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Abstract. Let X be a quasi-projective variety and f : X → X a finite surjective endo-
morphism. We consider Zariski Dense Orbit Conjecture (ZDO), and Adelic Zariski Dense
Orbit Conjecture (AZO). We consider also Kawaguchi-Silverman Conjecture (KSC) as-
serting that the (first) dynamical degree d1(f) of f equals the arithmetic degree αf (P ) at
a point P having Zariski dense f -forward orbit. Assuming X is a smooth affine surface,
such that the log Kodaira dimension κ(X) is non-negative (resp. the étale fundamental
group πét

1 (X) is infinite), we confirm AZO, (hence) ZDO, and KSC (when deg(f) ≥ 2)
(resp. AZO and hence ZDO). We also prove ZDO (resp. AZO and hence ZDO) for every
surjective endomorphism on any projective variety with “larger” first dynamical degree
(resp. every dominant endomorphism of any semiabelian variety).
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1. Introduction

We work over an algebraically closed field k of characteristic 0 unless otherwise stated.
The motivation of the paper is the following Zariski Dense Orbit Conjecture (ZDO),

Adelic Zariski Dense Orbit Conjecture (AZO) andKawaguchi-Silverman Conjecture (KSC).

Conjecture 1.1 (Zariski Dense Orbit Conjecture=ZDO). Let X be a variety over k and
f : X 99K X a dominant rational map. If the f ∗-invariant function field k(X)f = k, then
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there exists some x ∈ X(k) whose f -orbit Of (x) := {fn(x) | n ≥ 0} is well-defined, i.e.,
f is defined at fn(x) for any n ≥ 0, and Zariski dense in X.

When the transcendence degree of k over Q is finite, in [Xie22, Section 3], the third
author has introduced the adelic topology on X(k) and proposed the Adelic Zariski Dense
Orbit Conjecture (AZO).

1.2 (Adelic Topology). The adelic topology has the following basic properties (cf. [Xie22,
Proposition 3.18]).

(1) It is stronger than the Zariski topology.
(2) It is T1, i.e., for every distinct points x, y ∈ X(k) there are adelic open subsets U, V

of X(k) such that x ∈ U, y /∈ U and y ∈ V, x /∈ V .
(3) Morphisms between algebraic varieties over k are continuous for the adelic topology.
(4) Flat morphisms are open with respect to the adelic topology.
(5) The irreducible components of X(k) in the Zariski topology are the irreducible com-

ponents of X(k) in the adelic topology.
(6) Let K be any subfield of k which is finitely generated over Q and such that X is

defined over K and K = k. Then the action

Gal(k/K)×X(k)→ X(k)

is continuous with respect to the adelic topology.

Remark 1.3. When X is irreducible, the property (5) above implies that the intersection
of finitely many nonempty adelic open subsets of X(k) is nonempty. So, if dimX ≥ 1,
the adelic topology is not Hausdorff. In general, the adelic topology is strictly stronger
than the Zariski topology.

An impotent example of adelic open subsets is as follows: Let L be a subfield of k such
that its algebraic closure L is equal to k, L is finitely generated over Q, and X is defined
over L, i.e., X = XL ⊗L k for some variety XL over L. Fix any embedding τ : L ↪→ Cp

(resp. C). Then, given any open subset U of XL(Cp) for the p-adic (resp. Euclidean)
topology, the union XL(τ, U) := ∪ιΦ−1

ι (U) for all embeddings ι : k→ Cp extending τ is,
by definition, an open subset of X(k) in the adelic topology. Moreover XL(τ, U) is empty
if and only if U = ∅.

