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Abstract. We introduce an algebraicity criterion. It has the following form:
Consider an analytic subvariety of some algebraic variety X over a global field
K. Under certain conditions, if X contains many K-points, then X is algebraic
over K. This gives a way to show the transcendence of points via the transcen-
dence of analytic subvarieties. Such a situation often appears when we have a
dynamical system, because we can often produce infinitely many points from
one point via iterates.

Combining this criterion and the study of invariant subvarieties, we get
some results on the transcendence in arithmetic dynamics. We get a charac-
terization for products of Böttcher coordinates or products of multiplicative
canonical heights for polynomial dynamical pairs to be algebraic. For this, we
study the invariant subvarieties for products of endomorphisms. In particular,
we partially generalize Medvedev-Scanlon’s classification of invariant subvari-
eties of split polynomial maps to separable endomorphisms on (P1)N in any
characteristic. We also get some high dimensional partial generalization via in-
troducing a notion of independence. We then study dominant endomorphisms
f on AN over a number field of algebraic degree d ≥ 2. We show that in most
cases (e.g. when such an endomorphism extends to an endomorphism on PN ),
there are many analytic curves centered at infinity which are periodic. We
show that for most of them, it is algebraic if and only if it contains at least one
algebraic point. We also study the periodic curves. We show that for most f ,
all periodic curves have degree at most 2. When N = 2, we get a more precise
classification result. We show that under a condition which is satisfied for a
general f , if f has infinitely many periodic curves, then f is homogenous up
to change of origin.
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1. Introduction

Let us consider the following naive question:

Question 1.1. Let C be an irreducible analytic curve in C2 passing through the
origin o = (0, 0). Let {pn, n ≥ 0} be a sequence of points in K2 ⊆ C2 for some
number field K satisfying pn ∈ C and lim

n≥0
pn = o. Is C contained in an algebraic

curve?

Without any assumption, the answer is negative.

Example 1.2. For n ≥ 2, set hn(x) := x
∏n

i=2(1− ix). For |x| < r < 1, there is
c(r) > 0 such that

|hn(x)/n!| < |x|(
n∏
i=2

(1/i+ |x|)) ≤ c(r)(
1 + r

2
)n.

Hence

f(x) :=
∑
n≥2

hn(x)/n!

converges for |x| < 1. For every n = 2, 3, . . . , f(1/n) =
∑n

i=2 hi(1/n)/i! ∈ Q. Set
p1,n := (1/n, f(1/n)) ∈ Q2, n ≥ 2. Let C1 be the analytic curve {y = f(x), |x| <
1} in C2. It is clear that p1,n → 0 for n → ∞ and p1,n ∈ C1 for n ≥ 2. But C1

is not contained in any algebraic curve. Otherwise f ′(0) should be an algebraic
number. But

f ′(0) =
∑
n≥2

h′n(0)/n! =
∑
n≥2

1/n! = e− 2,

which is transcendental. Even if we assume that the formal curve induced by C
at o is defined over K, Question 1.1 still has a negative answer. Set

g(x) :=
∑
n≥2

(−x)n−1hn(x)

((n− 1)!)2
.

It is clear that g converges in C. Let C2 be the analytic curve in C2 defined by
{y = g(x), x ∈ C}. Set p2,n := (1/n, g(1/n)) ∈ Q2. Then p2,n → 0 for n → ∞
and p2,n ∈ C2 for n ≥ 2. Moreover,

g(x) =
n∑
2

(−x)i−1hi(x)

((n− 1)!)2
mod (xn+1)

for n ≥ 2. Hence the formal curve induced by C2 at o is defined over Q. On the
other hand, C2 is not contained in any algebraic curve. Otherwise, g(1) should
be algebraic. But

g(1) =
∑
n≥2

(−1)n−1hn(1)

((n− 1)!)2
=
∑
n≥2

(n− 1)!

((n− 1)!)2
=
∑
n≥1

1

n!
= e− 1,

which is transcendental.
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In arithmetic dynamics, we often meet situations similar to Question 1.1. So
it is interesting to find some natural condition under which Question 1.1 (or
its high dimensional/non-archimedean generalizations) has a positive answer. In
[Xie15b, Theorem 1.5], the author gave a criterion for the algebraicity of adelic
curves in A2. Such a criterion plays an important role in the recent breakthrough
[FG] by Favre and Gauthier, which proved the dynamical André-Oort conjecture
for curves in the moduli spaces of polynomials. In this paper, we prove a more
general algebraicity criterion.

Let K be a finite field extension of F, where F is Q or k(t) for a field k. Let
MK be the set of places of K. For v ∈ MK , denote by Kv the completion of K
w.r.t the place v. For each v ∈ MK , we normalize the absolute value | · |v to be
the unique extension to Kv of the usual absolute value | · |p on F where p is the
restriction of v on F. More precisely, when F = Q and p is a prime, | · |p is the
usual p-adic norm with |p|p = 1/p. When F = Q and p = ∞, | · |p is the usual
archimedean absolute value on R or C. When F = k(t), then p is a closed point
in P1(k) with residue field κ(p), and for every h ∈ F, |h|p = e−[κ(p):k]ordp(h).

Let X be a projective variety over K. For v ∈ MK , denote by Xv the ana-
lytification of X w.r.t. v. More precisely, when v is archimedean, Xv = X(Kv)
is the associated real or complex variety; when v is non-archimedean, we use
Berkovich’s analytification [Ber90]. In particular, X(Kv) ⊆ Xv(Kv) is naturally
endowed with the v-adic topology. Using an embedding of X(Kv) to a projective
space PN(Kv), one may get a distance function dv on X(Kv). The equivalence
class of such distance function does not depend on the choice of embedding and
it induces the v-adic topology on X(Kv).

For a point o ∈ Xv(Kv), a local analytic subspace at o is a closed analytic
subspace V of some open subset W of Xv satisfying o ∈ V . Assume that o ∈
X(K) ⊆ Xv(Kv). We say that V is defined over K if the closed formal subscheme

V̂o ⊆ (̂XKv)o is induced by some closed formal subscheme of X̂o. We say that V
is K-algebraic at o if there is a subvariety Y of X such that dimY = dimV and
Yv ∩V contains a neighborhood of o in V . It is clear that if V is K-algebraic then
it is defined over K.

Remark 1.3. If V is K-algebraic at o, then every irreducible component of V
with maximal dimension is K-algebraic at o. In general, some irreducible com-
ponent may not be K-algebraic (c.f. Example 1.6). One may define a stronger
algebraicity as follows: we say that V is strongly K-algebraic at o if every irre-
ducible component of V is K-algebraic at o.

Theorem 1.4. Denote by h : X(K) → R any Weil height. Let v ∈ MK and let
V be a local analytic subspace of Xv at o which is defined over K. Let xn, n ≥ 0
be a set of K-points in X(K) such that:

(i) xn ∈ V for n ≥ 0;
(ii) xn → o in X(Kv) as n→∞;

(iii) lim inf
n→∞

− log dv(o,xn)
h(xn)

> 0.

Set H := ∩m≥0{xn, n ≥ m} ⊆ X. Then Hv ∩ V is K-algebraic at o.
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We indeed prove a stronger statement Theorem 2.4 which allows us to replace
the point o by a closed subscheme Z of X over K.

Remark 1.5. The assumptions (i) and (ii) only concern the information of xn at
the place v. If one thinks that the height h(xn) measures the global arithmetic
information of xn, then the assumption (iii) means that the information of xn
coming from the place v is not negligible asymptotically.

The following example shows that Theorem 1.4 is not true if we replace “K-
algebraic” to “strongly K-algebraic”.

Example 1.6. Let X = A3, K = Q and v be the place induced by the unique
embedding Q ↪→ Qp where p is a prime number at least 3. Via this embedding,
view K as a subfield of Cp. Consider the surface Y := {y2 = x2(1+x)}. In a small
neighborhood of o = (0, 0, 0), let V1 = {y = x(1 + x)1/2, |x|p < p−1/(p−1)},V2 =
{y = −x(1 + x)1/2, |x|p < p−1/(p−1)} be the two branches surfaces of at o. Let V3

be an irreducible analytic curve in V2 passing through o, which over K at o and
is not algebraic. Set V := V1 ∪ V3, then dimY = dimV and Yv ∩ V contains a
neighborhood of o in V , hence V isK-algebraic. But V is not stronglyK-algebraic,
since V3 is not algebraic. Set xn := (pn(2 + pn), pn(1 + pn)(2 + pn)), n ≥ 1. Easy
to check that V and xn, n ≥ 1 satisfies the assumptions in Theorem 1.4.

Remark 1.7. The K-algebraicity is enough for the applications in the paper.
If one want to get a result of strongly K-algebraicity, one only need to apply
Theorem 1.4 for each irreducible component for Hv ∩ V which is not of maximal
dimension and continue this process until there is no such irreducible component.

1.1. A general strategy in the dynamical setting. Theorem 1.4 provides a
general strategy to show the transcendence of numbers when we have a dynamical
system. Let us consider the following simple situation. Assume that K is a
number field, X = A2 and the place v is induced by an embedding τ : K ↪→ C.
Via τ , we view K as a subfield of C. Let f be an endomorphism of X defined
over K, such that f(o) = o, where o = (0, 0). Let h(x) be a power series with
coefficients in K which converges when |x| < r for some r > 0. Assume that
the analytic curve C := {y = h(x), |x| < r} is f invariant and (f |C)n → o as
n→∞. Let a ∈ K with |a| < r; we want to show the transcendence of h(a). We
note that if h(a) is algebraic, we may replace K by a suitable finite extension to
assume that (a, h(a)) ∈ K2. Then for every n ≥ 0, pn := fn((a, h(a))) ∈ C ∩K2.
Moreover pn → o as n → ∞. Hence the assumptions (i) and (ii) of Theorem 1.4
are satisfied. Then we only need the following two steps:

(1) show that the assumption (iii) holds for the sequence pn, n ≥ 0;
(2) show that C is not algebraic.

In our paper, we get two applications following this strategy. In these applica-
tions, we consider those f having very strong attraction property at o to get (1).
Step (2) concerns the transcendence of analytic subvarieties, which is in general
a difficult problem. However, in many cases, a geometric transcendence problem
is easier than proving the transcendence of a number. In the dynamical setting,
such a geometric transcendence problem relates to the understanding of invariant



5

subvarieties of f , which is one of the central problems in algebraic dynamics.
In our applications, we get some classification results of invariant subvarieties.
These allow us to check the algebraicity of an invariant analytic subvariety.

1.2. Invariant subvarieties of products of endomorphisms. Let fi : Xi →
Xi, i = 1, . . . ,m be endomorphisms of projective varieties over an algebraically
closed field k. We want to understand the invariant (or periodic) subvarieties of∏m

i=1 fi :
∏m

i=1Xi →
∏m

i=1Xi. We study this problem in two basic cases.

Products of independent endomorphisms. An endomorphism f : X → X of a
projective variety is called amplified [KR17], if it is dominant and there exists a
line bundle L on X such that f ∗L⊗ L−1 is ample.

Example 1.8. A polarized endomorphism is an endomorphism f : X → X of
a projective variety such that there is an ample line bundle L on X satisfying
f ∗L = L⊗λ1(f) for some integer λ1(f) ≥ 2. We note that λ1(f) does not depend
on L, indeed λ1(f)dimX = deg f. A polarized endomorphism is always amplified.
Dominant endomorphisms of PN of degree > 1 are polarized by L = OPN (1).

For amplified endomorphisms f : X → X and g : Y → Y , we say that (X, f)
and (Y, g) are independent and write (X, f) ⊥ (Y, g) (or f ⊥ g) if every closed
irreducible (f × g)-periodic subvariety Z ⊆ X × Y takes the form Z = Z1 × Z2

where Z1, Z2 are closed periodic subvarieties for f and g respectively. In Section
3.3, we show that this notion behaves well under iterates. Moreover, we prove the
following property (which will be deduced from Proposition 3.8 in Section 3.3):

Corollary 1.9. Let f1, . . . , fm, g1, . . . , gn be amplified endomorphisms. Assume
that fi ⊥ gj for i = 1, . . . ,m, j = 1, . . . , n. Then we have

(f1 × · · · × fm) ⊥ (g1 × · · · × gn).

Remark 1.10. In model theory, there are two notions “almost orthogonal” and
“orthogonal” [MS14, Definition 2.8]. In [MS14, Proposition 2.18], Medvedev and
Scanlon proved a similar result for orthogonal endomorphisms or more generally
for orthogonal σ-varieties in the terminology of model theory. We note that
two amplified endomorphisms are independent in our terminology if and only if
they are almost orthogonal. A priori, the notion “almost orthogonal” is weaker
than “orthogonal”, hence [MS14, Proposition 2.18] does not apply in this case
directly. We suspect that for amplified endomorphisms these two notions “almost
orthogonal” and “orthogonal” coincide.

Remark 1.11. In the definition of the independence, the amplifiedness assump-
tion is necessary for having a result like Corollary 1.9.

For example, let a1, a2 ∈ k∗ be multiplicatively independent i.e. for n,m ∈ Z,
an1a

m
2 = 1 if and only if m = n = 0. For example, when k = C, we may take

a1 = 2, a2 = 3. Set a3 := a1a2. Then a1, a2, a3 are pairwise multiplicatively
independent. Let fi : P1 → P1, i = 1, 2, 3 be the endomorphism fi : xi 7→ aixi.
Let C be an f1 × f2-periodic curve in A2 ⊆ (P1)2. Write C := {P (x, y) = 0}
for some P (x, y) = k[x, y] \ k. Then P (x, y) = cP (al1x, a

l
2y) for some positive

integer l ≥ 1 and c ∈ k∗. Since a1, a2 are multiplicatively independent, P is
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a monomial. This shows that the only periodic curves of fi × fj, i 6= j are
{0} × P1,P1 × {0}, {∞} × P1 and P1 × {∞}. But there is an (f1 × f2) × f3-
invariant hypersurface {x1x2x3 = 1}. It is not a product of invariant subvarieties
of f1 × f2 and f3.

Products of separable endomorphisms of curves. Now we study the case where
Xi are smooth projective curves and fi are separable endomorphisms of degree
at least 2. There are three types of such endomorphisms: Lattès, monomial and
nonexceptional (c.f. Section 3.4). Endomorphisms of different types are indepen-
dent to each other (c.f. Section 3.4). By Corollary 1.9, we only need to study
the invariant subvarieties for products of fi of the same type. Basically, endo-
morphims of Lattès or monomial type come from some group structure. The
invariant subvarieties of the product of fi of Lattès or monomial type come from
the subgroups of the corresponding algebraic group. So in this paper, we focus
on the nonexceptional endomorphisms. We note that if fi is nonexceptional, then
Xi ' P1. We get the following classification result.

Proposition 1.12. Let f1, . . . , fm be separable endomorphisms of degree at least
2 which are nonexceptional. Let V be a

∏m
i=1 fi-invariant subvariety, then there is

a partition {1, . . . ,m} = J0t(tlj=1Jj), fixed points os of fs for s ∈ J0, (
∏

s∈Jj fs)-

invariant curves Cj ⊆
∏

s∈Jj Xs, j = 1, . . . , l, such that V =
∏l

j=1Cj.

See Proposition 3.17 for a more precise form. When char k = 0, this result was
obtained in [MS14] using model theory and in [Xie22, Appendix B] using purely
geometric method. When k = Q, it was also obtained in [GNY18, Theorem 1.2],
as a consequence of their solution of the Dynamical Manin-Mumford Conjecture
in this case. Here we follows the method in [Xie22, Proposition 9.2].

1.3. Transcendence of Böttcher coordinates and multiplicative canoni-
cal heights. This application is strongly inspired by the recent preprint [Ngu]
of Nguyen.

Transcendence of Böttcher coordinates. Assume that d ≥ 2 is an integer which is
not divided by charK. Let

f(z) = adz
d + · · ·+ a0 ∈ K[z]

be a polynomial of degree d ≥ 2. A Böttcher coordinate of f is a Laurent series
φf (z) ∈ K((z−1)) satisfying

(φf ◦ f)(z) = φf (z)d

and is of order −1 at ∞ i.e. it takes form

φf (z) = b1z + b0 + b−1/z + b−1/z
2 . . . .

It exists when charK 6 |d (c.f. Proposition 4.1) and is unique up to multiplication
by a (d−1)-root of unity (c.f. Lemma 4.4). For v ∈MK , there is Bv > 0, such that
φf (z) converges in the neighborhood of infinity Ωv(f) := {x ∈ P1

v| |z(x)|v > Bv}
and for every z ∈ Ωv(f), fn(z)→∞ (c.f. Proposition 4.3).
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Our aim is to understand when a product of Böttcher coordinates is algebraic.
Recall that, for an f ∈ K[z] of degree d ≥ 2, it is either nonexceptional or
of monomial type (c.f. Section 3.4). If f is of monomial type, any Böttcher
coordinate φf of f is algebraic (c.f. Corollary 4.8). Hence for a ∈ K ∩ Ωv(f),
φf (a) is algebraic. With this fact, we only need to consider the products of
Böttcher coordinates of nonexceptional polynomials.

Theorem 1.13. Assume that d ≥ 2 is an integer which is not divided by charK.
Fix a place v ∈MK. Let f1, . . . fr be nonexceptional polynomials of degree d. Let
ai, i = 1, . . . , r be points in A1(K) with (ai)v ∈ Ωv(fi). Then the following holds:

(i) For integers n1, . . . , nr,
∏r

i=1 φ
ni
fi

(ai) is either transcendental over K or a
root of unity.

(ii) The product
∏r

i=1 φ
ni
fi

(ai) is a root of unity if, and only if, for every j =
1, . . . , l,

∑
s∈Jj nsds/j = 0.

Here {1, . . . , r} = tlj=1Jj is a partition. This partition and the positive integers
ds/j, s ∈ Jj, j = 1, . . . , l are purely geometric invariants of the pairs (fi, ai), i =
1, . . . , r. In particular, they do not depend on the place v. See Section 4.5 or
Remark 4.15 for their definitions.

When charK = 0, Part (i) of Theorem 1.13 was proved by Nguyen in [Ngu,
Theorem 1.4]. Part (ii) of Theorem 1.13 answers the first question proposed
by Nguyen in [Ngu, Section 4.3]. The proof of [Ngu, Theorem 1.4] relies on a
construction of auxiliary polynomials by hand, which is more elementary. Our
proof of Theorem 1.13 is a typical realization of the strategy presented in Section
1.1. It is by combining a stronger version of Theorem 1.4 (c.f. Theorem 2.4) and
the classification of invariant subvarieties of products of polynomials, which is a
special case of Proposition 1.12.

Transcendence of multiplicative canonical heights. For any polynomial f ∈ Q[z]

and a ∈ A1(Q), we denote by Ĥf (a) the multiplicative canonical height (c.f.
Section 4.3). Our aim is to understand when a product of multiplicative canonical

heights is algebraic. When f is of monomial type, Ĥf (a) is algebraic. When a

is f -preperiodic, then Ĥf (a) = 1. So we only need to consider the product of

Ĥfj(aj) when fj is nonexceptional and the aj are not fj-preperiodic.

Let Dd be the set of nonexceptional polynomials in Q[z] of degree d. Let Td be
the set of (f, a) ∈ Dd ×Q, for which there is an embedding τ : Q ↪→ C such that
|τ(fn(ai))|, n ≥ 0 is unbounded. If (f, a) ∈ Td, then a is not f -preperiodic. In
Section 4.6, we define an equivalence relation ∼w on Td. The equivalence class
of (f, a) ∈ Td is a geometric invariant up to Galois conjugations. Moreover, for a
finite set of elements (fi, ai) ∈ Td, i = 1, . . . , r which are equivalent w.r.t. ∼w, we
associate to them a point

Q((fi, ai), i = 1, . . . , r) ∈ Pr−1(Q) \ (∪ri=1{zi = 0}).

