Theorem 6.1 reduces it to the case where X = PNCp

and F is a lift

of Frobenius on PNCp
. Then we conclude the proof by Theorem 1.1 and Theorem

1.8.
Now we assume that R 6⊆ Qp

◦
. Set m := R ∩ C◦◦p . It is a maximal ideal of R.

Lemma 6.3. Let R be a subring of C◦p which is finitely generated over Z. Let
m := R ∩ C◦◦p be a maximal ideal of R. Then there exists σ ∈ Gal(Cp/Q) such

that σ(R) ⊆ Qp
◦ ⊆ C◦p and σ(m) = Qp

◦◦ ∩R.

Now consider Xσ := XR⊗σRC◦p, Lσ := LR⊗σRC◦p, F̃ σ := F̃⊗σRC◦p, Xσ := XR⊗σRCp

and F σ := XR ⊗σR Cp. In the tensor product • ⊗σRCp, we use the embedding σ|R.
We note that if we view Cp as an abstract field, (X,F ) and (Xσ, F σ) are Galois
conjugate. Since the statements of (i), (ii) are purely algebraic, we only need to
show it for (Xσ, F σ). Observe that the special fiber X̄σ of Xσ is

X̄σ = XR ⊗σR (C◦p/C◦◦p ) = XR ⊗R (R/m)⊗σ̄R/m (C◦p/C◦◦p ) = XR ⊗σ̄R (C◦p/C◦◦p ) ' X̄.

Moreover the restriction of F σ on X̄σ is exactly F̄ under this identification. So

F σ is some power of Frobenius and F is a lift of the Frobenius w.r.t. (Xσ, F̃ σ,Lσ).

Since (Xσ, F̃ σ,Lσ) is defined over σ(R) ⊆ Qp
◦
, Theorem 6.1 reduces it to the case

where X = PNCp
and F is a lift of Frobenius on PNCp

. Then we conclude the proof
by Theorem 1.1 and Theorem 1.8. �

Proof of Lemma 6.3. Since Cp is algebraically closed, any embedding R ↪→ Cp

extends to an automorphism in Gal(Cp/Q). We only need to find an embedding
σ : R ↪→ C◦p ⊆ Cp satisfying σ(m) ⊆ C◦◦p . Indeed since σ−1(C◦◦p ∩ σ(R)) is a
maximal ideal of R which contains m, we have σ(m) = σ(R) ∩ C◦◦p .

Let t1, . . . , tl ∈ R be a set of generators of R over Z. Let u1, . . . , us be a set of
generators of m. Set Y := SpecR and YCp := SpecR ⊗Z Cp. We endow YCp(Cp)
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the p-adic topology induced by the topology on Cp. An element f ∈ R can be
viewed as an analytic function on YCp(Cp).

Denote by i : R ↪→ Cp the inclusion. It defines a point o ∈ YCp(Cp). Set
U := {x ∈ YCp(Cp)| |ti| ≤ 1, i = 1, . . . , l and |ui| < 1, i = 1, . . . , s}. Then U is an
open neighbourhood of o.

For any nonzero P element of R, denote by VP the subscheme of YCp defined
by {P = 0}. Since the set of nonzero prime ideals is countable, and YCp(Cp) has
a complete metric, YCp(Cp) \ (∪R\{0}VP ) is dense in YCp(Cp). Then there exists
a point y ∈ U \ (∪R\{0}VP ). It defines a morphism σ : R → Cp by f 7→ f(y).
Because y ∈ U , we have σ(ti) ∈ C◦, i = 1, . . . , l and σ(ui) ∈ C◦◦p , i = 1, . . . , s. It
follows that σ(R) ⊆ C◦p and σ(m) ⊆ C◦◦p . Since y 6∈ (∪R\{0}VP ), σ : R→ Cp is an
embedding. This concludes the proof. �

6.1. Proof of Theorem 6.1. In this section, we assume that X, F̃ and L are
defined over Q◦p ⊆ C◦p. Since X is finitely presented, there exists a finite extension

K of Qp such that X, F̃ and L are defined over K◦. We note that R := K◦ is a
discrete valuation ring. Set m := K◦◦ the maximal ideal of R and π a generator
of m.

There exists a flat and geometrically irreducible projective scheme XR over

SpecR an ample line bundle LR and an endomorphism F̃R such that X = XR⊗RC◦p
L = LR⊗RC◦p and F̃ = F̃R⊗RC◦p. We may assume that F̃ ∗RLR = L⊗qR . We denote

by Xs the special fiber of XR and Fs the restriction of F̃R on Xs. Let XK be the

generic fiber of XR and FK the restriction of F̃R on XK . Write LK := LR|XK
and

Ls := LR|Xs . Since LR is ample, after replacing LR by a suitable power, we may
assume that L is very ample and the morphisms

ΨR := H0(XR,LR)⊗q → H0(XR,L⊗qR )

and

Ψs := H0(Xs,Ls)⊗q → H0(Xs,L⊗qR )

are surjective. Moreover, we may assume that

H i(XR,LR) = H i(XR,L⊗qR ) = 0

for all i ≥ 1. It follows that the natrual morphisms

r1 : H0(XR,LR)⊗R R/m→ H0(Xs,Ls)
and

rq : H0(XR,L⊗qR )⊗R R/m→ H0(Xs,L⊗qs )

are isomorphisms.

Since F̃ ∗RLR = L⊗qR , it induces morphisms

F̃ ∗R : H0(XR,LR)→ H0(XR,L⊗qR )

and

F̃ ∗s : H0(Xs,Ls)→ H0(Xs,L⊗qs ).

We have rq ◦ F̃ ∗R = F ∗s ◦ r1.
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SinceR is a discrete valuation ring, andH0(XR,LR) has no torsions, H0(XR,LR)
is a free R-module. Let s0, . . . sN a basis of H0(XR,LR). We note that

rq(F̃
∗(si)) = r1(si)

q

for i = 0, . . . , N. It follows that

F̃ ∗(si)−ΨR(sqi ) ∈ mH0(XR,L⊗qR ) = πH0(XR,L⊗qR )

for i = 0, . . . , N. In other words, there exists gi ∈ H0(XR,L⊗qR ) such that

F̃ ∗(si) = sqi + πgi, i = 1, . . . , N.

Since ΨR is surjective, there exists Gi ∈ R[x0, . . . , xN ] homogenous of degree q
such that gi = Gi(s0, . . . , sN), i = 1, . . . , N. It follows that

F̃ ∗(si) = sqi + πGi(s0, . . . , sN), i = 1, . . . , N.

Let GK : PNK → PNK be the morphism

[x0, . . . , xN ] 7→ [xq0 + πG0(x0, . . . , xN) : · · · : xqN + πGN(x0, . . . , xN)].

Set G := GK⊗KCp : PNCp
→ PNCp

. It is a lift of Frobenius on PNCp
. Let τK : X → PNK

be the morphism
x 7→ [s0(x) : · · · : sN(x)].

Since LK is very ample, τ is an embedding. We may check that GK◦τK = τK◦FK .
We conclude the proof by setting τ := τK ⊗K Cp.
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