Conjecture 1.4 (Adelic Zariski Dense Orbit Conjecture=AZO). Assume the hypothesis
that the transcendence degree of k over Q is finite. Let X be a variety over k and f : X 99K

X a dominant rational map. If the f ∗-invariant function field k(X)f = k, then there
exists a nonempty adelic open subset A ⊆ X(k) such that for every point x ∈ A the
f -orbit Of (x) is well-defined and Zariski dense in X.
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Conjecture 1.5 (Kawaguchi-Silverman Conjecture=KSC; cf. [KS16]). Let X be a quasi-
projective variety over Q and f : X 99K X a dominant rational map. Take a point
x ∈ X(Q). If the f -orbit Of (x) is well-defined and Zariski dense in X, then the limit
αf (x) (called the arithmetic degree) as defined in 3.9, converges and equals d1(f), the first
dynamical degree of f (cf. 3.1).

Remark 1.6. AZO 1.4 implies ZDO 1.1. Indeed, even the hypothesis on k in AZO 1.4
does not cause any problem. To be precise, for every pair (X, f) over any algebraically
closed field k of characteristic zero, there exists an algebraically closed subfield K of k
whose transcendence degree over Q is finite and such that (X, f) is defined over K, i.e.,
there exists a pair (XK , fK) such that (X, f) is its base change by k. By [Xie22, Corollary
3.31], if AZO 1.4 holds for (XK , fK), then ZDO 1.1 holds for (X, f).

In this paper, when we discuss AZO 1.4, we always assume that the transcendence
degree of k over Q is finite; when we discuss KSC 1.5, we always assume that k = Q.

Theorems 1.7, 1.9, 1.10, 1.11, 1.13 and 1.14 are our main results.
We first deal with endomorphisms of semiabelian varieties: in Theorem 1.7 below, we

prove AZO 1.4 and hence ZDO 1.1, while KSC 1.5 is known.

Theorem 1.7. Assume that the transcendence degree of k over Q is finite. Let G be a
semiabelian variety over k (cf. 2.1). Let f : G→ G be a dominant endomorphism. Then
AZO 1.4 and hence ZDO 1.1 hold for (G, f).

Remark 1.8.

(1) Theorem 1.7 generalises [Xie22, Theorem 1.14] and [GS19, Theorem 1.1] from abelian
varieties to semiabelian varieties.

(2) AZO 1.4 and hence ZDO 1.1 are known for surjective endomorphisms of projective
surfaces (cf. [Xie22], [JXZ20]).

(3) KSC 1.5 is known for surjective endomorphisms of projective surfaces (cf. [MSS18],
[MZ19]) and for surjective endomorphisms of semiabelian varieties (cf. [MS20]).

The next aim of this paper is to extend both AZO 1.4 and KSC 1.5 to affine surfaces.
Recall the log Kodaira dimension κ(X) of a variety X takes value in {−∞, 0, . . . , dimX}
(cf. [Iit82, §11]). Theorem 1.9 below gives the structures of endomorphisms of smooth
affine surfaces; note that when κ(X) = 2, our f is an automorphism of finite order
(cf. Lemma 2.12). For the proof of Theorem 1.9, the main steps are given in [GZ08]. We
simplify or supplement more details in the present paper.

Theorem 1.9. Let X be a smooth affine surface and f : X → X a finite surjective
morphism of degree ≥ 2. Then we have:
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(1) Suppose κ(X) = 0. Then X is a Q-algebraic torus (cf. 2.1). Precisely, there is a
finite étale cover τ : T → X from an algebraic torus T ∼= G2

m; further, τ can be
chosen such that f lifts to a surjective morphism fT : T → T .

(2) Suppose κ(X) = 1. Then there is a finite étale cover X ′′ → X such that X ′′ = Gm×
B′′ where B′′ is a smooth affine curve with κ(B′′) = 1, and f (after iteration) lifts
to an endomorphism f ′′ on X ′′ such that π′′ ◦ f ′′ = π′′, where the natural projection
π′′ : X ′′ → B′′ is the lifting of an Iitaka fibration of X.

As a consequence of the above structural theorem, we confirm both AZO 1.4 and
KSC 1.5 for smooth affine surfaces of non-negative log Kodaira dimension.