This is also a geometric invariant up to Galois conjugations.
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Proposition 1.14. For (fi, ai), . . . , (fr, ar) ∈ Dd × Q, n1, . . . , nr ∈ Z, set T :=
{i = 1, . . . , r| (fi, ai) ∈ Td}. Let T = tlj=1Jj be the partition associated to ∼w .

Then
∏r

i=1 Ĥfi(ai)
ni is algebraic if and only if for every j = 1, . . . , l,

Q((fs, as), s ∈ Jj) ∈ {
∑
s∈Jj

nszs = 0} ⊆ P|Jj |(Q) \ (∪s∈Jj{zs = 0}).

In Corollary 4.27, we further discuss the case when the product equals 1. Our
Proposition 1.14 is strongly motivated by [Ngu, Corollary 1.6], which is the r = 1
case of our result. Our Corollary 4.27 is also motivated by the disscusion in [Ngu,
Section 4.3].

Remark 1.15. Nguyen’s result [Ngu, Corollary 1.6] (which is the r = 1 case
of Proposition 1.14) answers a question of Silverman [Sil13] for polynomials of
degree at least 2.

Remark 1.16. During the preparation of this paper, we learned from Bell and
Nguyen that they got same results as Theorem 1.13 and Proposition 1.14 in
characteristic 0 independently. Their proofs are based on a refinement of Nguyen’s
original proof of [Ngu, Theorem 1.6]. Moreover, their proof of Theorem 1.13 works
in positive characteristic once we have Proposition 1.12.

1.4. Invariant germs of curve at infinity. Assume that K is of characteristic
zero. In Section 5, we study germs of curve at infinity which are invariant under
certain polynomial endomorphisms of AN . For most of those germs of curve,
Theorem 1.4 can be applied in the way we showed in Section 1.1. We introduce
some classes of polynomial endomorphisms. We get more precise results in smaller
classes.

Let k be a field of characteristic zero. For N ≥ 2, d ≥ 2, denote by P(N, d)
the space of dominant endomorphisms f : AN → AN taking form

f : (x1, . . . , xN) 7→ (f1(x1, . . . , xN), . . . , fN(x1, . . . , xN))

of algebraic degree deg1(f) = d. Recall that the algebraic degree of f is

deg1(f) := max{deg(f1), . . . , deg(fN)}.
It is an irreducible quasi-affine variety of dimension N

(
d+N+1
N

)
(c.f. Section 5.1).

Via the standard embedding AN ↪→ PN , every f ∈ P(N, d) extends to a rational
self-map on PN . Denote by P∗(N, d) the space of f ∈ P(N, d) whose extension
is an endomorphism. This space is a Zariski dense open subset of P(N, d) (c.f.
Section 5.1).

Let H∞ := PN \ AN be the hyperplane at infinity. For f ∈ P∗(N, d), denote
by f : H∞ → H∞ the restriction of f to H∞. Denote by PNS(N, d) the space of
f ∈ P∗(N, d) such that for every n ≥ 1 and fixed point x of f

n
, df |x is invertible.

The relations among them are as follows:

PNS(N, d) ⊆as a dense Gδ-set P∗(N, d) ⊆as a dense open subset P(N, d).

Recall that a Gδ-set is a countable intersection of open subsets. When k is un-
countable, this means that a very general f ∈ P∗(N, d) is contained in PNS(N, d).
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When k is countable, the notion “very general” does not make much sense: even
if a property is satisfied by a very general point, it may not be satisfied by any
k−point. An alternative is to use the notion of “adelic general point”, which was
introduced in [Xie22, Section 3.1]. We show, in Section 5.2, that an adelic general
f ∈ P∗(N, d) is contained in PNS(N, d).

When N = 2, we introduce another subspace PNP (2, d) : f ∈ P∗(2, d) is
contained in PNP (2, d) if f is not of polynomial type i.e. for every x ∈ H∞, the

backward orbits ∪n≥0f
−n

(x) is infinite. We have

PNS(2, d) ⊆as a dense Gδ-set PNP (2, d) ⊆as a dense open subset P∗(2, d) ⊆ P(2, d).

Now we may present a transcendence result.

Proposition 1.17. Let f ∈ P∗(N, d), x ∈ AN(K), and v ∈ MK such that
fn(x)→∞ as n→∞ in the v-adic topology. Let Cv be an irreducible v-analytic
curve at a point ov at infinity defined over K which is f -invariant. If x ∈ Cv,
then Cv is algebraic over K at ov.

We also have a result for f ∈ P(N, d) (c.f. Proposition 5.5). In that result, we
study not one but finitely many analytic curves Cv for maybe different places v.

One may ask: Are there many such Cv satisfying the assumptions in Proposi-
tion 1.17? This question is answered by Lemma 5.7, 5.11 and 5.14. Basically, we
show that for every point o in a subset of density 100% in the set of f -periodic

points, there is a unique irreducible formal curve Ĉ at o which is f -periodic.
For every archimedean place v, such a formal curve converges to an irreducible
v-analytic curve. Hence Proposition 1.17 applies for Cv.

Remark 1.18. We suspect that such a statement also holds for all non-archimedean
places. However, our proof relies on a version of Hadamard-Perron theorem (c.f.
[Aba01, Theorem 3.1.4]) on stable/unstable manifolds. But the non-archimedean
version of such a Theorem does not exist in the literature.

Once we have such a Cv, if we can show that Cv is not algebraic, then by
Proposition 1.17, all points in Cv are transcendental. Usually it is hard to deter-
mine whether a germ of curve Cv is algebraic, but one can determine whether Cv
is contained in a curve of a certain degree. In Corollary 5.15, we prove that when
f ∈ PNS(N, d), all f -periodic curves are of degree at most 2. We note that such
a degree bound is not true for general f ∈ P∗(N, d).

Example 1.19. Let g be a polynomial of degree d. Set f := g × g. Then
f ∈ P∗(2, d). Let Cn, n ≥ 0 be the Zariski closure of the graph of gn : A1 → A1 in
P2. One may check that Cn is f -invariant. But degCn = dn, n ≥ 2 is unbounded.

1.5. Endomorphisms of A2. We now focus on the case N = 2. Let f : A2 → A2

be an endomorphism in P∗(2, d) for some d ≥ 2.

We say that f is homogenous, if it takes form f : (x, y) 7→ (F (x, y), G(x, y))
where F,G are homogenous polynomials of degree d. We say that f is homogenous
at o = (o1, o2) ∈ A2(k) if f is homogenous in the new coordinates x′ = x−o1, y

′ =
y − o2. It is easy to see that if f is homogenous at o, then such an o is unique.
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If f is homogenous at o, then for every f -periodic point x ∈ H∞, the line
Lo,x passing through o and x is f -periodic. Hence f has infinitely many periodic
curves. We prove that the reciprocal statement also holds when f ∈ PNP (2, d).

Theorem 1.20. For f ∈ PNP (2, d) with d ≥ 2, if there are infinitely many f -
periodic curves, then f is homogenous at some point o ∈ A2(k). Moreover, all
but finitely many f -periodic curves are lines passing through o.

If f 6∈ PNP (2, d), such a result does not hold (c.f. Example 6.4). In the proof of
Theorem 6.2, we use the theory of valuative tree introduced by Favre and Jonsson
in [FJ04].

Acknowledgement. I would like to thank Xinyi Yuan for his help for the proof
of Lemma 2.3. I thank Charles Favre for telling me Lemma 5.3. I also thank
Zhiyu Tian for helpful discussions. I thank Thomas Scanlon for explaining to
me the notions “almost orthogonal” and “orthogonal” in model theory. I thank
Jason Bell and Khoa D. Nguyen for kindly telling me their independent work in
the same results as Theorem 1.13 and Proposition 1.14. I also thank Khoa D.
Nguyen for reminding me that my notion “independent” relates to the notions
“almost orthogonal” and “orthogonal” in model theory. I thank Serge Cantat
and Joseph Silverman for helpful comments of the first version of this paper. I
thank the referee for his helpful suggestions.

2. Algebraicity criterion

The aim of this section is to prove a generalization of Theorem 1.4, which
allows us to replace the point o by a closed subscheme. To state and prove
this generalization, we need to introduce some notions and prove a lemma for
constructing auxiliary sections.

Let X be a projective variety over K. Let Z be a proper closed subscheme of

X. Denote by X̂Z the formal completion of X along Z.

2.1. Analytic subvarities. Fix a place v ∈ MK . A local analytic subspace
(along Z) is a closed analytic subspace V of some open subsetW of Xv (satisfying
Zv ⊆ V). In particular, every closed subscheme of Xv is a local analytic subspace.

A local analytic subspace V along Z, is defined over K if its completion V̂Zv ⊆
(̂Xv)Zv = ̂(XKv)Z along Z is induced by some closed formal subscheme V̂Z of X̂Z .
We say that V is K-algberaic along Z if there is a subscheme Y of X such that
dimY = V and V ∩ Yv contains a neighborhood of Z in V . It is clear that if V is
K-algberaic then it is defined over some finite extension of K.

Remark 2.1. If V is K-algberaic along Z, its irreducible component of maximal
dimension are K-algberaic along its intersection with Z. As mentioned in Remark
1.3, in general, the irreducible component of dimension < dimV may not be K-
algberaic. One may also generalize the notion of strongly K-algberaicity at a
point in Remark 1.3 to a notion of strongly K-algberaicity along Z. We leave it
to readers.
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Let xn, n ≥ 0 be a sequence of points of X(Kv). Let B be any compact subset
of Xv. We write lim

n→∞
xn ⊆ B if for every open subset W of X containing B,

{n ≥ 0| xn 6∈ W} is finite.

2.2. Green functions for subschemes. Let V be a local analytic subspace of
Xv. Let Y be a closed subscheme of Xv which is contained in V . We define a
function

gY/V,v : V(Kv)→ (−∞,+∞]

as follows: Let Ui, i ∈ I be a finite open cover of V such that for each i ∈ I, there
is a finite set Si of generators of the ideal Ii of OV(Ui) associated to the closed
subspace Y ∩ Ui of Ui. Because Xv is projective and Y is a closed subscheme of
Xv, such a cover exists. For every x ∈ V(Kv), define

(2.1) gY/V,v,i(x) :=

{
0 if x 6∈ Ui(Kv)

− log max{0, |h(x)|, h ∈ Si} if x ∈ Ui(Kv)

for i ∈ I and

gY/V,v(x) := max{gY/V,v,i(x), i ∈ I}.
Observe that, up to a bounded function, gY/V,v does not depend on the choice

of the open cover Ui, i ∈ I and the set of generators Si, i ∈ I. We still denote
by gY/V,v a function on V(Kv) which equals to the above construction up to a
bounded function and call it a Green function for Y/V and v.

Facts 2.2. The following facts hold:

(i) The function gY/V,v is bounded from below.
(ii) For every r ∈ R, g−1

Y/V,v((r,+∞]) is a neighborhood of Y in V(K). In

particular, for xn ∈ V(Kv), lim
n→∞

gY/V,v(xn) = +∞ if and only if lim
n→0

xn ⊆
Y .

(iii) For every relatively compact open subset W ⊂⊂ Ui, gY/V,v,i − gY/V,v is
bounded on W .

(iv) Let V ′ be a local analytic subspace of Xv containing V . Then gY/V,v −
gY/V ′,v|V(Kv) is bounded on V .

(v) Let Y ′ be a closed subscheme of Y . Then gY/V,v− gY ′/V,v is bounded from
below. Moreover, if the support of Y ′ and Y are the same, then there is
C > 1 such that C−1gY ′/V,v − C ≤ gY/V,v ≤ CgY ′/V,v + C.

(vi) Let H be a closed subsccheme of Xv, then gY∩H/V∩H,v − gY/V,v|V∩H(Kv) is
bounded.

(vii) When Y is a point o ∈ Xv(Kv), then go/V,v(·)−(− log dv(o, ·)) is a bounded
function on V(Kv)

1.
(viii) When Y is a Cartier divisor of Xv, gY/Xv ,v(·)|X(Kv)\Y equals to a (hence

every) Green function of Y up to a bounded function.

1We may define the distance function dv on X(Kv) via an embedding of X(Kv) to a projective
space PN (Kv). The equivalent class of dv does not depend on the choice of the embedding.
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2.3. Auxiliary sections. Let L be an ample line bundle on X. We denote by
Lv its analytification on Xv. Let V be a local analytic subspace along Z which
is defined over K. Let IZv/V be the ideal sheaf of OVv associated to Zv. For
m,n ≥ 0, H0(V , I⊗mZv/V⊗L

n
v |V) can be naturally viewed as a space of H0(V , Lnv |V).

The restriction gives a morphism φn : H0(X,Ln) → H0(V , Lnv |V). Because V is

defined over K, φn induces ψn : H0(X,Ln)→ H0(V̂Z , L
n|V̂Z ).

Lemma 2.3. Assume that dimV < dimX. For every integer C > 0, there is
N > 0 such that for every n ≥ N , there is s ∈ H0(X,Ln) \ {0} such that
φn(s) ∈ H0(V , (IZv/V)Cn ⊗ Lnv |V).

Proof of Lemma 2.3. Let IZ/X the ideal sheaf of OX associated to Z. Denote
by IZ/X̂Z the ideal sheaf of OX̂Z associated to Z. and IZ/V̂Z the ideal sheaf of

OV̂Z associated to Z. Denote by IV̂Z/X̂Z the ideal sheaf of OX̂Z associated to

V̂Z . Let π : OX̂Z → OV̂Z be the quotient morphism, then for m ≥ 0, we have

Im
Z/X̂Z

⊆ π−1(Im
Z/V̂

). Observe that

OV̂Z/I
m
Z/V̂

= OX̂Z/(IV̂Z/X̂Zπ
−1(Im

Z/V̂
))

= (OX̂Z/I
m
Z/X̂Z

)/(IV̂Z/X̂Zπ
−1(Im

Z/V̂
)/Im

Z/X̂Z
)

= (OX/ImZ/X)/(IV̂Z/X̂Zπ
−1(Im

Z/V̂
)/Im

Z/X̂Z
),

which is a quotient of the coherent sheaf OX/ImZ/X . Hence OV̂Z/I
m
Z/V̂

is a coherent

sheaf of X. It implies that Im−1

Z/V̂
/Im

Z/V̂
is a coherent sheaf of Z.

For every n,m ≥ 0 and s ∈ H0(X,Ln) \ {0}, φn(s) ∈ H0(V , I⊗mZv/V ⊗ L
n
v |V) if

and only if s is contained in the kernal of the morphism

κn,m : H0(X,Ln)→ H0(X,Ln ⊗OV̂Z/I
m
Z/V̂

).

Because L is ample, there is c1 > 0 such that dimH0(X,Ln) ≥ c1n
dimX for n ≥ 0.

Now we want to bound dimH0(X,Ln ⊗OV̂Z/I
m
Z/V̂

) from above. Observe that

dimH0(X,Ln ⊗OV̂Z/I
m
Z/V̂

) ≤
m∑
i=1

dimH0(X,Ln ⊗ I i−1

Z/V̂
/I i

Z/V̂
).

Consider the projective morphism β : E := Proj(⊕i≥1I i−1

Z/V̂
/I i

Z/V̂
) → Z. By

GAGA, the analytification of E ⊗K Kv is exactly the exceptional divisor of the
blowup of V along Zv. So dimE = dimV−1. There is B ≥ 1 such that for i ≥ B,

β∗OE(i− 1) = I i−1

Z/V̂
/I i

Z/V̂
.

Pick an ample line bundle M on E such that M ⊗OE(−1) is effective. Then for
every i ≥ B, we have

dimH0(X,Ln ⊗ I i−1

Z/V̂
/I i

Z/V̂
) = dimH0(X, β∗(β

∗(Ln)⊗OE(i− 1)))

= dimH0(E, β∗(Ln)⊗OE(i− 1)) ≤ dimH0(E, β∗(Ln)⊗M i−1).
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Because β∗L is nef and M is ample, by Fujita’s vanishing theorem [Laz04, The-
orem 1.4.35], there is B1 ≥ B, such that for every i ≥ B1, j ≥ 1, we have
Hj(E, β∗(Ln) ⊗M i−1) = 0. By Riemann-Roch theorem, there is a polynomial
Q(x, y) of degree dimE such that

dimH0(E, β∗(Ln)⊗M i−1) = χ(E, β∗(Ln)⊗M i−1) = Q(n, i− 1).

So there is c2 > 0 such that

Q(x, y) ≤ c2(xdimE + ydimE + 1)

for x, y ≥ 0. Because L is ample and I i−1

Z/V̂
/I i

Z/V̂
is supported on Z, there is c3 > 0

such that
B1∑
i=1

dimH0(X,Ln ⊗ I i−1

Z/V̂
/I i

Z/V̂
) ≤ c3(ndimZ + 1)

for n ≥ 0. Then for m ≥ B1,

dimH0(X,Ln⊗OV̂Z/I
m
Z/V̂

) ≤
B1∑
i=1

dimH0(X,Ln⊗I i−1

Z/V̂
/I i

Z/V̂
)+

m∑
i=B1+1

Q(n, i−1)

≤ c3(ndimZ + 1) + c2

m∑
i=B1+1

(ndimE + (i− 1)dimE + 1)

≤ c4(mndimE +mdimE+1 + 1) = c4(mndimV−1 +mdimV + 1)

for some c4 > 0. For n ≥ 1, take m = Cn, we get

dimH0(X,Ln ⊗OV̂Z/I
Cn
Z/V̂

) ≤ c4(C + CdimV)ndimV + c4 ≤ c5n
dimV

for some c5 > 0. Because dimV < dimX, there is N ≥ 1 such that for all n ≥ N,

dimH0(X,Ln) ≥ c1n
dimX > c5n

dimV ≥ dimH0(X,Ln ⊗OV̂Z/I
Cn
Z/V̂

).

Hence kerκCn,n 6= ∅ for n ≥ N , which concludes the proof. �

2.4. Algebraicity criterion. The following result generalizes Theorem 1.4.

Theorem 2.4. Let Z be a closed subscheme of X over K. Denote by h : X(K)→
R any Weil height. Let v ∈MK and let V be a local analytic subspace of Xv along
Z defined over K. Let xn, n ≥ 0 be a set of K-points in (X \ Z)(K) such that:

(i) xn ∈ V for n ≥ 0;
(ii) lim

n→∞
xn ⊆ Zv in X(Kv) as n→∞;

(iii) lim infn→∞
gZv/V,v(xn)

h(xn)
> 0.

Set H := ∩m≥0{xn, n ≥ m} ⊆ X. Then Hv ∩ V is K-algebraic along Hv ∩ Z. In
other words, dimH = dimHv ∩ V .

Remark 2.5. Assume that Z is a point o, dimV = 1 and V̂o is irreducible.
If Hv ∩ V is K-algebraic at o, then V is K-algebraic at o. This is not true in
general. The reason is that, it is possible that V is not algebraic, but it contains
an analytic subspace Y which is K-algebraic along Z and contains all xn, n ≥ 0.



14 JUNYI XIE

Remark 2.6. As showed in Example 1.6, Theorem 2.4 is not true if we replace
“K-algebraic” by “strongly K-algebraic”. However, as showed in Remark 1.7, if
one want to get a result of strongly K-algebraicity, one may apply Theorem 2.4
for each irreducible component for Hv∩V which is not of maximal dimension and
continue this process until there is no such irreducible component.