Theorem 1.10. Let X be a smooth affine surface and f : X → X a finite surjective
endomorphism. Suppose κ(X) ≥ 0. Then:

(1) AZO 1.4 and hence ZDO 1.1 hold for (X, f).
(2) If k = Q and deg(f) ≥ 2, then KSC 1.5 holds for (X, f).

We may replace the assumption on the log Kodaira dimension in Theorem 1.10 by the
assumption on the fundamental group of X. Precisely, we have:

Theorem 1.11. Let X be a smooth affine surface and f : X → X a finite surjective
endomorphism. Suppose the étale fundamental group πét

1 (X) is infinite. Then we have:

(1) AZO 1.4 and hence ZDO 1.1 hold for (X, f).
(2) Suppose k = Q, deg(f) ≥ 2 and X 6∼= A1 ×Gm. Then KSC 1.5 holds for (X, f).
(3) Suppose that κ(X) = −∞. Then f descends along an A1-fibration of X, hence

KSC 1.5 holds for (X, f) when deg(f) = 1 and k = Q.

Remark 1.12. On Theorem 1.11, we have:

(1) In the proof of Theorem 1.11, we actually prove a stronger statement as follows
(cf. Lemma 2.17). Assume that the transcendence degree of k over Q is finite. Fix
an embedding τ : k ↪→ C and denote by XC the base change of X by C via τ . If the
fundamental group π1(XC) is infinite, then AZO 1.4 holds for (X, f).

(2) The case where πét
1 (X) is finite seems harder, but we remark that ZDO 1.1 holds for

surjective endomorphisms of A2, where πét
1 (A2) = (1) (cf. [Xie17]).

(3) At the moment, we are not able to prove KSC 1.5 when X ∼= A1 ×Gm.

We return to higher-dimensional ZDO 1.1 and KSC 1.5. In Section 3, we first prove
some basic properties of the arithmetic degree for dominant rational self-maps f : X 99K

X on singular varieties X. In particular, Proposition 3.11 generalises the upper bound of
the arithmetic degree by the dynamical degree from smooth varieties to singular varieties
(cf. [Mat20, Theorem 1.4], also [KS16] when f is a morphism andX is smooth projective).

In Theorem 1.13 below, we prove AZO 1.4 for a class of upper triangular rational self-
maps. It generalises the result in [MS14, Theorem 7.16] for ZDO 1.1 for split polynomial
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endomorphisms. A surjective endomorphism of X = A1 × Gm is a special case of it
(cf. Theorem 7.3) and is used in the proof of Theorem 1.11.

Theorem 1.13. Let f : Am 99K Am be a dominant rational self-map taking the form

(x1, . . . , xm) 7→ (f1(x1), f2(x1, x2), . . . , fm(x1, . . . , xm))

where f1 ∈ k(x1), f2 ∈ k(x1)[x2], . . . , fm ∈ k(x1, . . . , xm−1)[xm].
Then AZO 1.4 and hence ZDO 1.1 hold for (Am, f).

In the last part of the paper, we introduce a method to study ZDO 1.1 via arithmetic
degree. Using this method, we obtain some sufficient conditions for ZDO 1.1 for endo-
morphisms of higher dimensional projective varieties. Below is a sample result saying
that ZDO 1.1 holds true for those f with larger first dynamical degree d1(f).

Theorem 1.14. Let f : X → X be a dominant endomorphism of a projective variety
over Q. Then ZDO 1.1 holds if one of the following conditions is satisfied.

(1) dimX = 2, d1(f) > 1 and d1(f) ≥ d2(f); or
(2) dimX = 3, and d1(f) > d3(f) = 1; or
(3) X is smooth of dimension d ≥ 2, and d1(f) > maxdi=2{di(f)}.