Proof of Theorem 2.4. There is m0 ≥ 0, such that H = {xn, n ≥ m0}. After

replacing xn, n ≥ 0 by xn+m0 , n ≥ 0, we may assume that H = {xn, n ≥ 0}. Let
H1, . . . , Hs be all irreducible components of H. Since {xn, n ≥ 0} ∩ Z = ∅, and
{xn, n ≥ 0} ∩Hi is Zariski dense in Hi, Hi 6⊆ Z for i = 1, . . . , s.

Write |Z| for the support of Z. There is an effective and ample divisor D of
X which contains |Z| and does not contain any Hi, i = 1, . . . , s. After replacing
xn, n ≥ 0 by the subsequence consisting of points not in D, we may assume that
xn 6∈ D for n ≥ 0.

We may assume that h is a Weil height associated to the divisorD. For w ∈MK ,
let gw : X(Kv) → (−∞,+∞] be the local height function for h associated to
D. In particular, gw is a Green function on Xw for the divisor D. For every
x ∈ (X \D)(K), we have

h(x) =
1

[K : F]

∑
w∈MK

nwgw(x).

where nw := [Kw : Fp] where p is the restriction of w on F. After modifying gw
at finitely many places w, we may assume that gw(x) ≥ 0 for every w ∈ MK

and x ∈ X(Kw). Because |Z| ⊆ D, Assumption (ii) implies that gv(xn) → ∞.
Then h(xn)→∞ as n→∞. Now we may assume that for every n ≥ 0, h(xn) ≥
nv

[K:F]
gv(xn) > 0. By Assumption (iii), we may assume that gZv/V,v(xn) ≥ ch(xn)

for every n ≥ 0.

Let xin, n ≥ 0 be the subsequence of xn, n ≥ 0 consisting of the points contained
in Hi. Now we check that the assumptions (i),(ii) and (iii) are satisfied when we
replace xn, n ≥ 0, X, Z,V by xin, n ≥ 0, Hi, Z ∩ Hi,V ∩ Hi. It is clear that
Assumptions (i) and (ii) hold. By (vi) of Facts 2.2, Assumption (iii) also holds.
Now we may assume that X = H. In other words, {xn| n ≥ 0} is Zariski dense
in X. We only need to show that dimV = dimX.

Otherwise, assume that dimV < dimX. We want to get a contradiction. Pick
an integer C ≥ 2(cnv)

−1. By Lemma 2.3, there are l ≥ 1 and s ∈ H0(X,O(lD)) \
{0} such that the restriction of φl(s) to V is in H0(V , (IZv/V)Cl ⊗ OXv(lDv)|V).
View s as a function in OX(X \D). For every x ∈ V(Kv), there is C1 > 0 such
that

− log |s(x)|v ≥ ClgZv/V,v(x)− lgv(x)− C1.

For every w ∈MK \ {v} and x ∈ (X \D)(Kw), there is C2 > 0 such that

− log |s(x)|w ≥ −lgw(x)− C2
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Moreover, there is a finite subset F of MK \ {v}, such that for every w ∈ MK \
(F ∪ {v}) and x ∈ (X \D)(Kw),

− log |s(x)|w ≥ −lgw(x).

We claim that s(xn) = 0 for all but finitely many n ≥ 0. Assuming this claim,
xn, n ≥ 0 is not Zariski dense in X, which contradicts to our assumption.

We now prove the claim. Assume that there is an infinite subsequence xnm ,m ≥
0 such that s(xnm) 6= 0. By product formula, we have

0 =
∑
w∈MK

−nw log |s(xnm)|w

≥ nvClgZv/V,v(xnm)− l
∑
w∈MK

nwgw(xnm)− nvC1 − |F |[K : F]C2

= nvClgZv/V,v(xnm)− lh(xnm)− C1 − |F |[K : F]C2

≥ nvClch(xnm)− lh(xnm)− C1 − |F |[K : F]C2

= l(Ccnv − 1)h(xnm)− C1 − |F |[K : F]C2 ≥ lh(xnm)− C1 − |F |[K : F]C2.

Because h(xnm)→∞ when m→∞, we get a contradiction. �

2.5. Algebraicity of analytic curves. Applying the same method of the proof
of Theorem 2.4, one can easily generalize the algebraicity criterion for adelic
branches of curves [Xie15b, Theorem 1.5] to any dimension. Because we want to
avoid the definition of adelic branches of curves, we will not do the generalization
in this paper. As an alternative, we prove a result for finite sets of analytic curves.
This is sufficient for our applications in the rest of the paper.

Let H∞ = PN \AN be the hyperplane at infinity. A branch of curve at infinity
over K is a triple (v, o, Cv), where v ∈ MK , o ∈ H∞(K) and Cv is an analytic
curve in PNv containing o, which is defined over K at o. We say Cv is irreducible

at o if its completion (̂Cv)o at o is irreducible.
For v ∈ MK , denote by gv : AN(Kv)→ [0,+∞) the naive local height for H∞

i.e.

gv((x1, . . . , xN)) = log max{1, |xi|v, i = 1, . . . , N},
for (x1, . . . , xN) ∈ KN

v . Let h : AN(Kv)→ [0,+∞) be the naive height i.e.

h(x) = [K : F]−1
∑
v∈MK

nvgv

for x ∈ KN .

Theorem 2.7. Let (vi, oi, Cvi), i ∈ I be a finite set of branches of curve at infinity
over K. For every x ∈ AN(K), set I(x) := {i ∈ I| x ∈ Cvi}. Let xn, n ≥ 0 be a
set of K-points in AN(K) such that:

(i) lim
n→∞

h(xn) = +∞;

(ii) lim infn→∞
maxi∈I(xn) gvi (xn)

h(xn)
> 0.
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Then the Zariski closure of {xn, n ≥ 0} is of dimension one. In particular, for
i ∈ I, if Cvi is irreducible and contains infinitely many xn, n ≥ 0, then Cvi is
algebraic over K at o.

Remark 2.8. If K has the Northcott property [Nor49, BG06] e.g. when F = Q
or a finite field, then the assumption (i) is satisfied when xn, n ≥ 0 are pairwise
distinct.

Proof of Theorem 2.7. The last sentence is trivial if we know that the Zariski
closure {xn, n ≥ 0} is of dimension one.

We now prove that the Zariski closure {xn, n ≥ 0} is of dimension one by
induction on the cardinality |I|. The assumption (ii) shows that |I| ≥ 1. We note
that we can always remove finitely many xn. When |I| = 1, by (v), (vi) of Facts
2.2, the assumptions of Theorem 2.4 are satisfied. This concludes the proof. Now
assume the |I| = l+ 1 ≥ 2 and Theorem 2.7 holds when 1 ≤ |I| ≤ l. Pick i0 ∈ I.
Consider the subsequence xnj , j ≥ 0 of xn, n ≥ 0 of those xn with i0 ∈ I(xn) and
gvi0 (xn) = maxi∈I(xn) gvi(xn). If xnj , j ≥ 0 is finite, then we may remove them
and remove i0 from I. We conclude the proof by the induction hypothesis. If
xnj , j ≥ 0 is infinite, we apply our theorem to the the case I = {i0} and for
the sequence xnj , j ≥ 0. This shows that the Zariski closure of xnj , j ≥ 0 is
of dimension 1. Let x′n, n ≥ 0 be the subsequence obtained from xn, n ≥ 0 by
removing those xnj , j ≥ 0. If x′n, n ≥ 0 is finite, then we done. If x′n, n ≥ 0 is
infinite, we apply the induction hypothesis for the set I \ {i0} and x′n, n ≥ 0 to
conclude the proof. �

3. Invariant subvarieties for products of endomorphisms

In this section, k is an algebraically closed field.

3.1. Semi-conjugacies by dominant finite morphisms. Recall that every
dominant endomorphism on a projective variety is finite [Fak03, Lemma 5.6].

Let f : X → X, g : Y → Y be dominant endomorphisms of projective varieties.
Write f & g if there is a dominant finite morphism π : X → Y such that
π ◦ f = g ◦ π. We also write f &π g when we want to emphasize π. If f & g and
g & h, then f & h.

Easy to see that the following statements are equivalent:

(i) There is a dominant endomorphism h : Z → Z of a projective variety
such that h & fn and h & gn for some n ≥ 1.

(ii) There is a closed irreducible (f × g)-periodic subvariety in X × Y whose
projection to each factor is finite and dominant.

Write f ∼ g and say f semi-equivalent to g if the above equivalent conditions
holds. Note that f ∼ g if and only if fn ∼ gn for some n ≥ 1.

Remark 3.1. If f ∼ g, then dimX = dimY , deg f = deg g and degsep f =
degsep g.

Lemma 3.2. The relation ∼ is an equivalence relation.
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Proof of Lemma 3.2. We only need to show the transitivity. Assume that f1 ∼ f2

and f2 ∼ f3, we want to show that f1 ∼ f3. After replacing f1, f2, f3 by some
common positive iterate, we may assume that there are dominant endomorphisms
g1, g2 of a projective varieties such that g1 &π1 f1, g1 &π2 f2 and g2 &φ1 f2,
g2 &φ2 f3. Then g1 × g2 &π1×φ1 f1 × f2. Let Γg1 be the image of π1 × π2, which is
(f1×f2)-invariant. Let W be an irreducible component of (π1×φ1)−1(Γg1). Then
W is (g1× g2)-periodic. Then there is a dominant endomorphism h : Z → Z of a
projective variety such that h & gn1 , h & gn2 for some n ≥ 1. Hence h & fn1 , h & fn3 ,
which concludes the proof. �

3.2. Amplified endomorphisms. An endomorphism f : X → X of a projec-
tive variety is amplified [KR17], if it is dominant and there exists a line bundle
L on X such that f ∗L⊗ L−1 is ample.

We have the following properties.

(i) The identity endomorphism id : X → X is amplified if and only if X is a
point.

(ii) A dominant endomorphism f on a curve is amplified if and only if deg f ≥
2.

(iii) Let n be a positive integer. Then f is amplified if and only if fn is
amplified [Xie22, Lemma 5.1].

(iv) If f is amplified and V is an f -invariant closed subvariety of X, then f |V
is amplified.

(v) Let f : X → X, g : Y → Y be endomorphisms of projective varieties.
Assume that f ∼ g, then f is amplified if and only if g is amplified.

(vi) Let f : X → X, g : Y → Y be amplified endomorphisms of projective
varieties. Then (X, f)× (Y, g) := (X × Y, f × g) is amplified.

For an endomorphism f , denote by Fix(f) its set of fixed points and Per (f)
its set of periodic points. The proof of [Fak03, Theorem 5.1] shows the following
important property of amplified endomorphisms.

Proposition 3.3. If f is amplified, then Per (f) is Zariski dense and for all
n ≥ 1, Fix(fn) is finite.

Denote by k(X)f the field of f -invariant rational functions on X.

Proposition 3.4. If f is amplified, then k(X)f = k.

Proof of Proposition 3.4. Assume that there is φ ∈ k(X)f \ k. We get a rational
map φ : X 99K P1. Let Y ⊆ X × P1 be the graph of φ and πX : Y → X,
ψ : Y → P1 be the projections. Then π is birational and g := π−1 ◦ f ◦ π is
an endomorphism on Y and ψ ◦ g = ψ. For every c ∈ P1, set Yc := ψ−1(c) and
Xc := πX(Yc). We note that Xc is f -invariant. Let η be the geometric generic
point of P1. Then f induces an endomorphism fη on Xη which is also amplified.
By Proposition 3.3, Per (fη) is Zariski dense in Xη. After replacing f by a suitable
iterate, there is an f -fixed point o ∈ Xη such that π−1

X is well defined at o. Since
ψ(π−1

X (o)) = η, the Zariski closure C of o in X is a curve. Because o is fη-fixed,
f |C = id. So f |C is not amplified which contradicts Property (iii) above. �
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3.3. Independence.

Definition 3.5. For amplified endomorphisms f : X → X and g : Y → Y , we
say (X, f) and (Y, g) are independent and write (X, f) ⊥ (Y, g) (or f ⊥ g) if for
every closed irreducible (f × g)-periodic subvariety Z ⊆ X × Y , Z takes form
Z = Z1×Z2 where Z1, Z2 are closed periodic subvarieties for f and g respectively.

Remark 3.6. We may replace periodic subvarieties by preperiodic subvarieties
to get the same definition.

It is clear that f ⊥ g if and only if there is some n ≥ 1 such that fn ⊥ gn.

Remark 3.7. Let f : X → X and g : Y → Y be amplified endomorphisms. Let
π : X → Y be a morphism satisfying g ◦π = π ◦f. Let h : Z → Z be an amplified
endomorphism. One may check the following properties.

(i) If g ⊥ h and π is finite, then f ⊥ h.
(ii) If f ⊥ h and π is surjective, then g ⊥ h.

Proposition 3.8. Let f : X → X, g : Y → Y and h : Z → Z be amplified
endomorphisms. Assume that f ⊥ h and g ⊥ h, then (f × g) ⊥ h.

We need the following two lemmas.

Lemma 3.9. Let X, Y be two normal projective varieties of dimensions dX , dY
respectively. Let W be a closed irreducible subvariety of X ×Y of dimension dW .
Let πX , πY be the projections from X × Y to X and Y respectively. Assume that
πX(W ) = X and πY (W ) = Y. Then there is a numerical class α ∈ NdW−dY (X)
such that for a general point y ∈ Y (k), dim(π−1

Y (y)∩W ) = dW −dY and for every
irreducible component R of π−1

Y (y) ∩W , [R] = (πX |π−1
Y (y))

∗α ∈ NdW−dY (π−1
Y (y)).

This lemma is a generalization of [Xie22, Lemma 9.3] with a similar proof.

Proof of Lemma 3.9. Let φ : B → Y be the normalization of Y in the field
k(W ). Consider ψ := id ×Y φ : (X × Y ) ×Y B = X × B → X × Y . Denote by
πB : X × B → B the projection to B. The Stein factorization of πY |W : W → Y
induces a closed immersion ι : W ↪→ X × B. We denote by V its image. In
particular, the composition ψ ◦ ι is exactly the inclusion W ↪→ X×Y. We get the
following commutative diagram.

V � _

��

' // W� _

��
X ×B ψ //

πB
��

X × Y
πY
��

B
φ // Y

There is a nonempty open subset U ⊆ Y such that πY |W is flat above U and
for every b ∈ φ−1(U), the fiber Vb of V above b is reduced and irreducible. Af-
ter shrinking U , we may assume that φ|φ−1(U) : φ−1(U) → U is finite. Then

ψ(V ∩ (X × φ−1(U))) = W ∩ π−1
Y (U). Moreover, for every b ∈ φ−1(U), ψ|X×b :
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X × b→ π−1
Y (φ(b)) is an isomorphism and sends Vb to an irreducible component

of (πY |W )−1(φ(b)). For every b ∈ φ−1(U), the numerical class of πX(ψ(Vb)) in
NdW−dY (X) is the same class α. For every y ∈ U(k) and every irreducible com-
ponent R of (πY |W )−1(y), there is b ∈ φ−1(y), such that R = ψ(Vb). So we get
[R] = (ψ|X×b)∗([Vb]) = (ψ|X×b)∗(πX ◦ ψ|X×b)∗α = (πX |π−1

Y (y))
∗α. �

Lemma 3.10. Let X, Y be two normal projective varieties of dimensions dX , dY
respectively. Let W be a closed subvariety of X × Y of pure dimension dW .Let
πX , πY be the projections from X×Y to X and Y . Let βX be an ample numerical
divisor class on X. Then the following two statements are equivalent:

(i) W = V × Y for some closed subvariety V of X;

(ii) W · π∗Y β
dW−dY +1
X = 0.

In particular, if W is numerically equivalent to cV × Y for some closed subva-
riety V of X and some c > 0, then W = V ′× Y for some closed subvariety V ′ of
X.

Proof of Lemma 3.10. It is clear that (i) implies (ii). Now we prove that (ii)
implies (i). After replacing βX by a suitable multiple, we may assume that it is
represented by a very ample divisor H on X. Let H1, . . . , HdW−dY +1 be general
elements in the linear system |H|. Then W intersects π∗X(H1) · · · π∗X(HdW−dY +1)

properly. Because W ·π∗Y β
dW−dY +1
X = 0, W∩(π−1

X (H1)∩· · ·∩π−1
X (HdW−dY +1)) = ∅.

Hence πX(W ) ∩ H1 ∩ · · · ∩ HdW−dY +1 = ∅. Then dimπX(W ) ≤ dW − dY . For
every point x ∈ πX(W ), dim(π−1

X (x) ∩ W ) = dW − dim πX(W ) ≥ dY . Hence
dim(π−1

X (x) ∩W ) = dY , which implies that π−1
X (x) ∩W = x× Y. It follows that

W = πX(W )× Y , which concludes the proof. �

Proof of Proposition 3.8. We do the proof by induction on dimX+dimY +dimZ.
It is clear that Proposition 3.8 holds when one of dimX, dimY, dimZ is 0.

Let W be an irreducible closed (f × g × h)-periodic subvariety of X × Y × Z.
After replacing f, g, h by fm, gm, hm for some m ≥ 1, we may assume that W is
(f × g × h)-invariant. We want to show that W = W1 ×W2 where W1,W2 are
closed invariant varieties for f × g and h respectively.

Let πX , πY , πZ be the projection from X × Y × Z to X, Y, Z respectively. If
πY (W ) 6= Y , then πY (W ) is g-invariant. By Remark 3.7, g|πY (W ) ⊥ h. Because
dimπY (W ) < dimY , we conclude the proof by the induction hypothesis. By
similar argument, we may assume that πX(W ) = X, πY (W ) = Y and πZ(W ) = Z.

Let πX×Z : X × Y × Z → X × Z be the projection. By Lemma 3.9, there is a
numerical class α ∈ NdW−dY (X×Z) and a Zariski dense open subset U of Y such
that for every y ∈ U(k), dim(π−1

Y (y) ∩W ) = dW − dY and for every irreducible
component R of π−1

Y (y) ∩W ,

[R] = (πX |π−1
Y (y))

∗α ∈ NdW−dY (π−1
Y (y)).

In particular [π−1
Y (y) ∩W ] = c(πX×Z |π−1

Y (y))
∗α ∈ NdW−dY (π−1

Y (y)) for some con-
stant c > 0.

By Proposition 3.3, after replacing f, g, h by fm, gm, hm for some m ≥ 1, we
may assume that there is a g-fixed point b ∈ U which is smooth. Every irreducible
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component T of π−1
Y (b)∩W is f × g×h-periodic, hence takes form T1×T2 where

T1, T2 are closed periodic subvarieties of f and h respectively.
First assume that T2 = Z. By Lemma 3.10, π−1

Y (b) ∩W = Tb × Z for some
closed subvariety Tb of X. By Lemma 3.10 again, we get that for every y ∈ U ,
π−1
Y (y)∩W = Ty×Z for some closed subvariety Ty of X. Let πX×Y : X×Y ×Z →
X×Y be the projection. We have that, for every t ∈ πX×Y (W ), π−1

X×Y (t) = t×Z,
hence W = πX×Y (W )× Z which concludes the proof.

Now assume that T2 6= Z. Pick a general point z ∈ Z(k), we have π∗Z(z)∩T = ∅,
hence π∗Z(z) · (πX×Z |π−1

Y (b))
∗α = 0. Then π∗Z(z) · (π−1

Y (b) ∩ W ) = 0. Because z

is general, the intersection of π∗Z(z) and (π−1
Y (b) ∩ W ) is proper. So π−1

Z (z) ∩
(π−1

Y (b) ∩W ) = ∅. Let πY×Z : X × Y × Z → Y × Z be the projection. Then
(b, z) 6∈ πY×Z(W ). Since πY×Z(W ) is g× h-invariant, it takes form Y1×Z1 where
Y1, Z1 are invariant under g, h respectively. Moreover, we have dimY1 +dimZ1 ≤
dimY + dimZ − 1. We have W ⊆ X × Y1 × Z1. By Remark 3.7, f ⊥ h|Z1 and
g|Y1 ⊥ h|Z1 . We conclude the proof by the induction hypothesis. �

Corollary 3.11. Let fi : Xi → Xi, i = 1, . . . ,m be amplified endomorphisms.
Assume that fi ⊥ fj for i 6= j. For every point p := (x1, . . . , xm) ∈ X1 × · · · ×
Xm(k), its orbit under f := f1 × · · · × fm is Zariski dense in X1 × · · · × Xm if
and only if for every i = 1, . . . ,m, the orbit of xi under fi is Zariski dense in Xi.