Acknowledgments. The first, second and fourth authors are supported by the Presi-
dent’s scholarship, a Research Fellowship of NUS and an ARF of NUS; the third author
is partially supported by the project “Fatou” ANR-17-CE40-0002-01. The authors would
like to thank O. Fujino, R. V. Gurjar and H. Y. Lin for very valuable discussions. The
authors would also like to thank the referee for the very careful reading and suggestions
to improve the paper.

2. General preliminary results

2.1. Notation and Terminology
By a variety we mean an algebraic variety, i.e., an integral separated scheme of finite

type over the field k. On a smooth variety V , a reduced divisor D is of simple normal
crossing (SNC for short) if every irreducible component of D is smooth and locally
D = {x1 · · ·xs = 0} at every point of D with local coordinates x1, . . . , xn of V .

Let X be a smooth quasi-projective variety. A pair (V,D) is called a compactification
of X if V is a projective variety containing X as an open subset and D = V \ X. A
compactification (V,D) of X is a log smooth compactification if V is smooth and D is an
SNC divisor.

Given a log smooth compactification (V,D) of X, the log Kodaira dimension κ(X) is
defined as the following Iitaka dimension

κ(X) = κ(V,KV +D),
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which takes value in {−∞, 0, 1, . . . , dimX}. The characteristic property of κ = κ(X) is:

αsκ ≤ dimH0(V, s(KV +D)) ≤ βsκ

for some constants 0 < α < β and sufficiently large and divisible s. The definition of
κ(X) is independent of the choice of the log smooth compactification. For details, see
[Iit82, §11].

We use Gm to denote the 1-dimensional algebraic torus, Gn
m the n-dimensional algebraic

torus, and Ga the 1-dimensional additive algebraic group. By a semiabelian variety X,
we mean the extension

1 −→ T −→ X −→ A −→ 1

of an abelian variety A by an algebraic torus T . A variety X is called a Q-algebraic torus
if there is a finite étale cover T → X from an algebraic torus T .

Let X be a variety over k and f : X 99K X a rational map. For any field extension
k ⊆ L, denote by (XL, fL) the base change of (X, f) by L.

Lemma 2.2. Let X be a smooth affine variety of dimension d ≥ 2. Then we have:

(1) Let (V,D) be any compactification of X. Then D is the support of a connected big
effective divisor. Moreover, when d = 2, D is the support of a connected ample
effective divisor.

(2) There is a log smooth compactification (V,D) of X such that D is the support of a
connected nef and big effective divisor.

Proof. Let (V,D) be any compactification of X. By [Har70, Ch. II, §3], D has pure
codimension 1 and is connected. Embedding X to an affine space An and taking its
(normalised) closure in Pn, we can take a compactification (V0, D0) of X such that D0 is
the support of an ample effective divisor D′0 of a normal projective variety V0. Taking
a log resolution of (V0, D0), we obtain a log smooth compactification (V ′, D′) of X such
that D′ is the support of a connected effective nef and big divisor (the pullback of D′0),
which proves (2). Let (V ′′, D′′) be another log smooth compactification of X dominating
both (V ′, D′) and (V,D). Then D′′ is the inverse image of D0 and hence the support of
a connected effective big divisor, and D is the image of D′′ and hence also the support
of a connected effective big divisor. For the case dimX = 2, see [Har70, Ch. II, §4]. �

Lemma 2.3. Let V be a smooth projective surface with a P1-fibration π : V → B to a
smooth projective curve B. Let F be any fibre of π. If F contains just one (−1)-curve,
then its coefficient in F is at least 2.

Proof. We remark that every fibre of the P1-fibration π consists of P1’s and has a tree
as its dual graph. Now the lemma follows by induction on the number of irreducible
components of F . �
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Definition 2.4. Let X be a smooth quasi-projective surface and π : X → B a Gm-
bundle over a smooth curve B. We say that π is untwisted if some (and hence every)
compactification π : X → B of π : X → B has exactly two cross-sections as the horizontal
part of the boundary X \X.