Remark 3.12. Under the assumption of Corollary 3.11. Proposition 3.4 and
Corollary 3.11 imply that the Zariski dense orbit conjecture [MS, Conjecture
5.10] and its adelic version [Xie22, Conjecture 1.10] for f1 × · · · × fm can be
reduced to the same conjectures for each fi.

Proof of Corollary 3.11. If the f -orbit of p is Zariski dense in X1×· · ·×Xm, then
for every i = 1, . . . ,m, the orbit of xi under fi is Zariski dense in Xi.

Now assume that for every i = 1, . . . ,m, the orbit of xi under fi is Zariski dense
in Xi. Let Z be the Zariski closure of the orbit of p. After replacing f by a suitable
iterate and p by f l(p), we may assume that Z is irreducible and f -invariant. Then
we have Z = Z1×· · ·×Zm for some closed fi-invariant subvarieties Zi of Xi. Our
assumptions shows that Zi = Xi for i = 1, . . . ,m, which concludes the proof. �

Examples of independent endomorphisms.

Example 3.13. Let fi : Ci → Ci, i = 1, 2 be endomorphisms of projective curves
of degree at least 2. Then f1 6⊥ f2 if and only if f1 ∼ f2

Proposition 3.14. Let fi : Xi → Xi, i = 1, 2 be two polarized endomorphisms.
If λ1(f1) 6= λ1(f2), then f1 ⊥ f2.

Proof of Proposition 3.14. Let V be an irreducible closed (f1×f2)-periodic subva-
riety of dimension d. After replacing f1, f2 by a suitable common positive iterate,
we may assume that V is (f1 × f2)-invariant. Let πi : X1 × X2 → Xi be the
projection to the i-th coordinate. Set Vi := πi(V ) and di := dimVi. We have
d1 + d2 ≥ d and the equality holds if and only if V = V1× V2. So we may assume
that d1 + d2 > d.
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Let Li be an ample line on Xi such that f ∗i Li = L
⊗λ1(fi)
i . Denote by αi the

numerical class associated to π∗iLi. Observe that for j ∈ {0, . . . , d}, αj1·α
d−j
2 ·V ≥ 0

and it > 0 if j = d1 or d− j = d2.
Set f := f1 × f2. For every real numbers u1, u2 ∈ R, we have

deg(f |V )(V · (u1α1 + u2α2)d) = (f∗V · (u1α1 + u2α2)d)

= (V · (u1f
∗α1 + u2f

∗α2)d) = (V · (u1λ1(f1)α1 + u2λ1(f2)α2)d)

Compare the coefficients of the two different terms ud11 u
d−d1
2 and ud−d21 ud22 , we get

deg(f |V ) = λ1(f1)d1λ1(f2)d−d1 = λ1(f1)d−d2λ1(f2)d2 .

It implies that (λ1(f1)/λ1(f2))d1+d2−d = 1, hence λ1(f1) = λ1(f2). This contra-
dicts our assumption. �

Proposition 3.15. Let f : X → X be an amplified automorphism of a projective
surface and g : C → C be an endomorphism of a projective curve of degree at
least 2. Then f ⊥ g.

Proof of Proposition 3.15. Let πX : X × C → X, πC : X × C → C be the
projections. Let V be a closed irreducible (f × g)-periodic subvariety. After
replacing f, g by a suitable common positive iterate, we may assume that V
is (f × g)-invariant. We may assume that dimV ≤ 2, dim πX(V ) ≥ 1 and
dimπC(V ) = 1. Because any automorphism of a curve is not amplified, there
is no f -periodic curve. So dim πX(V ) = 2. After replacing f, g by a suitable
common positive iterate, we may assume that there is a fixed point o ∈ C(k).
Then πX(π−1

C (o)) is an f -invariant curve, which is a contradiction. �

3.4. Products of separable endomorphisms of curves. Let C be a smooth
projective curve. Let g : C → C be a separable endomorphism with deg g ≥ 2.
Then C is either P1 or an elliptic curve.

We say that g is of Lattès type, if it semi-equivalents to an endomorphism of
an elliptic curve i.e. there exists an endomorphism of an elliptic curve h : E → E
and a finite morphism π : E → C such that f ◦ π = π ◦ h.

We say that g is of monomial type, if it semi-equivalents to an endomorphism of
a monomial map i.e. there exists a monomial endomorphism h : P1 → P1 taking
form x 7→ x±d, d ≥ 2 and a finite morphism π : P1 → C such that f ◦ π = π ◦ h.
We note that in this case C ' P1.

We say that g is exceptional if it is of Lattés type or monomial type. Otherwise,
it is said to be nonexceptional.

For every separable endomorphism g : P1 → P1 of deg g ≥ 2, it has exactly one
type in Lattés, monomial, and nonexceptional. Moreover, the types of gn, n ≥ 1
are the same.

The following facts are well known.

(i) If two endomorphisms of curves are semi-equivalent, then they have the
same type. In particular, for endomorphisms f, g of curves, if they have
different types, then f ⊥ g.
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(ii) If there is a nonzero rational differential form ω, such that g∗ω = µω for
some µ ∈ k∗, then g is exceptional.

(iii) If f : C → C is nonexceptional and C, then C = P1.

Nonexceptional endomorphisms. When char k = 0, the following result on the
invariant subvarieties was obtained in [MS14] using model theory and in [Xie22,
Proposition 9.2] using purely geometric method. When k = Q, it was also ob-
tained in [GNY18, Theorem 1.2], as a consequence of their solution of the Dynam-
ical Manin-Mumford Conjecture in this case. The proof of [Xie22, Proposition
9.2] can be easily generalized in positive characteristic when all fi are separable.
Hence we get the following result.

Proposition 3.16. Assume that N ≥ 2, deg fi ≥ 2, i = 1, . . . , N and all fi, i =
1, . . . , N are separable and nonexceptional. Let V be a proper irreducible closed
subvariety of (P1)N which is invariant under f . Then there exists 1 ≤ i < j ≤
N such that V ⊆ π−1

i,j (C) where πi,j : (P1)N → (P1)2 is the projection to the

i, j-th coordinates and C is an (fi × fj)-invariant curve in (P1)2. Moreover, the

normalization C̃ of C is P1 and the endomorphism on C̃ induced by (fi × fj)|C
is nonexceptional.

Easy to see that in Proposition 3.16, we may replace the invariant subvarieties
by the periodic or preperiodic subvarieties.

Invariant subvarieties. By Remark 3.1, for semi-equivalent endomorphisms f, g
of projective curves, they have the same degree; they are separable at the same
times; and they are nonexceptional at the same times.

Let S be the set of equivalent classes under ∼ of all separable endomorphisms
of smooth projective curve of degree at least 2. Let S ′ be the subset of S of those
equivalent classes of nonexceptional endomorphisms. The following result was
obtained in [MS14] in characteristic zero for polynomial endomorphisms.

Proposition 3.17. Let s1, . . . , sm ∈ S. For i = 1, . . . ,m, let Ii be a finite subset
of si. Then we have the following statement:

(i) Every irreducible closed
∏m

i=1

∏
j∈Ii fj-invariant subvariety takes form

∏m
i=1 Vi

where Vi is a
∏

j∈Ii fj-invariant subvariety.

(ii) Assume that si ∈ S ′, and V is a
∏

j∈Ii fj-invariant subvariety. Then

there is a partition Ii = J0 t (tlj=1Jj), fixed points os of fs for s ∈ J0,

(
∏

s∈Jj fs), j = 1, . . . , l-invariant curves Cj ⊆ (P1)|Jj |, such that V =∏l
j=1Cj. Here we identified (P1)|Ii| with (

∏l
j=1 P1)|Jj |.

In the second part of Proposition 3.17, Cj may be singular. One may reformu-
late it as follows to avoid the singularities.

Proposition 3.18 (Reformulate of (ii) of Proposition 3.17). Assume that si ∈ S ′,
and V is a

∏
j∈Ii fj-invariant subvariety. Then there is a partition Ii = J0 t

(tlj=1Jj), fixed points os of fs for s ∈ J0, endomorphisms gj : P1 → P1, j = 1, . . . , l
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with gj &πs/j fs for every s ∈ Jj, such that for every j = 1, . . . , l,

Φj := (πs/j)s∈Jj : P1 → (P1)|Jj |

is birational to its image and V = (
∏

s∈J0 os)× (
∏l

j=1 Φj(P1)). Here we identified

(P1)|Ii| with
∏l

j=1(P1)|Jj |. The partition Ii = tlj=0Jj, the points os, s ∈ I0 are

unique and the (gj; πs/j, s ∈ Jj) is unique up to change the coordinate on P1 i.e.
change (gj; πs/j, s ∈ Jj) to (h−1◦gj◦h; πs/j◦h, s ∈ Jj) where h is an automorphism
of P1.

Remark 3.19. In (ii) of Proposition 3.17, if the projection of V on each factor
is dominant, then J0 = ∅.

Remark 3.20. It is easy to check that, in Proposition 3.17, we may replace
invariant subvarieties by periodic or preperiodic subvarieties.

Remark 3.21. For s ∈ S ′, if there is one f ∈ s is a polynomial endomorphism,
then every element in s conjugates to a polynomial endomorphism. Because
a nonexceptional polynomial endomorphism has exactly one point with finite
backward orbit, every conjugation between two nonexceptional polynomial endo-
morphisms is an affine automorphism. So, in (ii) of Proposition 3.17, if fj, j ∈ Ii
are polynomials, one may ask that all gj and all πs/j are polynomials. Moreover,
(gj; πs/j, s ∈ Jj) is unique up to change the affine coordinate on A1 ⊆ P1.

Proof of Proposition 3.17. (i) is directly implied by Corollary 1.9. (ii) is implied
by Proposition 3.16 by induction on |Ii|. �

4. Transcendence of Böttcher coordinates

4.1. Böttcher coordinates. In this section, we recall the definition and some
basic properties of Böttcher coordinates.

Let
f(z) = adz

d + · · ·+ a0 ∈ K[z]

be a polynomial of degree d ≥ 2. To avoid confusion, in this section, we use fn

to denote the n− power of f and f (n) for the n-th iterate of f.
A Böttcher coordinate of f is a Laurent series φf (z) ∈ K((z−1)) satisfying

(φf ◦ f)(z) = φf (z)d

and of order −1 at ∞ i.e. it takes form

φf (z) = b1z + b0 + b−1/z + b−1/z
2 . . . .

Proposition 4.1. When charK 6 |d, the Böttcher coordinate φf exists and have
the following properties:

(i) bd−1
1 = ad;

(ii) the coefficients bi, i ≤ 1 are indeed contained in K(b1).

The proof of Proposition 4.1 can be found in [FG, Section 2.4] when charK = 0.
The same proof holds when charK 6 |d.
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Remark 4.2. When charK|d, Böttcher coordinate may not exist. One may
check that when p = charK > 0, the Böttcher coordinate does not exist for
f(z) = zp + zp−1.

We now assume that charK 6 |d. We view f as an endomorphism of A1 which
extends to an endomorphism of P1. Fix a place v ∈MK . The following property is
[FG, Proposition 2.13] when charK = 0, the same proof works when charK 6 |d.

Proposition 4.3. There is Bv > 0, such that φf (z) converges in the neighborhood
of infinity Ωv(f) := {x ∈ P1

v| |z(x)|v > Bv} and for every z ∈ Ωv(f), f (n)(z) →
∞.

The following lemma implies that the Böttcher coordinate for f is unique, up
to multiplying by a (d− 1)-th root of unity.

Lemma 4.4. Let s ≥ 1 be a positive integer. Let ψ ∈ K((z−1)) be a Laurent
series of order −s at ∞ which satisfies

(ψ ◦ f)(z) = ψ(z)d.

Then we have ψ(z) = µφf (z)s for some (d− 1)-th root of unity µ.

Remark 4.5. For every n ≥ 1, the Böttcher coordinates of fn are Laurent series
taking forms µφf (z) where µ-is a (dn − 1)-th root of unity.

Proof of Lemma 4.4. View K((z−1)) as a non-archimedean field with the z−1-adic
norm | · |. It is clear that f (n)(z)→∞.

Both ψ(y) and φf (y)s are of order −s at ∞ and have coefficients in K. So

there is c ∈ K∗ such that

(ψ/φsf )(y)→ c

when y ∈ K((z−1)) tends to∞. Because (φf ◦f)s(z) = (φf (z)s)d and (ψ◦f)(z) =
ψ(z)d, we get

(4.1) (ψ/φsf )(f
(n)(z)) = (ψ/φsf (z))d

n

,

for every n ≥ 0. Then we get

(4.2) lim
n→∞

(ψ/φsf (z))d
n

= lim
n→∞

(ψ/φsf )(f
(n)(z)) = c.

In particular, we get

1 = lim
n→∞

(ψ/φsf (z))d
n

/(ψ/φsf (z))d
n−1

= ( lim
n→∞

(ψ/φsf (z))d
n−1

)d−1 = cd−1.

Hence c is a (d−1)-th root of unity. Set g := ψ/(cφsf (z)) ∈ K((z−1)). By Equality

4.2, lim
n→∞

gd
n

= 1.

Lemma 4.6. There is m ≥ 1 such that gd
m

= 1.

In particular, we get g ∈ K. By Equality 4.1 with n = 1, we get gd−1 = 1.
Hence ψ(z)/φf (z)s = cg is a (d− 1)-th roots of unity. �
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Proof of Lemma 4.6. There is m ≥ 1 such that |gdm − 1| < 1. Set δ := gd
m − 1

and assume that δ 6= 0. Then for n ≥ m, we get

gd
n

= (1 + δ)d
n−m

= 1 + dn−mδ + ε

where |ε| < |δ|. Then |gdn − 1| = |dn−mδ| = |δ| > 0 which is a contradiction. �

Corollary 4.7. If g &π f , where f, g are polynomials of degree d, then φf ◦ π =

µφ
deg(π)
g , where µ-is a (d− 1)-th root of unity.

Proof of Corollary 4.7. Because

(φf ◦ π)(g(z)) = (φf ◦ f)(π(z)) = (φf ◦ π)(z)d,

we conclude the proof by Lemma 4.4. �

Since id is a Böttcher coordinate for the map z 7→ zd, we get the following
result.

Corollary 4.8. When f is of monomial type, then every Böttcher coordinate of
f is algebraic.

4.2. Orbit of a point. Let X a variety over a field k. Let f : X → X be an
endomorphism and x ∈ X. We denote by Of (x) the f -orbit of x. Denote by
Zf (x) the Zariski closure of Of (x). It is clear that f(Zf (x)) ⊆ Zf (x). In this
section, we study the structure of Zf (x) and the action of f on it.

Write Zf (x) = Tf (x) t Pf (x) where Tf (x) is the union irreducible components
of Zf (x) of dimension 0 and Pf (x) is the union irreducible components of Zf (x)
of dimension ≥ 1. Note that Pf (x) = ∅ if and only if x is preperiodic for f. If
x ∈ X(k), then every irreducible component contains a Zariski dense set of k
points, hence geometrically irreducible by [AV92, Lemma 1].

It is clear that f(Pf (x)) ⊆ Pf (x). Set tf (x) := |Tf (x)| ≥ 0. Then Tf (x) =
{fn(x)| 0 ≤ n ≤ tf (x) − 1}. Becasue Of (x) is contained in {fn(x)| 0 ≤ n ≤
tf (x)} ∪ f(Pf (x)) and every irreducible component of Pf (x) has positive dimen-

sion, Pf (x) = f(Pf (x)). Hence every irreducible component of Pf (x) is periodic.
Let Z be an irreducible component of Zf (x) containing f tf (x)(x). There is a min-

imal m ≥ 1 such that fm(Z) ⊆ Z. Then Pf (x) = ∪m−1
i=1 f

i(Z).

Lemma 4.9. For every n ≥ tf (x), there is a unique i ∈ {0, . . . ,m− 1} such that

fn(x) ∈ f i(Z).

Proof of Lemma 4.9. Assume that there are i 6= j ∈ {1, . . . ,m − 1} such that

fn(x) ∈ f i(Z)∩f j(Z). Because fm(f i(Z)∩f j(Z)) ⊆ f i(Z)∩f j(Z), Of (f
n(x)) ⊆

∪m−1
j=1 (f i+j(Z) ∩ f j(Z)) which is not dense in Pf (x). We get a contradiction. �

Now we summarize what we get. For a ∈ Z and b ∈ Z+, denote by e(a/b) the
unique element in {0, . . . , b− 1} such that a = e(a/b) mod b. For any endomor-
phism f : X → X and x ∈ X, we may associated to them the following datas:
Integers tf (x) ≥ 0 and pf (x) ≥ 1, a closed irreducible subvariety P+

f (x) such that

Zf (x) = {fn(x)| 0 ≤ n ≤ tf (x)− 1} t (∪pf (x)
i=1 f i(P+

f (x))),
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and for every i ≥ tf (x), the unique j ∈ {0, . . . , pf (x) − 1} satisfying f j(P+
f (x)))

is e(i/pf (x)). In particular fpf (x)(P+
f (x)) = P+

f (x).

4.3. Canonical heights. In this section, we recall some basic facts on canonical
height for polynomial dynamics. All these are well known and can be found in
[Sil07] and [FG].

Let f ∈ K[x] be a polynomial of degree at least 2. The canonical Green
functions and canonical height of a ∈ K for f are

gf,v(a) := lim
n→∞

deg(f)−n log max{1, |fn(a)|v}

and

ĥf (a) :=
∑
v∈MK

nvgf,v(a).

By Tate’s limiting argument, these limits exists and non-negative. Moreover
gf,v(a) = 0 for all but finitely many v ∈ MK , hence ĥf (a) is well defined and
non-negative. We also concern the multiplicative Green functions and canonical
height

Gf,v(a) := egf,v(a),

Ĥf (a) := eĥf (a) = (
∏
v∈MK

Gf,v(a)nv)1/[K:F]

for a ∈ K.
Recall that the naive height of a is

h(a) = [K : F]−1
∑
v∈MK

nv log max{1, |a|v}.

Then we have

ĥf (a) := lim
n→∞

deg(f)−nh(fn(a)).

If we change K by any finite extension of K, the values of naive and canonical
heights do not change. So h and ĥf are indeed functions from K to [0,+∞). We
have the following basic properties:

(i) ĥf (·)− h(·) is bounded on K;

(ii) ĥf (f(a)) = deg(f)ĥf (a) for every a ∈ K;

(iii) for n ≥ 1 and a ∈ K, ĥf (a) = ĥfn(a).

There is a way to compute the canonical Greens functions using Böttcher co-
ordinates: Assume that charK 6 |d. For every a ∈ K, we have

(4.3) gf,v(a) :=

{
0 if {|fn(x)|v}n≥0 is bounded;

|φf (fm(a))|1/d
m

v if fm(x) ∈ Ωv(f) for some m ≥ 0.

Recall Ωv(f) is defined in Proposition 4.3. Note that if {|fn(x)|v}n≥0 is not

bounded, then there is m ≥ 0 such that fm(x) ∈ Ωv(f), moreover |φf (fm(a))|1/d
m

v

does not depend on the choice of m.
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4.4. Equivalent dynamical pairs. For d ≥ 2 and charK 6 |d, let Dd be the
set of polynomials f ∈ K[z] which is nonexceptional as an endomorphism of P1.
When charK = 0, such polynomials are called non-integrable in [FG] and [Ngu].

Remark 4.10. A polynomial of degree d is not in Dd if and only if it is of
monomial type.

Denote by Pd the set of (f, a) ∈ Dd × F such that a is f -preperiodic.

Remark 4.11. When F = Q, by the Northcott property, (f, a) ∈ Pd if and only

if ĥf (a) = 0.

Denote by DPd := (Dd×F)\Pd. An element (f, a) ∈ DPd is called a dynamical
pair. For (f, a), (g, b) ∈ DPd, we say that (f, a) and (g, b) are equivalent and write
(f, a) ∼ (g, b) if the (f × g)-orbit of (a, b) ∈ (P1)2 is not Zariski dense. In this
case every irreducible component C of Pf×g((a, b)) is a curve. Let πi : (P1)2 →
P1, i = 1, 2 be the projection to the i-th coordinate. Then πi(C) = P1 and the
ratio

d((f, a)/(g, b)) := deg π1|C/ deg π2|C ∈ Q∗

does not depend on the choice of irreducible component C. If (f, a) ∼ (g, b) and
(g, b) ∼ (h, c), then by Proposition 3.17, (f, a) ∼ (h, c). It shows that ∼ is an
equivalent relation. Moreover, we have

d((f, a)/(h, c)) = d((f, a)/(g, b))d((g, b)/(h, c)).

Hence, for a finite set of equivalent dynamical pairs αi, i ∈ I, it defines a point
d(αi, i ∈ I) ∈ P|I|−1 \ (∪i∈I{zi = 0}) such that

(zi/zj)(d(αi, i ∈ I)) = d(αi/αj)

for every i, j ∈ I.

Remark 4.12. If (f, a) ∼ (g, b), then f ∼ g.

Now assume that charF 6 |d. Let (f, a), (g, b) ∈ DPd be two equivalent dy-
namical pairs. Let K be a finite extension of F, which contains a, b, all coeffi-
cients and all (d − 1)-roots of leading coefficients of f and g. For v ∈ MK , we
have lim

n→∞
|fn(a)|v → ∞ if and only if lim

n→∞
|gn(b)|v → ∞. By Corollary 4.7, if

a ∈ Ωv(f) and b ∈ Ωv(g), then φf (a)n = φg(b)
m for some m,n ∈ Z≥1 satisfying

m/n = d((f, a)/(g, b)). Then by Equality 4.3, we get the following result.

Proposition 4.13. Assume that charF 6 |d. Let (f, a), (g, b) ∈ DPd be equivalent
dynamical pairs defined over a number field K. Then the following holds:

(i) For every v ∈ MK, gf,v(a) = 0 if and only if gg,v(b) = 0. Moreover, if
gf,v(a) 6= 0, then gf,v(a)/gg,v(b) = d((f, a)/(g, b)).

(ii) The canonical heights ĥf (a) and ĥg(b) are zero at the same time. More-

over, if they are not zero, ĥf (a)/ĥg(b) = d((f, a)/(g, b)).
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4.5. Transcendence of Böttcher coordinates. Let f1, . . . , fr be polynomials
of degree d. Assume that K contains all coefficients of every fi and the (d−1)-th
roots of its leading coefficient. For v ∈MK , let Ωv(fi) be defined as in Proposition
4.3. We view the Böttcher coordinates φfi as functions on Ωv(fi).

For i = 1, . . . , r, let ai be a K-point in Ωv(fi). We will show that the algebraic-
ity of

∏r
i=1 φ

ni
fi

(ai) is completely determined by some geometric datas associated
to (f1, . . . , fr, a1, . . . , ar).

Remark 4.14. By Corollary 4.8, if fi is of monomial type, then φfi(ai) is alge-
braic.

Now we assume that f1, . . . , fr ∈ Dd. Our assumption shows that (fi, ai) ∈ DPd
for every i = 1, . . . , r.

Geometric datas. In this section we will associated to (f1, . . . , fr, a1, . . . , ar) a
partition {1, . . . , r} = tlj=1Jj and a group of positive integers ds/j ≥ 1, s ∈
Jj, j = 1, . . . , l.

Consider the endomorphism F :=
∏r

i=1 fi : Ar → Ar which extends to an
endomorphism of (P1)r. Set a := (a1, . . . , ar) ∈ (P1)r. Following Section 4.2, we
may associated to F, a the data (tF (a), pF (a), P+

F (a)). In particular, P+
F (a) is F

periodic with the minimal positive period pF (a). Because lim
n→∞

|fn(ai)|v →∞, i =

1, . . . , r, the projection of P+
F (a) to every factor of (P1)r is dominant.

By Proposition 3.17 and Proposition 3.18, we may associated to pF (a), P+
F (a)

the following data: there is a partition {1, . . . , r} = tlj=1Jj, a polynomial gj :

P1 → P1, j = 1, . . . , l such that gj &πs/j f
pF (a)
s , s ∈ Jj where πs/j is a polynomial

of degree ds/j such that for every j = 1, . . . , l,

Φj := (πs/j)s∈Jj : P1 → (P1)|Jj |

is birational to its image and P+
F (a) = (

∏l
j=1 Φj(P1)). Here we identified (P1)|Ii|

with (
∏l

j=1 P1)|Jj |. The partition {1, . . . , r} = tlj=1Jj is unique and the (gj; πs/j, s ∈
Jj) is unique up to change the affine coordinate on A1 ⊆ P1. In particular,
the degrees ds/j ≥ 1, s ∈ Jj, j = 1, . . . , l does not depend on the choice of
(gj; πs/j, s ∈ Jj), s ∈ Jj, j = 1, . . . , l.

Remark 4.15. Another discerption of the datas {0, . . . , r} = tlj=1Jj and ds/j ≥
1, s ∈ Jj, j = 1, . . . , l is as follows:

(a) There is a unique partition {0, . . . , r} = tlj=1Jj, such that P+
F (a) =∏l

j=1Cj after identifying (P1)|Ii| with
∏l

j=1(P1)|Jj |, where Cj, j = 1, . . . , l

is a (
∏

s∈Jj fs)
pf (a)-invariant curve of (P1)|Jj |. Indeed, Cj = Φj(P1) for

j = 1, . . . , l.
(b) For s ∈ Jj, j = 1, . . . , l, ds/j = deg(πs|Cj) where πs : (P1)l → P1 is the
projection to the s-th coordinate.

Remark 4.16. A simple way to view the partition {0, . . . , r} = tlj=1Jj is as
follows: For s, t ∈ {0, . . . , r}, they are contained in the same Jj for some j =
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1, . . . , l if and only if (fs, as) ∼ (ft, at). Moreover for s, t ∈ Ji, we have ds/j/dt/j =
d((fs, as)/(ft, at)).

Remark 4.17. Easy to see from Remark 4.15 that, if we replace P+
F (a) by

F n(P+
F (a)) for any n ≥ 0, we get the same datas {0, . . . , r} = tlj=1Jj and

ds/j ≥ 1, s ∈ Jj, j = 1, . . . , l. Hence, if one replace (f1, . . . , fr, a1, . . . , ar) by
(fm1 , . . . , f

m
r , f

n
1 (a1), . . . , fnr (ar)) for any m ≥ 1, n ≥ 0, we get the same datas

{0, . . . , r} = tlj=1Jj and ds/j ≥ 1, s ∈ Jj, j = 1, . . . , l.

Transcendence of Böttcher coordinates.

Theorem 4.18 (=Theorem 1.13). The following statements hold.

(i) For integers n1, . . . , nr,
∏r

i=1 φ
ni
fi

(ai) is either transcendence over K or a
root of unity.

(ii) The product
∏r

i=1 φ
ni
fi

(ai) is a root of unity, if and only if, for every j =
1, . . . , l,

∑
s∈Jj nsds/j = 0.

Part (i) of Theorem 4.18 was proved in [Ngu, Theorem 1.4] in the number
field case. Part (ii) of Theorem 4.18 answers the first question proposed in [Ngu,
Section 4.3].

Proof of Theorem 4.18. Assume that b :=
∏r

i=1 φ
ni
fi

(ai) is algebraic over K. After

replacing K by a finite extension, we may assume that b ∈ K. Let X := (P1)r+1

and let G : X → X be the endomorphism

G : (z1, . . . , zl, y) 7→ (f1(z1), . . . , fl(zl), y
d).

Set x := (a1, . . . , ar, b) ∈ X(K). For n ≥ 0, set

xn := Gn(x) = (fn1 (a1), . . . , fnl (al), b
dn) ∈ X(K).

Let π : (P1)r+1 → (P1)r be the projection to the first r-coordinates. We have π ◦
G = F ◦π. Set H∞ := (P1)r+1\(A1)r+1. Set H := ∩m≥0{xn, n ≥ m} ⊆ X. Because
{xn, n ≥ m} ∩H∞ = ∅, no irreducible component of H is contained in H∞. It is
clear that π(H) = PF (a). By Remark 4.17, we may replace (f1, . . . , fr, a1, . . . , ar)
by (fm1 , . . . , f

m
r , f

n
1 (a1), . . . , fnr (ar)) for some suitble m ≥ 1, n ≥ 0 to assume

that H = {xn, n ≥ 0} and is irreducible. Hence the ZF (a) = PF (a) = P+
F (a) is

irreducible. In this case, tF (a) = 0 and pF (a) = 1.

We first prove the “if” part of (ii). Because ZF (a) = P+
F (a), there is (u1, . . . , ul) ∈

(
∏l

j=1 Φj)
−1((a1, . . . , ar)). By Corollary 4.7, we have

l∏
j=1

φ

∑
s∈Jj

nsds/j
gj (uj) =

l∏
j=1

∏
s∈Jj

φ
nsds/j
gj (uj) = µ

r∏
i=1

φnifi (ai)

for some (d − 1)-th root of unity. If
∑

s∈Jj nsds/j = 0 for every j = 1, . . . , l, the

left hand side of the above equality is 1, so
∏r

i=1 φ
ni
fi

(ai) is a root of unity.

Now we only need to prove (i) and the “only if” part of (ii). Consider the
analytic subvariety V ′ ⊆

∏r
i=1(Ωv(fi) \ {∞}) × A1

v defined by y =
∏
φnifi (zi).

Because φfi , i = 1, . . . , r is meromorphic at ∞, V ′ extends to a closed analytic
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subvariety V ⊆
∏r

i=1(Ωv(fi))× P1
v. Set Zv := V ∩H∞. Because all coefficients of

φfi , i = 1 . . . , r are contained in K, Zv is the analytification of a K-subvariety of
H∞ and V is defined over K along Z.

Because |fni (ai)|v → ∞ for every i = 1, . . . , r, lim
n→∞

xn ⊆ H∞,v in the v-adic

topology. Because xn ∈ V for n ≥ 0, lim
n→∞

xn ⊆ Zv. Let h be the naive height

on P1(K) i.e. for every z ∈ P1(K), hw(z) = log max{1, |z|w}, w ∈ MK and
h(z) = [K : F]−1

∑
w∈MK

nwhw(z). There is C1 > 1 such that C−1
1 dn ≤ hv(xn) ≤

h(xn) ≤ C1d
n for every n ≥ 0. By (vi) of Facts 2.2, hv(z) = gZv/V,v(z) +O(1) for

every z ∈ V(Kv). Then all assumptions in Theorem 2.4 are satisfied. By Theorem
2.4, there is an open neighborhood Ω of (∞, . . . ,∞) ∈ (P1)r in

∏r
i=1(Ωv(fi) such

that F (Ω) ⊆ Ω, V ∩ Hv ∩ π−1(Ω) ⊆ H ∩ π−1(Ω) and dimH = dimV ∩ Hv. In
particular, V∩Hv∩π−1(Ω′) contains a non empty open subsetW of Hv∩π−1(Ω′),
where Ω′ := Ω\{(∞, . . . ,∞)}. Because G(xn) = xn+1, H is G-invariant. Because
V \H∞,v = V ′ is a section of π on

∏r
i=1(Ωv(fi) \ {∞}), H \H∞ 6= ∅ and dimH =

dimV ∩Hv, H 6= π(H)× P1. By (i) of Proposition 3.17, H takes form π(H)× c
where c is a (d − 1)-th root of unity. Because x0 ∈ H, we get b = c is a
(d − 1)-th root of unity, which implies (i). Then π(W) is open in π(H) and
π−1(π(W)) ∩ V =W .

Note that π(H) = P+
F (a) is an irreducible closed F -invariant subvariety. More-

over, we get

{(z1, . . . , zr, b)| (z1, . . . , zr) ∈ π(W)} =W

= {(z1, . . . , zr,
r∏
i=1

φnifi (zi))| (z1, . . . , zr) ∈ π(W)}.

Hence for every (z1, . . . , zr) ∈ π(W), one has
∏r

i=1 φ
ni
fi

(zi) = b. By Corollary 4.7,

for every (w1, . . . , wl) ∈ (
∏l

j=1 Φj)
−1(π(W)), we get

(4.4)
l∏

j=1

φ

∑
s∈Jj

nsds/j
gj (wj) =

l∏
j=1

∏
s∈Jj

φ
nsds/j
gj (wj) = bµ

for some (d − 1)-root of unity µ. We note that
∏l

j=1 φ

∑
s∈Jj

nsds/j
gj (wj) is a mero-

morphic function on (
∏l

j=1 Φj)
−1(Ω) and (

∏l
j=1 Φj)

−1(π(W)) is a nonempty open

subset of (
∏l

j=1 Φj)
−1(Ω), Equality 4.4 holds on (

∏l
j=1 Φj)

−1(Ω). We note that

(
∏l

j=1 Φj)
−1(Ω) is a neighborhood of (∞, . . . ,∞) ∈ (P1)l. Because for every

j = 1, . . . , l, lim
w→∞

|φgj(w)/w|v = cj for some cj ∈ (0,+∞), there is B > 1, such

that for (w1, . . . , wl) ∈ (
∏l

j=1 Φj)
−1(Ω(Kv)),

B−1 ≤ |
l∏

j=1

w

∑
s∈Jj

nsds/j

j |v ≤ B.

Hence for every j = 1, . . . , l,
∑

s∈Jj nsds/j = 0. This concludes the proof. �
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4.6. Algebraicity and Q-linear relations of canonical heights. In this sec-
tion, K is a number field. Denote by M∞

K the archimedean places of K and M f
K

the non-archimedean places of K.

Proposition 4.19. For f ∈ Dd with coefficients in K and a ∈ K, Ĥf (a) is
algebraic if and only if for every v ∈M∞

K , |fn(a)|v, n ≥ 0 is bounded.

This result is [Ngu, Corollary 1.6]. It is directly implied by (i) of Theorem 4.18
and the following well known fact.

Lemma 4.20. [Ngu, Lemma 2.1] If v ∈M f
K, then Gf,v(a) = pc for some c ∈ Q.

Remark 4.21. The proof of Lemma 4.20 shows thatGf,v(a) is indeed computable

for v ∈M f
K .

In [Ngu, Section 4.3], Nguyen suggested to study the Q-linear relations of the
canonical heights. He also proved a partial result [Ngu, Corollary 1.8] in this
direction. He suspected that some result like (ii) of Theorem 4.18 may be helpful
for this problem. In this section, we follows Nguyen’s suggestion to get some
applications of Theorem 4.18.

Recall that we have defined an equivalence relation ∼ on DPd in Section
4.4. We now introduce another equivalence relation: Set G := Gal(Q/Q). For
(f, a), (g, b) ∈ DPd, we write (f, a) ∼w (g, b) if there is σ ∈ G such that (f, a) ∼
σ(g, b) := (σ(g), σ(b)). We say such (f, a), (g, b) are weakly equivalent. Because ∼
is an equivalence relation and G is a group, ∼w is an equivalence relation. It is
clear that (f, a) ∼ (g, b) implies (f, a) ∼w (g, b).

Remark 4.22. Weak equivalence does not implies equivalence. For example,
let f1 = f2 = z(z + 1/2), a1 = 3 − 2

√
2 and a2 = 3 + 2

√
2. Because (f1, a1)

and (f2, a2) are conjugate by some σ ∈ G, (f1, a1) ∼w (f2, a2). On the other
hand, when n → ∞, |fn1 (a1)| → 0 and |fn2 (a2)| → ∞. By Proposition 4.13
(f1, a1) 6∼ (f2, a2).

Remark 4.23. For (f, a) ∈ PDd and σ ∈ G, ĥf (a) = ĥσ(f)(σ(a)). Hence, by

Corollary 4.13, for (f, a) ∼w (g, b), ĥf (a)/ĥf (b) ∈ Q∗.

For a finite set of weakly equivalent elements (fi, ai) ∈ DPd, i = 1, . . . , r, define

Q((fi, ai), i = 1, . . . , r) := [ĥf1(a1) : · · · : ĥfr(ar)] ∈ Pr−1(Q) \ (∪ri=1{zi = 0}).
It can be computed as follows: there are σi ∈ G, i = 1, . . . , r, such that σi(fi, ai), i =
1, . . . , r are equivalent. Then we have

Q((fi, ai), i = 1, . . . , r) = d(σi(fi, ai), i = 1, . . . , r).

Remark 4.24. Thought the definition of Q((fi, ai), i = 1, . . . , r) involves the
canonical heights, the above argument shows that, up to some Galois conjuga-
tions, it is indeed a geometric invariant.

Define Td to be the set of (f, a) ∈ Dd × Q for which there is an embedding
τ : Q ↪→ C such that |τ(fn(ai))|, n ≥ 0 is unbounded. We have Td ⊆ DPd.
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Moreover, by Proposition 4.19, (f, a) ∈ Td if and only if Ĥf (a) is not algebraic.
By Lemma 4.23, for (f, a), (g, b) ∈ DPd, if (f, a) ∼w (g, b), they are contained in
Td in the same time.

The following result generalizes Proposition 4.19.

Proposition 4.25 (=Proposition 1.14). For (fi, ai), . . . , (fr, ar) ∈ Dd×Q, n1, . . . , nr ∈
Z, set T := {i = 1, . . . , r| (fi, ai) ∈ Td}. Let T = tlj=1Jj be the partition associated

to ∼w . Then
∏r

i=1 Ĥfi(ai)
ni is algebraic if and only if for every j = 1, . . . , l,

Q((fs, as), s ∈ Jj) ∈ {
∑
s∈Jj

nszs = 0}.

Remark 4.26. By Proposition 4.13, if Q((fs, as), s ∈ Jj) ∈ {
∑

s∈Jj nszs = 0},∏
s∈Jj Ĥfi(ai)

ni = 1. Hence we get that
∏r

i=1 Ĥfi(ai)
ni is algebraic if and only if∏

i∈T Ĥfi(ai)
ni = 1.

Proof of Proposition 4.25. The “if” part is obvious. Now we prove the “only if”
part.

By Proposition 4.19, we may assume that (fi, ai), . . . , (fr, ar) ∈ Td. Let K
be a number field which contains a1, . . . , ar, all coefficients and all (d − 1)-th
roots of leading coefficients of fi, i = 1, . . . , r. After enlarging K, we may as-
sume that K/Q is Galois and K can not be embedded in R. After replacing
(fi, ai) by (σi(fi), σi(ai)) for some σi ∈ GK := Gal(K/Q) for each i, we may
assume that for i, j = 1, . . . , r, (fi, ai) ∼ (fj, aj) if and only if (fi, ai) ∼w
(fj, aj). Hence, for every σ ∈ GK , (σ(fi), σ(ai)) ∼ (σ(fj), σ(aj)) if and only
if (σ(fi), σ(ai)) ∼w (σ(fj), σ(aj)). Now we only need to show that for every

j = 1, . . . , l,
∑

s∈Jj nsĥfs(as) = 0.