Example 2.5. Take any Hirzebruch surface, with a ruling: π : X → B and let D ⊆ X

be an irreducible (resp. reducible) curve so that there is a finite morphism π|D : D → B

of degree 2. Let {bj} ⊆ B be a finite set such that π|D restricts to an étale cover H =

D \ (π|D)−1({bj}) → B = B \ {bj}. Let X = π−1(B) \ H. Then π := π|X : X → B is
a twisted (resp. untwisted) Gm-bundle. Indeed, every other compactification of X → B

is obtained from this π by blowing up or down fibre components (but not the horizontal
boundary components), so the reducibility or irreducibility of the horizontal part will not
change even in different compactification of X → B.

Lemma 2.6. Let X be a smooth quasi-projective surface and π : X → B a Gm-bundle
over a smooth curve B. Then we can take log smooth compactifications X ⊆ X, B ⊆ B

such that π extends to a P1-bundle π : X → B. Moreover, if π is untwisted, then we can
take them such that X \X consists of exactly two disjoint cross-sections and some fibres.

Proof. Take log smooth compactifications X ⊆ X, B ⊆ B such that π extends to π : X →
B. Take any point b ∈ B and set F = π∗b. Suppose F is reducible. If b ∈ B \ B, then
F ⊆ X \X, and we can contract (−1)-curves so that F is irreducible. Assume b ∈ B. Let
F0
∼= P1 be the closure of π−1(b) in X. Now F contains at least one (−1)-curve F1 since π

is a P1-fibration. If F1 is the only (−1)-curve in F , then its multiplicity in F is at least 2

by Lemma 2.3. So F1 6= F0 in this case. As a consequence, we have a (−1)-curve F1 6= F0

in F . We contract F1 (without touching X) and continue this process; eventually we can
make F irreducible (and smooth). Thus we can assume π is a P1-bundle.

Assume that π is untwisted. Let H1, H2 ⊆ X \X be two cross-sections. If the intersec-
tion H1 ∩H2 6= ∅, it lies in X \X since π−1(b) = Gm for every b ∈ B. So we can make
H1 and H2 disjoint by blowing up and down repeatedly in X \X. �

Lemma 2.7. Let X be a smooth quasi-projective surface and π : X → B a Gm-bundle
over a smooth curve B. Then we have:

(1) There is a finite étale cover B′ → B of degree ≤ 2 inducing a finite étale cover
X ′ := X ×B B′ → X and a Gm-bundle X ′ → B′ which is untwisted.

(2) The log Kodaira dimensions satisfy κ(X ′) = κ(X) = κ(B) = κ(B′).
(3) Assume that π is untwisted and B is a smooth rational affine curve. Then π is a

trivial Gm-bundle.

Proof. (1) Take log smooth compactifications X ⊆ X, B ⊆ B such that π extends to
π : X → B. Let D = X \ X = H + E where H is the sum of horizontal components
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and E is that of vertical components. If H is irreducible, then H → B restricts to a
finite étale cover B′ → B of degree 2, since X → B is a Gm-bundle. Let B′ → H be the
normalisation, X ′ = X ×B B′ and X ′ the normalisation of X ×B B′. Then the projection
X ′ → X is a finite étale cover, and the projection X ′ → B′ which is still a Gm-bundle
will fit the next case. Indeed, the inverse of H (⊆ X) in X ′ is a double section containing
a cross-section, the compactification of {(b′, b′) ∈ X ′ | b′ ∈ B′}, so it is the sum of two
cross-sections.

(2) Since X ′ → X and B′ → B are étale, we have κ(X ′) = κ(X) and κ(B′) = κ(B)

(cf. [Iit82, Theorem 11.10]). From now on, we assume that π : X → B is untwisted. Let
H1, H2 be cross-sections of π contained in D. By Lemma 2.6, we may assume that π is a
P1-bundle and H1, H2 are disjoint. Then we have KX +D ∼ π∗(KB+L) where L = B \B
(cf. [Har77, Ch. V, Proposition 2.9, Lemma 2.10]). Thus κ(X) = κ(B).