Write
r∏
i=1

Ĥfi(ai)
ni =

r∏
i=1

∏
v∈MK

Ĝfi,v(ai)
ninv

= (
r∏
i=1

∏
v∈M∞K

Ĝfi,v(ai)
ninv)× (

r∏
i=1

∏
v∈Mf

K

Ĝfi,v(ai)
ninv)

By Lemma 4.20,
∏r

i=1

∏
v∈M∞K

Ĝfi,v(ai)
ninv is algebraic.

Fix an embedding K ↪→ C to view K as a subfield of C. We will omit the
place v0 associated to this embedding when it appears in any notation. For
example, the Green function Ĝfi,v0 will be written as Ĝfi . Because K has no
real embedding, for each v ∈ M∞

K , nv = 2 and it corresponds to exactly a
pair of conjugate elements σ, σ̄ ∈ GK . We note that, over C, φσ̄(fi)(σ̄(x)) =

φσ(fi)(σ(x)) for every i = 1, . . . , r and x ∈ K ∩ Ω(σ(fi)) = Ω(σ̄(fi)). For every

i, σ, we denote by G(σ, i) the Green function Ĝfi,v(ai) = Ĝσ(fi)(σ(ai)) where v is

the place associated to σ and by h(i) the canonical height of ĥfi(ai). For pairs
(i, σ), (j, δ) ∈ {1, . . . , r}×GK , write (i, σ) ∼ (j, δ) if (σ(fi), σ(ai)) ∼ (δ(fj), δ(aj))
and (i, σ) ∼w (j, δ) if (σ(fi), σ(ai)) ∼w (δ(fj), δ(aj)).
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Let A be the set of (σ, i) such that G(σ, i) > 1. Note that (σ, i) ∈ A if and
only if (σ, i) ∈ A. Moreover if (i, σ) ∼ (j, δ) then they are contained in A at the
same time. After replacing ai, i = 1, . . . , r by fni (ai), i = 1, . . . , r for some large
enough n ≥ 0, we may assume that σ(ai) ∈ Ω(σ(fi)) for every (σ, i) ∈ A. For
every (σ, i) ∈ A, set Φ(σ, i) := φσ(fi)(ai). For u = (σ, i) ∈ A, set σu := σ and
iu := i. Then

r∏
i=1

∏
v∈M∞K

Ĝfi,v(ai)
ninv =

r∏
i=1

∏
σ∈GK

G(σ, i)ni .

=
∏
u∈A

G(u)niu =
∏
u∈A

|Φ(u)|niu =
∏
u∈A

Φ(u)niu

is algebraic. By Theorem 4.18 and Proposition 4.13,
∏

u∈A |Φ(u)|niu = 1 and for
every equivalence class α ∈ A/ ∼, we have

(4.5)
∑
u∈α

niuh(iu) = 0.

For every i = 1, . . . , r, define Gi := {σ ∈ GK | (σ, i) ∈ A}. Because T =
{1, . . . , r}, Gi 6= ∅. If (fi, ai) ∼ (fj, aj), then Gi = Gj. Hence for every j = 1, . . . , l
the set Gs does not depend on s ∈ Jj. We denote it by Gj. Then

|Gj|
∑
s∈Jj

nsĥfs(as) =
∑

u∈A,iu∈Jj

niuh(iu).

By Equality 4.5, we only need to show that that for (σ, s) ∼ (δ, t), if (σ, s) ∈ {u ∈
A| iu ∈ Jj}, then (δ, t) ∈ {u ∈ A| iu ∈ Jj}. Because (σ, s) ∈ {u ∈ A| iu ∈ Jj},
s ∈ Ji. Because (σ, s) ∼ (δ, t), (id, s) ∼w (id, t). By our assumption, we have
(id, s) ∼ (id, t), which shows that t ∈ Ji. This concludes the proof. �

Proposition 4.13 and Proposition 4.25 directly imply the following result on
Q-linear relations of canonical heights.

Corollary 4.27. Let (fi, ai), . . . , (fr, ar) ∈ (Dd × Q) be dynamical pairs. Set
T := {i = 1, . . . , r| (fi, ai) ∈ Td} and U := {i = 1, . . . , r| (fi, ai) ∈ DPd \ Td} Let
T = tlj=1Jj, U = tnm=1Mm be the partition associated to ∼w . Let n1, . . . , nr ∈ Z.
Then the following holds:

(i) If for every j = 1, . . . , l,m = 1, . . . , n,

Q((fs, as), s ∈ Jj) ∈ {
∑
s∈Jj

nszs = 0} and Q((fs, as), s ∈Mm) ∈ {
∑
m∈Mm

nmzm = 0},

then
∑r

i=1 ĥfi(ai)
ni = 0.

(ii) If U = ∅, and
∑r

i=1 ĥfi(ai)
ni = 0, then for every j = 1, . . . , l,m = 1, . . . , n,

Q((fs, as), s ∈ Jj) ∈ {
∑
s∈Jj

nszs = 0}.

In particular, if (fi, ai), . . . , (fr, ar) ∈ T , ĥfi(ai), i = 1, . . . , r are linearly inde-
pendent over Q if and only if (fi, ai) 6∼ (fj, aj) for every i 6= j.
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Example 4.28 shows that the condition in (i) is not necessary.

Discussion. Now we discuss the linear relations between canonical heights of
dynamical pairs. For every pair α = (f, a) ∈ D, set h(α) := ĥf (a). Write
Dd = Pd tTd t (DPd \ Td). Because h(Pd) = 0, the pairs in Pd are not interesting
for our discussion.

Let 〈h(Td)〉 and 〈h((DPd \ Td))〉 be the Q-spaces generated by Td and DPd \ Td
respectively. By Corollary 4.27, these two space are Q-linearly independent. So
we only need to study the linear relations in h(Td) and in h((DPd\Td)) separately.

Corollary 4.27 completely classified the Q-linear relations in h(Td). After Galois
conjugations, all the relations come from geometry.

For h((DPd \ Td)), the situation is different. The condition in (i) of Corollary
4.27 is not necessary. In other words, not all Q-linear relations in h(Td) come
from geometry even up to Galois conjugations.

Example 4.28. Let f = z(z+ 1/2), g = z(z+ 3/8), a = b = 1/16. Easy to check
that (f, a), (g, b) ∈ DPd\Td. We first view them as complex dynamical systems via
the unique embedding Q ↪→ C. Because the unique critical point of f (resp. g) in
C is contained in the attracting basin of the attracting fixed point 0 of f (resp. g),
0 is the unique attracting periodic point of f (resp g). Because the multiplers 1/2
and 3/8 for f and g are multiplicatively independent, f 6∼ g. Hence (f, a) 6∼ (g, b).
Because (f, a) and (g, b) are defined over Q, (f, a) 6∼w (g, b). Easy to check that
ĝf,v(a) = ĝg,v(b) = 0 for all v ∈ MQ \ {2} and ĝf,2(a) = ĝg,2(b) = 4 log 2. Hence

ĥf (a) = ĥg(b) = 4 log 2.

However, as said in Remark 4.21, the non-archimedean Green functions are
computable for dynamical pairs. For pairs in DPd \ Td, their archimedean green
functions are 0 and their non-archimedean green functions are computable, hence
their canonical heights are computable. By Lemma 4.20, those canonical heights
take form

(4.6)
∑

p primes

cp log p

where cp are rational numbers which are 0 except finitely many. Because log p, p primes
are Q-linearly independent, it is easy to find all Q-linear relations between finitely
many real numbers having form (4.6).

5. Invariant germs of curves at infinity

In the section, K is of characteristic zero.

5.1. Some classes of polynomial endomorphisms. Let k be a field of char-
acteristic zero. For N ≥ 2, d ≥ 2, denote by P(N, d) the space of dominant
endomorphisms f : AN → AN taking form

f : (x1, . . . , xN) 7→ (f1(x1, . . . , xN), . . . , fN(x1, . . . , xN))



35

of algebraic degree deg1(f) = d. Recall that the algebraic degree of f is

deg1(f) := max{deg(f1), . . . , deg(fN)}.

Write fi =
∑
|I|≤d ai,Ix

I , i = 1, . . . , N where I = (i1, . . . , iN) ∈ ZN≥0, x
I =

xi11 . . . x
iN
N and |I| = i1 + · · ·+ iN .

The Jacobian JN,d of f is a polynomial in variables x1, . . . , xN and ai,I , i =
1, . . . , N, |I| ≤ d of degree at most dN in x1, . . . , xN . So we may write

JN,d =
∑
|J |≤dN

bJ(ai,I , i = 1, . . . , N, |I| ≤ d)xJ ,

where bJ are polynomials in ai,I , i = 1, . . . , N, |I| ≤ d. Then we get

P(N, d) = Spec (k[ai,I , 1 ≤ i ≤ N, |I| ≤ d])\((∪|J |≤dN{bJ = 0})∪(∩1≤i≤N,|J |=d{ai,J = 0})),

which is an irreducible quasi-affine variety of dimension N
(
d+N+1
N

)
.

For general N ≥ 2, we will introduce two spaces P∗(N, d) and PNS(N, d) of
P(N, d). The relations among them are as follows:

PNS(N, d) ⊆as a dense Gδ-set P∗(N, d) ⊆as a dense open subset P(N, d).

When N = 2, we introduce another subspace PNP (2, d). We have

PNS(2, d) ⊆as a dense Gδ-set PNP (2, d) ⊆as a dense open subset P∗(2, d) ⊆ P(2, d).

In Section 5, we will prove algebricity results for invariant analytic germs of curves
for f ∈ P(N, d). Moreover, we will show that there are a lot of invariant analytic
germs of curves when f ∈ P∗(N, d). For f ∈ PNS(N, d), we will show that
the f -periodic curves are of degree at most 2. This leads to a criterion for the
transcendence of them. In Section 6, we will focus on those f ∈ PNP (2, d) and
classify such f having infinitely many invariant curves.

Extendable endomorphisms. Via the standard embedding AN ↪→ PN , every f ∈
P(N, d) extends to a rational self-map on PN . Denote by P∗(N, d) the space
of f ∈ P(N, d) whose extension is an endomorphism. This space is a Zariski
dense open subset of P(N, d). Indeed, P∗(N, d) can be viewed as follows: Let
H∞ := PN \ AN be the hyperplane at infinity. Then f induces a rational self-
map f := f |H∞ on H∞. Then f ∈ P∗(N, d) if and only if f |H∞ is everywhere
well-defined. For each i = 1, . . . , N , let fi =

∑
|I|=d ai,Ix

I be the leading terms of

fi. Then f is the endomorphism H∞ = PN−1 → PN−1 sending [x1 : · · · : xN ] to
[f1 : · · · : fN ]. Denote by Rad(N−1, d) the space of rational self-maps on PN−1 of

degree d. It is clear that Rad(N − 1, d) = ProjK[ai,J , 1 ≤ N, |J | = d] = PN(d+NN−1).

The morphism Φ : P(N, d) → Rad(N − 1, d) defined by f 7→ f is surjective.
Observe that f is everywhere well defined if and only if the zero set

If := {f1 = · · · = fN = 0} ⊆ PN−1
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is empty. This happens if and only if fi 6= 0 for i = 1, . . . , N and the intersections
of the divisors {fi = 0}, i = 1, . . . , N on PN−1 is a proper intersection. Hence the
space of endomorphisms of PN−1 of degree d

End(N − 1, d) := {f ∈ Rad(N − 1, d)| If 6= ∅}

is Zariski dense and open in Rad(N − 1, d). Then

P∗(N, d) = Φ−1(End(N − 1, d))

is a Zariski dense open subset of P(N, d).

Endomorphisms without supperattracting periodic points. For f ∈ End(N − 1, d),
we say that f has NS property if for every n ≥ 1, every fixed point x of f

n
, df |x

is invertible. For every f ∈ P∗(N, d), we say that f has NS property at infinity
if f has NS property, and define PNS(N, d) to be the set of f ∈ P∗(N, d) of has
NS property at infinity. For every f ∈ P∗(N, d), by Proposition 3.3, Fix(fn)
is finite for every n ≥ 0. Hence for every n ≥ 1, one get a function θn on
P∗(N, d) sending f to

∏
x∈Fix(fn) det(dfn|x). Here we count the fixed points with

multiplicities. Because θn does not vanish at a general point of P∗(N, d), its zero
set Zn := {θn = 0} is a proper closed subset of P∗(N, d). Then we have

PNS(N, d) = P∗(N, d) \ (∪n≥1Zn).

As a consequence, a very general f ∈ P∗(N, d) satisfies the NS property at infinity.
When k is uncountable, this implies that most of f ∈ P∗(N, d) satisfies the NS
property at infinity. When k is countable, the notion “very general” does make
much sense: even a property is satisfied by a very general point, it may not be
satisfied by any k−point. An alternative is to use the notion of “adelic general”,
which was introduced in [Xie22, Section 3.1]. We will show that the NS property
at infinity is satisfied by an adelic general point in Section 5.2.

Endomorphisms of NP type. In this section, we focus the case N = 2.
For an endomorphism f : P1 → P1 of degree d ≥ 2. A point x ∈ P1(k) is

called exceptional, if its inverse orbit ∪n≥0f
−n

(x) is finite. It is well known that
for every f there are at most 2 exceptional points. We say that f is of NP-type
if it does not have any exceptional point. Easy to see that f is of NP type if and
only if f

n
is of NP type for some n ≥ 1. Moreover, for two endomorphisms f, g

of P1 of degree d ≥ 2. Then f is of NP type if and only if g is of NP-type.
Let RadNP (1, d) be the space of f ∈ Rad(1, d) which is of NP-type. It is a

Zariski dense open subset of Rad(1, d). Indeed, for f ∈ Rad(1, d), it is not of
NP-type, if and only if there is a fixed point x of f 2 satisfying f−2(x) = x. This
a closed condition. So RadNP (1, d) is Zariski open in Rad(1, d). Easy to check
that the map z 7→ (z2 + 0.001)/(0.001z2 + 1) is of NP-type, hence RadNP (1, d) is
non-empty.

For f ∈ P∗(2, d), we say that f is NP at infinity, if f is of NP type. Then
PNP (2, d) := Φ−1(RadNP (1, d)) is the space of f ∈ P∗(2, d) which are NP at
infinity, Because Φ|P∗(2,d) is dominant, PNP (2, d) is a Zariski dense open subset
of P∗(2, d).
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5.2. Adelic denseness of NS endomorphisms. In this section, we will show
that the NS property at infinity is satisfied by an adelic general point.

We first gather some of the properties satisfied by the adelic topology. See
[Xie22, Section 3] for its precise definition and more properties. Assume that k
is an algebraically closed extension of Q of finite transcendence degree. Let X be
a variety over k. The adelic topology is a topology on X(k), which is defined by
considering all possible embeddings of k in C and Cp, for all primes p.

An impotent example of adelic open subsets is as follows: Let L be a subfield
of k such that its algebraic closure L is equal to k, L is finitely generated over
Q, and X is defined over L i.e. X = XL ⊗L k for some variety XL over L. Fix
any embedding τ : L ↪→ Cp(resp. C). Then, given any open subset U of XL(Cp)
for the p-adic (resp. euclidean) topology, the union XL(τ, U) := ∪ιΦ−1

ι (U) for all
embeddings ι : k → Cp extending τ is, by definition, an open subset of X(k) in
the adelic topology. Moreover XL(τ, U) is empty if and only if U = ∅.

The adelic topology has the following basic properties.

(1) It is stronger than the Zariski topology. If dim(X) ≥ 1, there are non-
empty, adelic, open subsets U and U ′ of X(k) such that U \ U ′ is Zariski
dense in X.

(2) It is T1, that is for every pair of distinct points x, y ∈ X(k) there are adelic
open subsets U , V of X(k) such that x ∈ U , y 6∈ U and y ∈ V , x 6∈ V .

(3) Morphisms between algebraic varieties over k are continuous in the adelic
topology.

(4) Flat morphisms are open with respect to the adelic topology.
(5) The irreducible components of X(k) in the Zariski topology coincide with

the irreducible components of X(k) in the adelic topology.
(6) Let L be a subfield of k such that (a) its algebraic closure L is equal to k,

(b) L is finitely generated over Q, and (c) X is defined over L. Endow
the Galois group Gal(k/L) with its profinite topology. Then the action
Gal(k/L)×X(k)→ X(k) is continuous for the adelic topology.

Remark 5.1. From (5), when X is irreducible, the intersection of finitely many
nonempty adelic open subsets of X(k) is nonempty.

We say that a property P holds for an adelic general point if there exists an
adelic dense open subset U of X(k), such that P holds for all points in U .

Theorem 5.2. Assume that k is an algebraically closed extension of Q of finite
transcendence degree. For N ≥ 2, an adelic general f ∈ P∗(N, d) (resp. f ∈
Rad(N − 1, d)) satisfies the NS property at infinity (resp. NS property).

Proof of Theorem 5.2. By (3), Φ is continuous w.r.t. the adelic topology. Since
Φ(P∗(N, d)) contains a Zariski dense open subset of Rad(N − 1, d), by (1) and
(5), we only need to show that an adelic general f ∈ Rad(N − 1, d) satisfies the
NS property.

Let L be a subfield of k such that its algebraic closure L is equal to k, L is
finitely generated over Q. Because Rad(N − 1, d) is defined over Q, it is defined
over L.
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Lemma 5.3. There is an endomorphism g ∈ Rad(N − 1, d), a prime p > 0 a
field embedding τ : k ↪→ Cp, such that g ⊗k Cp has good reduction i.e. it extends
to a finite endomorphism on PNC◦p and for every fixed point x̃ ∈ Fix(g̃n), n ≥ 1

where g̃ is the specialization of g ⊗k Cp, dg̃
n|x̃ is invertible.

The g in the above lemma satisfies the NS property. Our idea is to should
that a small perturbation of g, w.r.t. the topology induced by τ , still satisfies
the NS property. One may write g = [g1 : · · · : gN ] where gi, i = 1, . . . , N
are contained in τ−1(C◦p) ∩ k and the leading coefficients of τ(gi), i = 1, . . . , N
are of norm 1. Via τ , view g as an endomorphisms over Cp. Consider the p-
adic open neighborhood U of g in Rad(N − 1, d)(Cp) of endomorphisms taking
form [x1 : · · · : xN ] → [g1 + F1(x1, . . . , xN) : · · · : gN + FN(x1, . . . , xN)] where
Fi, i = 1, . . . , N are homogenous polynomials of degree d with coefficients in

C◦◦ = {a ∈ Cp| |a|p < 1}. For every f ∈ U , we have f̃ = g̃. Hence for every fixed

point x̃ ∈ Fix(f̃n), n ≥ 1 , df̃n|x̃ is invertible. This implies that for every f ∈
Φ−1
τ (U), f satisfies the NS property. Because the the NS property is an algebraic

property, for every f ∈ Φ(P∗(N, d))L(τ |L, U), f satisfies the NS property, which
concludes the proof. �

Proof of Lemma 5.3. Because Q ⊆ k, we may assume that k = Q. I learned the
following lemma from Charles Favre.

Lemma 5.4. For every d ≥ 2, there is an endomorphism h : P1 → P1 of Lattès
type of degree d defined over Q.