(3) Assume B = P1 \ (r points) with r ≥ 1. Take log smooth compactifications
X ⊆ X, B ⊆ B, as in Lemma 2.6, such that π extends to a P1-bundle π : X → B, and
the boundary D = X \X consists of exactly two disjoint cross-sections H1, H2 and r of
fibres. By blowing up a point in a fibre over B \B and blowing down proper transform of
the fibre and repeating the same process if necessary, we can make X ∼= P1× P1 without
touching X, and yet keep X \ X being a union of two disjoint cross-sections and r of
fibres. Thus π is a trivial Gm-bundle. �

Corollary 2.8. Let X be a smooth affine surface and π : X → B a Gm-bundle to a
smooth curve B. Then B is affine.

Proof. By Lemma 2.7, taking a finite étale base change, we may assume that π is un-
twisted. By Lemma 2.6, we can embed π to a P1-bundle X → B, such that D := X \X
is the sum of two disjoint cross-sections and the fibres over B \ B. If B = B, then D is
not connected, a contradiction to Lemma 2.2. So B is not projective. �

Definition 2.9. Let π : X → B be a surjective morphism from a quasi-projective surface
to a smooth curve. The multiplicity m = m(F ) of a fibre F of π is the greatest common
divisor of coefficients in F of all irreducible components of F . We call F a multiple fibre
if m(F ) ≥ 2.

Proposition 2.10 (cf. [GMM21, Lemma 1.1.9]). Let X be a smooth quasi-projective
surface and π : X → B a surjective morphism to a smooth curve B. Let Fj (1 ≤ j ≤ r)

be all multiple fibres of π over bj, with multiplicity mj ≥ 2. Assume the hypothesis (?):
either B is affine, or B is irrational, or r ≥ 3, or r = 2 and m1 = m2. Then we have:

(1) There is a finite morphism B′ → B from a smooth curve, étale over B0 := B \
{b1, . . . , br}, with ramification index mj over bj, and with X ′ the normalisation of
X ×B B′, such that the projection X ′ → X is finite étale and the induced fibration
X ′ → B′ has no multiple fibre.
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(2) Assume further that every fibre of π has support isomorphic to Gm. Then the fibration
X ′ → B′ is a Gm-bundle over B′.

Proof. By the solution to Fenchel’s conjecture due to Fox, Bundgaard–Nielsen (cf. [BN51],
[Cha83]), the hypothesis (?) implies the existence of a Galois covering B′ → B, ramified
precisely over bj with index mj for j = 1, . . . , r. Then the natural map X ′ → X from the
normalisation X ′ of X×BB′ is étale by the smoothness of X and the purity of branch loci.
This proves (1), while (2) follows from (1) and the assumption that Fj = mj[Fj]red. �

It is now classical that on a Q-factorial normal projective surface V , every pseudo-
effectiveQ-divisor L has the Zariski decomposition L = P+N to the sum of twoQ-Cartier
divisors such that:

(1) P is nef,
(2) either N = 0 or N is effective with SuppN =

⋃
Ni the irreducible decomposition

and with negative definite intersection matrix (Ni ·Nj), and
(3) (P ·Ni) = 0 for every irreducible component Ni of SuppN .

We call P (resp. N) the nef part (resp. negative part) of the decomposition.
The following result is well known. We give a proof for the convenience of the reader.

Proposition 2.11. Let V be a Q-factorial normal projective surface and D an effective
Q-divisor such that (V,D) has only log canonical singularities and L := KV + D is
pseudo-effective with L = P + N its Zariski decomposition. Then P is semi-ample and
the inequality P ≤ L induces isomorphisms H0(V,O(sP )) ∼= H0(V,O(sL)) for all s
sufficiently large and divisible.