An endomorphism h of Lattès type is hyperbolic PCF i.e. all critical points
of h are preperiodic, but not periodic. We may assume that h is defined over
a number field K. There is a finite set of places S of K containing M∞

K such
that h extends to a finite endomorphism hOS of P1

OS
over OS and for every place

v ∈M∞
K \ S, the specialization h̃ of h satisfies the following property: all critical

points of h̃ are preperiodic, but not periodic. In other words, for every fixed

point z̃ ∈ Fix(h̃n)(K̃v), n ≥ 1, dh̃n|x̃ 6= 0. Here OS is the ring of S-integers in
K. Consider the diagonal endomorphism h × · · · × h : (P1)N−1 → (P1)N−1. The
symmetric group ΣN−1 acts on (P1)N−1 by permuting the the coordinates. This
action commutes with the endomorphism h× · · ·×h. By [Maa05, Corollary 2.6],
one gets (P1)N−1/ΣN−1 ' PN−1. Hence h×· · ·×h descends to an endomorphism
g on (P1)N−1/ΣN−1 ' PN−1. Moreover it extends to a finite endomorphism (h×
· · ·×h)OS = hOS×OS · · ·×OS hOS on (P1

OS
)N−1. After enlarging S, we may assume

that (P1
OS

)N−1/ΣN−1 ' PN−1
OS

and g extends to a finite endomorphism gOS on

PN−1
OS

. For every closed point y ∈ (P1
OS

)N−1 which is fixed by (h× · · · × h)nOS for
some n ≥ 1, (h × · · · × h)OS induces an étale endomorphism on the local ring
O(P1

OS
)N−1,y. Let y′ be the image of y in PN−1

OS
. It is fixed by gnOS . Indeed all

periodic points of gOS are image of periodic points of (h× · · · × h)OS By [Sta19,
Proposition 41.20.6], the morphism gOS induces an étale endomorphism on the
local ring OPN−1

OS
,y′ . Pick v ∈ MK \ S and let p the prime number associated to
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v. Then v induces an embedding τ ′ : K ↪→ Cp, which extends to an embedding
τ : k ↪→ Cp. Then for every fixed point x̃ ∈ Fix(g̃n), n ≥ 1, dg̃n|x̃ is invertible. �

Proof of Lemma 5.4. First assume that d = m2 a prefect square. Pick any elliptic
curve E over Q, let [m] : E → E be the multiplication by m. Then [m] descents to
an endomorphism g on P1 = E/[±1]. Then deg g = m2 = d. Otherwise, d = m2l
where m ∈ Z and l is a square free integer. Let E be any elliptic curve over
Q with End(E) ⊗ Q = Q(

√
−l). Then multiply by m

√
−l defines a complex

multiplication on E. It descents to an endomorphism g on P1 = E/[±1]. Then
deg g = |m

√
−l|2 = d. �

5.3. Algebraicity of invariant branches of curves at infinity. Let d ≥ 2
and f : AN → AN be an endomorphism in P(N, d)(K). We embed AN in PN and
denote by H∞ := PN \ AN the hyperplane at infinity. Let gv, v ∈ MK and h be
the naive Green functions and naive height on AN respectively.

Let S be a finite set of places S ⊆MK containing M∞
K such that f extends to

an endomorphism fOS : AN
OS
→ AN

OS
where OS is the ring of S-integers in K. Let

(v, ov, Cv) be a branch of curve at infinity defined over K. We note that if Cv is
irreducible and not contained in H∞, Cv ∩ (H∞)v is finite and it contains ov. We
say that Cv is f -invariant if f(Cv \ {ov}) ⊆ Cv \ {ov}. if Cv is f -invariant, then
f(Cv) contains an open neighborhood of ov in Cv.

The following proposition is directly implied by the Northcott property of K
and Theorem 2.7.

Proposition 5.5. Let x be a point in AN
OS

(OS) which is not f -preperiodic. As-
sume that for v ∈ S, there is a branch of curve (v, ov, Cv) at infinity defined over
K which is f -invariant and containing x. Then the Zariski closure of Of (x) has
dimension 1. Moreover, for v ∈ S, if gv(f

n(x)), n ≥ 0 is unbounded and Cv is
irreducible at ov, then Cv is algebraic over K.

If further f ∈ P(N, d)(K), we get a result which applies for a single branch of
curve.

Proposition 5.6 (=Proposition 1.17). Let x ∈ AN(K) and v ∈ MK such that
gv(f

n(x)) → ∞ as n → ∞. Let (v, ov, Cv) be an irreducible branch of curve
at infinity defined over K which is f -invariant and containing x. Then Cv is
algebraic over K at ov.

Proof Proposition 5.6. It is well known that there is Bv > 0 such that for every
y ∈ KN

v with gv(y) ≥ Bv, we have

lim
n→∞

gv(f
n(y))/dn ∈ (0,+∞).

On the other hand, because x is not preperiodic, its canonical height exists and
positive i.e.

lim
n→∞

h(fn(x))/dn ∈ (0,+∞).

Then we conclude the proof by Theorem 2.7. �
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5.4. Periodic points at infinity. Let d ≥ 2 and f : AN → AN be an endomor-
phism in P∗(N, d)(k). For n ≥ 0, let F ′(fn) be the set of fixed points x ∈ H∞ of
f
n

: H∞ → H∞ such that df
n|x is invertible. We note that when f ∈ PNS(N, d),

F ′(fn) = Fix(f
n
) for every n ≥ 1. The following lemma shows that even in the

general case, most of the fixed points of f
n

are contained in F ′(fn).

Lemma 5.7. For f ∈ P∗(N, d)(k), we have

|F ′(fn)|/|Fix(fn)| → 1 and |Fix(fn)|/d(N−1)n → 1

for n→∞. Moreover ∪n≥1F
′(fn) is Zariski dense in H∞.

Proof of Lemma 5.7. Fix an embedding τ : k ↪→ C. Via τ , we view f as a complex
dynamical system. For n ≥ 0, let F ′′(fn) be the set of repelling fixed points of
fn. Then we have

F ′′(fn) ⊆ F ′(fn) ⊆ Fix(fn).

By Lefschetz fixed point theorem, we have

lim sup
n→∞

|Fix(fn)|/d(N−1)n ≤ 1.

By [DNT15, Theorem 1.1],

lim inf
n→∞

|F ′(fn)|/d(N−1)n ≥ lim
n→∞

|F ′′(fn)|/d(N−1)n = 1.

Then we get

|F ′(fn)|/|Fix(fn)| → 1 and |Fix(fn)|/d(N−1)n → 1

for n→∞. We now prove that ∪n≥1F
′(fn) is Zariski dense in H∞.

We note that f(F ′(fn)) = F ′(fn) for every n ≥ 0. Let Z be the Zariski closure
of ∪n≥1F

′(fn), then we have f(Z) = Z. After replacing f by a suitable positive
iterate, we may assume that every irreducible component of Z is fixed by f . Let
Zi, i = 1, . . . , r be all irreducible component of Z. Set fi := f |Zi : Zi → Zi. Then
f ∗i (O(1)|Zi) = O(d)|Zi .

Lemma 5.8. Let g : X → X be an endomorphism of a projective variety. Let L
be an ample line bundle on X satisfying g∗L = L⊗d for some d ≥ 2. Then there
is C > 0 such that |Fix(gn)| ≤ CdndimX for every n ≥ 0.

Then we have
∑r

i=1 |Fix(gni )| ≤ C ′dndimZ for some C ′ > 0. On the other hand,
we have

∑r
i=1 |Fix(gni )| ≥ |F ′(fn)| ≥ cdn(N−1), n ≥ 1 for some c > 0. Then we get

dimZ ≥ N − 1, which implies that Z = H∞. �

Remark 5.9. Lemma 5.8 holds in any characteristic.

Proof of Lemma 5.8. After replacing X by its normalization, we may assume that
X is normal. We denote by ∆ the diagonal of X × X and Γn, n ≥ 1 the graph
of gn. Let πi : X × X → X the projection to the i-th coordinate. We have
Fix(gn) = π1(Γn ∩∆), n ≥ 1. Since Fix(gn) is finite and π1|∆ is an isomorphism,
we get |Fix(gn)| = |Γn ∩ ∆|. Because X may be singular, the intersection of Γn
and ∆ may be not well-defined. That is why we insist of counting fixed points
without multiplicities. Set M := π∗1L ⊗ π∗2L. It is ample on X × X. Let I∆ be
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the ideal sheaf of ∆. There is a > 0 such that M⊗a ⊗ I∆ is generated by global
section.

Lemma 5.10. We have

|Γn ∩∆| ≤ aΓn · c1(M)dimX .

We now compute Γn · c1(M)dimX . Set D := c1(L), Di := π∗i (D), i = 1, 2. Then
c1(M) = D1 +D2. We have

Γn · c1(M)dimX = Γn · (D1 +D2)dimX =
dimX∑
i=0

(
dimX

i

)
(Γn ·DdimX−i

1 ·Di
2)

=
dimX∑
i=0

(
dimX

i

)
((gn)∗Di ·DdimX−i) =

dimX∑
i=0

(
dimX

i

)
dni(Di ·DdimX−i)

= (dn + 1)dimX(DdimX).

Then we get

|Fix(gn)| ≤ a(dn + 1)dimX(DdimX),

which concludes the proof. �

Proof of Lemma 5.10. Let s1, . . . , sdimX be general elements in H0(M⊗a⊗I∆) ⊆
H0(M⊗a). Let Hi be the zero locus of si ∈ H0(M⊗a). Then H1∩· · ·∩HdimX ∩Γn
is zero dimensional. Because ∆ ⊆ H1 · · ·HdimX , we get

|Γn ∩∆| ≤ |H1 ∩ · · · ∩HdimX ∩ Γn| ≤ Γn · (H1 · · ·HdimX) = aΓn · c1(M)dimX ,

which concludes the proof. �

5.5. Existence of invariant branches of curves at infinity. In this section,
set k = K. Let d ≥ 2 and f : AN → AN be an endomorphism in P∗(N, d)(k).

Lemma 5.11. For every o ∈ F ′(f), there is a unique irreducible formal curve Ĉ
at o which is f -invariant and not contained in H∞. It intersects H∞ transversally

at o. If both f and o are defined over K, then Ĉ is defined over K at o.

Proof of Lemma 5.11. In some suitable coordinates, we may assume that o = [0 :
· · · : 0 : 1] and H∞ = {x1 = 0}.

Step 1: We first show that such a formal curve exists after some base changing
k by a field extension L over k. Let L := k((t)) with the t-adic norm. Then f
induces an endomorphism fL on PNL . Let U be the affinoid subdomain of (PNL )an

defined by U := {[x1 : · · · : xN−1 : 1]| |xi| ≤ |t|, i = 1, . . . , N−1}. Then fL induces
an endomorphism g := fL|U : U → U which fixes the hyperplane Y := (H∞)an

L ∩U.
Because df |o is invertible, g|Y : Y → Y is an automorphism. Let g̃, Ũ , Ỹ be the

reduction of g, U and Y . Then g̃(Ũ) = Ỹ . Then, by [Xie22, Theorem 8.3], there
is a unique morphism φ : U → Y such that φ ◦ g = g|Y ◦ φ. In particular,

φ̃ = g̃|Y
−1
◦ g̃. One may check that dg̃ has rank N − 1 everywhere, so dφ̃ has

rank N − 1 everywhere. Hence, for every point x ∈ Y (L), φ−1(x) is a smooth
irreducible curve which intersects Y transversally. Because o is fixed by g, φ−1(o)
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an analytic curve passing through o, which is invariant under g. Its completion

at o defines a formal curve ĈL with coefficients in L. It is invariant under fL.

Step 2: Show the uniqueness of such formal curves even after any base of

k. Let k′ be a field extension of k. Let Ĉ1, Ĉ2 be two irreducible formal curves
passing through o in PNk′ which are invariant under fk′ and not contained in H∞.
Let L := k′((t)) with the t-adic norm. Then f induces an endomorphism fL
on PNL . Let U be the affinoid subdomain of (PNL )an defined by U := {[x1 : · · · :
xN−1 : 1]| |xi| ≤ |t|, i = 1, . . . , N − 1}. We get exactly the same situation as in
the previous paragraph. We keep the notation in the previous paragraph. We

note that Ĉ1 and Ĉ2 induce closed analytic curves C1, C2 in U respectively. We

claim that both C1, C2 equal to φ−1(o). This implies that Ĉ1 = Ĉ2. Now we prove
the claim. We only need to show it for C1. Assume that φ(C1) 6= o. Then φ(C1)
is an irreducible curve in Y. In particular, φ(C1) is g|Y -invariant, compact and
connected. Set C ′ := ∩n≥0g|nY (φ(C1)). Then C ′ is compact and is invariant under
g|Y and g|−1

Y . By the following lemma, C ′ is connected.

Lemma 5.12. Let Yn, n ≥ 0 be a sequence of decreasing connected compact sets.
Then ∩n≥0Yn is connected.

We also note that o ∈ C ′.

Lemma 5.13. We have C ′ 6= {o}.

Then C ′ contains infinitely many points. For every y ∈ C ′ and n ≥ 0, we have
g|−nY (y) ∈ C ′ ∈ φ(C). Hence, there is yn ∈ C such that g|−nY (y) = φ(yn). By (vi)
of [Xie22, Theorem 8.3], we get gn(yn)→ y as n→∞. Because C is g-invariant,
gn(yn) ∈ C for n ≥ 0. Since C is closed, y ∈ C. Then we get C ′ ⊆ C. Because
C ′ ⊆ Y and C ′ is infinite, we get C ⊆ Y which is a contradiction.

Step 3: Assume that f, o are defined over K, show that there is a such formal
curve over K. Note that such a curve is unique if exists by Step 2 and it intersects
H∞ transversally by Step 1. Let L be an algebraically closed field extension of K
such that there is an irreducible formal curve CL in PNL passing through o which
is fL-invariant and is not contained in (H∞)L. We only need to show that CL
is defined by an ideal IL of ÔPNL ,o

which is defined over K. Set G := Gal(L/K).

For σ ∈ G, σ(CL) is also an irreducible formal curve in PNL passing through o
which is fL-invariant and is not contained in (H∞)L. By Step 2, we get that
σ(CL) = CL. It follows that IL is G-invariant. Let m be the local ring of
o ∈ PNK and mL := m ⊗K L. For every n ≥ 1, (IL + mn

L)/mn
L is an ideal of

ÔPNL ,o
/mn

L = (ÔPNK ,o
/mn) ⊗K L which is G-invariant. By Galois descent, there is

an ideal Jn of ÔPNK ,o
/mn such that (IL + mn

L)/mn
L = Jn ⊗K L. It follows that IL

is defined over K. This concludes the proof. �

Proof of lemma 5.12. Assume that Y∞ := ∩n≥0Yn is not connected. Then there
are disjoint open subsets W1,W2 of Y0 such that Y∞ ⊆ W1tW2 and Y∞∩Wi 6= ∅
for i = 1, 2. Set W := W1 ∪W2. Then Y0 \W = ∪n≥0((Y0 \W ) \ (Yn \W )). Since
Y0 \W is compact and (Y0 \W ) \ (Yn \W ), n ≥ 0 are open in Y0 \W , there is
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m ≥ 0 such that Yn \W = ∅ for n ≥ m. Then Ym is not connected, which is a
contradiction. �

Proof of Lemma 5.13. For l ≥ 1, let Vl be the open neighborhood of o in Y
defined by Vl := {[0 : x2 : · · · : xN−1 : 1]| |xi| < |tl|, i = 2, . . . , N − 1}. Since g|Y is
an automorphism of Y and g|Y (o) = o, we have g(Vl) = Vl. There is l ≥ 1 such
that D := φ(C1)\Vl 6= ∅. Then g|Y (D) ⊆ D. Since ∩n≥0g|nY (D) is an intersection
of decreasing compact sets, it is not empty. Moreover it is contained in C ′ \ Vl.
This concludes the proof. �

Lemma 5.14. Keep the notations in Lemma 5.11. For every v ∈ M∞
K , there

is an irreducible analytic curve Cv at o such that the completion of Cv at o is

induced by Ĉ.

Proof of Lemma 5.14. By [Aba01, Theorem 3.1.4], for every v ∈M∞
K , there is an

irreducible analytic curve Cv at o which not contained in H∞ and is f -invariant.

Then it induces an irreducible formal curve Ĉv,o of PNKv passing through o, which
not contained in H∞ and is fKv -invariant. The uniqueness part of Lemma 5.11

implies that Ĉv,o is induced by Ĉ. �

Assume further f ∈ PNS(N, d), then we have the following criterion for f -
periodic curves.

Corollary 5.15. Let f ∈ PNS(N, d) and let C be a periodic curve of f . If
C 6⊆ H∞, then degC ≤ 2.

Proof of Corollary 5.15. After replacing f by a suitable positive iterate, we may
assume that f(C) = C. Because C\H∞ is an affine curve and f(C\H∞) = C\H∞
and deg f |C = d ≥ 2, C has at most two branches at infinity. After replacing f by
f 2, we may assume that all branches of C at infinity are fixed by f . Because each
branch of C defines an irreducible f -invariant formal passing through some point
in Fix(f) = F ′(f) which is not contained in H∞, by Lemma 5.11, it intersects
H∞ transversally. Hence C ·H∞ equal to the number of branches of C at infinity,
which is at most 2. �

6. Endomorphisms of A2

In this section, k is an algebraically closed field of characteristic 0. Let f :
A2 → A2 be an endomorphism in P∗(2, d) for some d ≥ 2. It extends to an
endomorphism of P2. Let H∞ := P2 \ A2 be the hyperplane at infinity.

We say that f is homogenous, if it takes form f : (x, y) 7→ (F (x, y), G(x, y))
where F,G are homogenous polynomials of degree d. We say that f is homogenous
at o = (o1, o2) ∈ A2(k) if f is homogenous in the new coordinates x′ = x−o1, y

′ =
y − o2.

Remark 6.1. Easy to see that if f is homogenous at o, then such o is unique.
Moreover we have f−1(o) = o.

If f is homogenous at o, then for every point x ∈ Per (f) ⊆ H∞, the line
Lo,x passing through o and x is f -periodic. Hence f has infinitely many periodic
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curves. The aim of this section is to prove the following result which shows that
its inverse also holds when f ∈ PNP (2, d).

Theorem 6.2 (=Theorem 1.20). For f ∈ PNP (2, d) with d ≥ 2. If there are
infinitely many f -periodic curves, then f is homogenous at some point o ∈ A2(k).
Moreover, all but finitely many f -periodic curves are lines passing through o.

Remark 6.3. This result strengthens the N = 2 case of Corollary 5.15 in two
directions. First, PNP (2, d) is strictly larger than PNS(2, d). Second, in Theorem
6.2, we get a complete classification of f ∈ PNP (2, d) having infinitely many
f -periodic curves.

If f is not of NP-type at infinity, Theorem 6.2 may not be true.

Example 6.4. Let f be the endomorphism taking form f = g × h where g is a
polynomial of degree d. Then for every a ∈ Per (g), the line {x = a} is periodic
for f. The same, for every b ∈ Per (h), the line {y = b} is periodic for f. Hence f
has infinitely many periodic curves. But it is easy to see that f is homogenous at
some point o ∈ A2 if and only if g and h are conjugate to z → zd by some affine
transformations of A1.

The proof of the Theorem 6.2 relies on the theory of valuative tree introduced
by Favre and Jonsson in [FJ04], which was developed by Favre, Jonsson and the
author in [FJ07, FJ11, Xie15b, Xie17a, Xie17b].

6.1. Valuative tree at infinity. We refer to [Jon15] for details, see also [FJ04,
FJ07, FJ11]. Denote by V∞ the space of all normalized valuations centered at
infinity normalized valuation centered at infinity i.e. the set of functions v :
k[x, y]→ R ∪ {+∞} such that

(i) v(k∗) = 0;
(ii) v(fg) = v(f) + v(g) and v(f + g) ≥ min{v(f), v(g)} for f, g ∈ k[x, y]

(iii) min{v(x), v(y)} = −1.

The topology on V∞ is defined to be the weakest topology making the map
v 7→ v(P ) continuous for every P ∈ k[x, y]. Under this topology, V∞ is compact.

The set V∞ is equipped with a partial ordering defined by v ≤ w if and only
if v(P ) ≤ w(P ) for all P ∈ k[x, y]. Then − deg : P 7→ − deg(P ) is the unique
minimal element.

For v ∈ V∞ \ {− deg}, the set {w ∈ V∞, | − deg ≤ w ≤ v} is isomorphic as
a poset to the real segment [0, 1] endowed with the standard ordering. In other
words, (V∞,≤) is a rooted tree in the sense of [FJ04, Jon15]. Given any two
valuations v1, v2 ∈ V∞, there is a unique valuation in V∞ which is maximal in the
set {v ∈ V∞| v ≤ v1 and v ≤ v2}. We denote it by v1 ∧ v2. The segment [v1, v2] is
by definition the union of {w | v1 ∧ v2 ≤ w ≤ v1} and {w | v1 ∧ v2 ≤ w ≤ v2}.

Pick any valuation v ∈ V∞. We say that two points v1, v2 lie in the same
direction at v if the segment [v1, v2] does not contain v. A direction (or a tangent
vector) at v is an equivalence class for this relation. We write Tanv for the set of
directions at v.
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When Tanv is a singleton, then v is called an endpoint. In V∞, the set of
endpoints is exactly the set of all maximal valuations. When Tanv contains
exactly two directions, then v is said to be regular. When Tanv has more than
three directions, then v is a branch point.

Pick any v ∈ V∞. For any tangent vector ~v ∈ Tanv, denote by U(~v) the subset
of those elements in V∞ that determine ~v. This is an open set whose boundary is
reduced to the singleton {v}. If v 6= − deg, the complement of {w ∈ V∞, |w ≥ v}
is equal to U(~v0) where ~v0 is the tangent vector determined by − deg.

It is a fact that finite intersections of open sets of the form U(~v) form a basis
for the topology of V∞.

There are four types of valuations in V∞. However, we only need one of them in
this paper, which is called curve valuations. Recall that H∞ is the line at infinity
of P2

k. For any formal curve s centered at some point q ∈ H∞ which is not
contained in H∞, denote by vs the valuation defined by P 7→ (s · l∞)−1ord∞(P |s).
Then we have vs ∈ V∞ and call it a curve valuation. We note that the branch s
is determined by its associated valuation vs. All curve valuations are maximal in
V∞.

Let C be a curve in P2 which is not H∞. Assume that C has a branch Cq at a
point q ∈ H∞. Then Cq defines a curve valuation in V∞.

Recall that there is a skewness function. α : V∞ → [−∞, 1] It has the following
properties:

(i) α is strictly decreasing, and upper semicontinuous;
(ii) α is continuous on segments;

(iii) α(− deg) = 1;
(iv) for every curve valuation v, α(v) = −∞;
(v) every valuation satisfying α(v) = −∞ is maximal.

Computation of local intersection numbers of curves at infinity. Let s1, s2 be two
different formal curves at infinity. We denote by (s1 · s2) the intersection number
of these two formal curves in P2. This intersection number is always nonnegative,
and it is positive if and only if s1 and s2 are centered at the same point. When
s1, s2 are not contained in H∞, denote by vs1 , vs2 the curve valuations associated
to s1 and s2. By [Xie15a, Proposition 2.2], we have

(6.1) (s1 · s2) = (s1 ·H∞)(s2 ·H∞)(1− α(vs1 ∧ vs2)).

6.2. Local valuative tree. See [Jon15, FJ04] for details. For a point q ∈ P2,

there exist local coordinates (z, w) at q such that Ôq = k[[z, w]] with the maximal
ideal m := (z, w).

Let Vq be the space of normalized valuations centered at q, i.e. the functions
v : k[[z, w]]→ [0,+∞] such that

(i) v(k∗) = 0;
(ii) for f, g ∈ k[[z, w]], v(fg) = v(f) + v(g) and v(f + g) ≥ min{v(f), v(g)};

(iii) min{v(z), v(w)} = 1.

The topology on Vq is defined to be the weakest topology making the map v 7→
v(P ) continuous for every P ∈ k[[z, w]]. Under this topology, Vq is compact. The
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space Vq is equipped with a partial ordering defined by v ≤ w if and only if v(f) ≤
w(f) for all f ∈ k[[z, w]] for which is again a real tree (see [FJ04, FJ07, Jon15]).
The order of vanishing ordq at the point q is a valuation in Vq. Moreover, it is
the unique minimal point in Vq.

As in the global case, for every formal curve s at q, it defines a curve valuation
vs sending P ∈ k[[z, w]] to m−1

s ordq(P |s), where ms is the multiplicity of s at q.
Every endomorphism g∗ of k[[z, w]] induces a map g• : Vq → Vq by

g• : v 7→ (P 7→ min{ordq(g
∗z), ordq(g

∗w)}−1v(g∗P )).

This action on Vq is continuous. Moreover every point in Vq has at most finitely
many preimages.

Remark 6.5. Let U be an open subset of Vq. Then g•(∂(g−1
• (U))) ⊆ ∂U. For

every connected component V of ∂(g−1
• (U)), we have ∂V ⊆ ∂(g−1

• (U)). Hence

∂V ⊆ g−1
• (∂U). If ∂U is finite, then ∂V is finite.

For a branch of curve s at q, let g(s) be its image under the map induced by
g∗. Then g•(vqs) = vqg(s).

Recall that there is a local skewness function αq : Vq → [1,+∞]. It has the
following properties:

(i) α is strictly increasing, and lower semicontinuous;
(ii) α is continuous on segments;

(iii) α(ordq) = 1;
(iv) for every curve valuation v, α(v) = +∞;
(v) every valuation satisfying α(v) = +∞ is maximal.

At last we describe the connection between the local valuative tree and the
global one. Assume that q ∈ H∞. There exists a valuation vqH∞ defined by
P 7→ ordq(P |H∞) for P ∈ k[[z, w]].

Denote by U(q) the set of valuations in V∞ whose center in X is q and set

U(q) := U(q) ∪ {− deg}. For any v ∈ U(q), there exists rq(v) ∈ R+ such that
rq(v)v ∈ Vq. Set vq := rq(v)v when v ∈ U(q) and vq := vqH∞ when v = − deg .

The map φq : U(q) → Vq defined by v 7→ vq is a homeomorphism. Moreover for
a branch of curve s at q not contained in H∞, we have φq(vs) = vqs . By [Xie17a,
Lemma 11.6], we have

φq({v ∈ U(q)| α(v) = −∞} ∪ {− deg}) = {v ∈ Vq| αq(v) = +∞}.

6.3. Proof of Theorem 6.2. Let f ∈ PNP (2, d) with d ≥ 2. Let S be the set of
supperattracting periodic points of f . It is exactly the union of orbits of periodic
critical points of f , hence S is finite.

We denote by PC(f) the set of irreducible f -periodic curves in P2. Write
PC(f) = PC(f)otPC(f)st{H∞}, where PC(f)s is the set of C ∈ PC(f)\{H∞}
with C∩S 6= ∅. This decomposition is f -invariant. Elements in PC(f)s are called
special.

Lemma 6.6. For every C ∈ PC(f) \ {H∞}, it has at most two branches at
infinity.
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Remark 6.7. This lemma holds for every f ∈ P(N, d) in any dimension N .

Proof of Lemma 6.6. After replacing f by a suitable positive iterate, we may
assume that f(C) = C. Because C\H∞ is an affine curve and f(C\H∞) = C\H∞
and deg f |C = d ≥ 2, C has at most two branches at infinity. �

The following lemma bounds the special invariant curves.

Lemma 6.8. The set PC(f)s is finite.

Proof of Lemma 6.8. After replacing f by a suitable positive iterate, we may
assume that all points in S are fixed points. At every fixed point of f , we still
denote by f the germ of f at q and f• the induced endomorphism on Vq.

For every q ∈ S, the branch Hq
∞ satisfies f ∗Hq

∞ = dHq
∞ and f∗H

q
∞ = rqH

q
∞

where rq is the ramification index of f : H∞ → H∞ at q. Since f is of NP-type,
rq < d. By [Xie17a, Lemma 5.7], there is wq < vHq

∞ such that

(i) f•(Wq) ⊆ Wq where {v ∈ Vq| v ∨ vHq
∞ > wq};

(ii) f•|nWq
→ vHq

∞ as n→∞;

(iii) {v ∈ Vq| αq(v) < +∞} ⊆ ∪n≥1f
−n
• (Wq).

We note that, for every n ≥ 0, the only f•-periodic point in f−n• (Wq) is vHq
∞ . In

particular, let C be an f -periodic curve passing through q and s be a branch of
C at q, then vqs 6∈ ∪n≥1f

−n
• (Wq).

SetK := {v ∈ V∞| α(v) ≥ −3}. It is a compact. ThenKq := φq(K∩U(q)) ⊆ Vq
is compact. We note that

Kq ∩ {v ∈ Vq| αq(v) = +∞} = {vHq
∞} ⊆ Wq.

The compactness of Kq implies that there is Nq ≥ 0 such that Kq ⊆ f
−Nq
• (Wq).

By Remark 6.5, the boundary of f
−Nq
• (Wq) is finite.

ThenK∩U(q) is contained in the unique connected component Yq of φ−1
q (f

−Nq
• (Wq))

containing − deg . Since Yq has finite boundary, it takes form

Yq = U(q) \ (∪w∈Bq{v ≥ w})
where Bq = ∂Yq \ {− deg}. We note that for distinct points w1, w2 ∈ Bq, w1 6≥
w2. Then for every periodic branch of curve s at q, vs ≥ w(s) for exactly one
w(s) ∈ Bq. Because Kq ⊆ Yq, α(w) < −3 for every w ∈ Bq.

For C ∈ PC(f)s, because it has at most two branches at infinity, there is one
branch sC at infinity with sC ·H∞ ≥ deg(C)/2. If C has one branch s at infinity
which does not meet S, then by Lemma 5.11, (s ·H∞) = 1. So we may choice sC
to meet S. Then we get sC ≥ w(C) for a unique w(C) ∈ Bq where q ∈ S is the
center of s. We claim that for C1, C2 ∈ PC(f)s, if w(C1) = w(C2), then C1 = C2.
Otherwise C1 6= C2, then by Equality (6.1), we have

deg(C1) deg(C2) = (C1 ·C2) ≥ sC1 · sC2 = (sC1 ·H∞)(sC1 ·H∞)(1−α(vsC1
∧ vsC2

))

≥ (sC1 ·H∞)(sC1 ·H∞)(1− α(w(C1)) > 4(sC1 ·H∞)(sC1 ·H∞) ≥ degC1 degC2,

which is a contradiction. Then we get |PC(f)s| ≤
∑

q∈S |Bq| is finite. �
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Proof of Theorem 6.2. Since PC(f) is infinite and PC(f)s is finite, PC(f)o is
infinite. The proof of Corollary 5.15 shows that every C ∈ PC(f)o has degree
at most two and each brach of C at infinity intersects H∞ transversally. So for
every C ∈ PC(f)o, degC is exactly the number of branches of C at infinity.
Moreover, by the uniqueness part of Lemma 5.11, it is also |C ∩ H∞|. Then for
every C ∈ PC(f)o, deg f(C) = degC. Moreover for C1, C2 ∈ PC(f)o, C1 = C2 if
and only if (C1 ∩H∞) ∩ (C2 ∩H∞) 6= ∅.

Let B be the set of C ∈ PC(f)o with degC = 2. Set e := 1 if B is finite and
e = 2 if B is infinite. Set A = B if B is infinite and A = PC(f)o \B if B is finite.
Then A is infinite, f -invariant and for every C ∈ A, degC = e ∈ {1, 2}. We note
that if e = 1, then PC(f) \A is finite. Set R := ∪C∈A(C ∩H∞) ⊂ Per (f). Then
R is infinite.

For any n ≥ 1, set Mn := P(H0(P2, O(n))). It is the space of effective divisors
of degree n in P2. Then f induces a morphism f∗ : Mn →Mdn sending D to f∗D.
There is another morphism ψ : Mn → Mnd sending D to dD. We note that ψ is
an isomorphism from Mn to its image. Then A can be viewed as a subset of Me.
Let Z be the Zariski closure of A in Me. For every C ∈ A, f∗(C) = df(C) and
f(C) ∈ A ⊆ Z. Hence f∗(Z) ⊆ ψ(Mn) and ψ−1 ◦f∗(Z) ⊆ Z. For every C ∈ Z, we
have ψ−1 ◦ f∗(C) = f(C). Then it induces an endomorphism g : Z → Z sending
C to f(C). Set Σ := {(x,C) ∈ P2 × Z| x ∈ C}. It is a closed in P2 × Z. Set

Γ := Σ ∩ (H∞ × Z) = {(x,C) ∈ H∞ × Z| x ∈ C}.
Let πi, i = 1, 2 be the i-th projection of H∞ × Z. Then R = π1(π−1

2 |Γ(A)).

Lemma 6.9. For every q ∈ R, |π−1
1 (q)| = 1.

By this lemma, for every (x,C) ∈ Γ, x ∈ R if and only if C ∈ A. Let Γ′′ be
the union of irreducible component Γ1 of Γ with π1(Γ1) = H∞. Since R is dense
in H∞, the above lemma implies that Γ′′ is irreducible and π1|Γ′′ : Γ′′ → H∞ is
birational. Because H∞ is of dimension 1 and normal, π1|Γ′′ is an isomorphism.
In particular Γ′′ ' P1. By Lemma 6.9 again

Γ′′ ∩ π−1
2 (A) = Γ′′ ∩ π−1

1 (R) = Γ ∩ π−1
1 (R) = Γ ∩ π−1

2 (A).

Because A is dense in Z, π2(Γ′′) = Z. For a general C ∈ Z, |C ∩H∞| = e and C
intersects H∞ transversally. Then π2|Γ′′ : Γ′′ → Z is surjective and of degree e.
Then h := π2|Γ′′ ◦ (π1|Γ′′)−1 : P1 → Z is surjective of degree e. In particular, we
get f &h g, hence g is not of NP-type.

Let ∆ be the diagonal of Z × Z. Let K be the Zariski closure of

K ′ := {(C1, C2, x) ∈ Z × Z × P2| C1 6= C2, x ∈ C1 ∩ C2}
in Z × Z × P2. Set

W := {(C1, C2, x) ∈ Z × Z × P2| x ∈ C1 ∩ C2}.
We have K ′ ⊆ K ⊆ W. Let p1 : (Z×Z)×P2 → Z×Z and p2 : (Z×Z)×P2 → P2

be the projections. For C1, C2 ∈ Z with C1 6= C2, 1 ≤ |p1|K−1((C1, C2))| ≤ e2.
So p1|K : K → Z × Z is surjective and generically finite of degree at most e2.
In particular, dimK = 2. Moreover, for every irreducible component K1 of K, if



49

dimK1 = 2, p1(K1) = Z × Z. Note that K is invariant under the endomorphism
(g×g)×f on (Z×Z)×P2. Since every point in p1|−1

K′ (A×A) is (g×g)×f -periodic,
K1 is also periodic.

For every x ∈ p2(K), let Zx be the set of C ∈ Z with x ∈ C. Then p2|−1
W (x) =

Z2
x and p2|−1

K′ (x) = Z2
x \∆Zx where ∆Zx is the diagonal of Z2

x. Then we get

2 dimZx = dim p2|−1
K′ (x) ≤ dim p2|−1

K (x) ≤ dim p2|−1
W (x) = 2 dimZx.

So p2|−1
K (x) = 0 or 2. Hence dim p2(K) = 0 or 2.

We now prove that dim p2(K) = 0. Otherwise dim p2(K) = 2. Let K1 be
an irreducible component of K of dimension 2 such that p2(K) = P2. Then
p1(K1) = Z2

1 and K1 is (g× g)× f -periodic. There are Zariski dense open subset
V1, V2 of Z2

1 and P2 respectively such that pi|K1 , i = 1, 2 is finite flat over Vi.
Then pi(p

−1
1 (V1) ∩ p−1

2 (V2)), i = 1, 2 are nonempty open subsets. Because there
is C0 ∈ A such that C0 ∩ p2(p−1

1 (V1) ∩ p−1
2 (V2)) 6= ∅. Pick y ∈ C0 ∩ p2(p−1

1 (V1).
Pick z ∈ p1(p2|−1

K1
(y)). Let C ′ be an irreducible component of p1(p−1

2 (C0)) ⊆
Z2 containing z. Then C ′ is a curve. Let C ′′ be an irreducible component of
p1|−1

K (C ′) satisfying p1(C ′′) = C ′. We have p2(C ′′) = C0. Then C ′′ is (g × g × f)-
preperiodic. Moreover, for every n ≥ 0, both p1((g× g× f)n(C ′′)) = (g× g)n(C ′)
and p2((g×g×f)n(C ′′)) = C0 are curves. Then there is m ≥ 0 and l ≥ 1 such that
D := (g×g×f)m(C ′′) is (g×g×f)l-invariant. Then we get (g×g×f)l|D ∼ f l|C0

is of NP-type. Since (g× g× f)l|D ∼ (g× g)l|p1(D) and (g× g)l|p1(D) ∼ gl, g is of
NP-type. This is a contradiction.

Now set O′ := p2(K) which is finite. Then K ⊆ Z2×O′. There is a nonempty
subset O of O′ such that the irreducible components of K of dimension 2 are
exactly {Z2×x| x ∈ O}. In other words, O = ∩C∈ZC. For two different C1, C2 ∈
A, C1 ∩ C2 ∩H∞ = ∅. Hence O ⊆ A2.

Lemma 6.10. We have that |O| = 1 and e = 1.

Set O = {o}. Then Z is exactly the space of line passing through o. After a
changing of origin, we may assume that o = (0, 0) ∈ A2(k). Since f preserves the
lines passing through the origin, f is homogenous. Since A ⊆ Z and PC(f)\A is
finite, all but finitely many periodic curves of f are lines passing through o. �

Proof of Lemma 6.9. Otherwise, there is C1 ∈ A and C2 ∈ Z,C1 6= C2 such that
q ∈ C1 ∩C2. After replacing f by a suitable positive iterate, we may assume that
q is f -fixed and the branch s1 of C1 at q is fixed. Let s2 be a branch of C2 at
q. Since f∗Ci = dCi, i = 1, 2, f∗si = dsi. Since f has topological degree d at q,
f ∗s1 = s1. In particular, s1 is f−1-invariant. Since s1 6= s2 and they both pass
through q, fn(s2) 6= s1 for all n ≥ 0. Hence (s1 · fn(s2)) ≥ 1 for all n ≥ 1. Then
for every n ≥ 0, we have

(s1 · s2) = ((fn)∗s1 · s2) = (s1 · fn∗ s2) = dn(s1 · fn(s2)) ≥ dn,

which is a contradiction. �

Proof of Lemma 6.10. Pick E ∈ A such that {E}×Z 6⊆ p1(K \ (Z2×O)). After
replacing f by a suitable positive iterate, we may assume that f(E) = E. Let C
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be a general point in Z. Then C ∩ E = O. Since C is general, g−1(C) is exactly
d general points C1, . . . , Cd. We have ∪di=1Ci ⊆ f−1(C). Since

de = deg(∪di=1Ci) ≤ deg f ∗(C) = de,

we get ∪di=1Ci = f−1(C). Then we get

(f |E)−1(O) ⊆ f−1(C) ∩ E = (∪di=1Ci) ∩ E = O.

Since O ⊆ E \H∞ and all points in E ∩H∞ are exception. We get e + |O| ≤ 2.
Hence e = |O| = 1. �
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