Proof. By the known Minimal Model Program for log canonical surfaces (cf. [Fuj12]),
there is a composition

V = V0
π0−→ V1

π1−→ · · · πm−1−−−→ Vm =: W

of birational contractions of (KVi + Di)-negative extremal curves Ei ⊆ Vi such that
KW + DW is nef and hence semi-ample by the abundance theorem (cf. [KM98, (3.13)]);
here Di ⊆ Vi is the direct image of D, and DW := Dm; further, KVi + Di = π∗i (KVi+1

+

Di+1) + aiEi for some ai > 0. Set π := πm−1 ◦ · · · ◦ π0 : V → W . Then

L = KV +D = π∗(KW +DW ) + E

where E is effective and π-exceptional. Thus P = π∗(KW +D) and N = E. The second
isomorphism below follows from the projection formula:

H0(V,O(sL)) = H0(W,π∗O(sL)) ∼= H0(W,O(s(KW +DW ))⊗ π∗O(sE))

= H0(W,O(s(KW +DW )) = H0(V,O(sP )))

since E ≥ 0 is π-exceptional. �
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Lemma 2.12 (cf. [Iit82, Theorem 11.6 and Theorem 11.12]). Let X be a variety and
f : X → X a dominant morphism. Assume κ(X) = dimX. Then f is an automorphism
of finite order.

Lemma 2.13 (cf. [Iit77, Theorem 2]). Let X be a smooth variety with κ(X) ≥ 0. Then
any dominant morphism from X into itself is an étale surjective morphism.

Lemma 2.14. Let X be a smooth variety and f : X → X a dominant morphism. Suppose
that f is étale and surjective (this is the case when κ(X) ≥ 0; cf. Lemma 2.13). Suppose
further that deg(f) ≥ 2. Then the topological Euler number e(X) of X is 0.

Proof. We have e(X) = deg(f) · e(X) and deg(f) ≥ 2, so e(X) = 0. �

Lemma 2.15. Any A1-bundle over a smooth rational affine curve B is trivial.

Proof. The A1-bundles over B are classified by H1
ét(B,G) where G = Aut(A1) ∼= GaoGm.

Since B ⊆ A1 and Pic(A1) = 0, we have H1
ét(B,Gm) = Pic(B) = 0. Consider the short

exact sequence 0→ Ga → G→ Gm → 1 and the fact that H1
ét(B,Ga) = H1

ét(B,Gm) = 0.
We have H1

ét(B,G) = 0, which concludes the proof. �

Lemma 2.16. Let K be an algebraically closed subfield of k. Let X be a variety over K
and f : X 99K X a dominant rational map. Then the following statements are equivalent:

(1) K(X)f 6= K; (2) K(X)f
` 6= K for some (and hence for all) ` ≥ 1; (3) k(Xk)fk 6= k.

Proof. By [Xie22, Lemma 2.1], (1) and (2) are equivalent. The direction (1) ⇒ (3) is
easy. We only need to prove (3)⇒ (1). Pick φ ∈ k(Xk)fk \k. View k as a K-vector space
with basis {bi}i∈I . Note that k(Xk) ∼= k⊗KK(X). So we may write φ =

∑
i∈I φibi where

φi ∈ K(X). Then φ = (fk)∗φ =
∑

i∈I(f
∗φi)bi, which implies f ∗φi = φi for all i ∈ I.

Since φ is not a constant, some φi is nonconstant in K(X) and hence K(X)f 6= K. �

We need the following result from [GR71, Exposé XIII, Proposition 4.6].

Lemma 2.17. Let k be an algebraically closed field of characteristic zero, and X a normal
quasi-projective variety over k. Let L be any algebraically closed field with an injective
homomorphism k→ L. Then, the natural map πét

1 (XL)→ πét
1 (X) is an isomorphism.

Lemma 2.18. Let K be an algebraically closed subfield of k. Let X be a variety over K
such that Xk is isomorphic to a semiabelian variety (resp. an algebraic torus). Then X

is isomorphic to a semiabelian variety (resp. an algebraic torus).

Proof. We only prove the semiabelian variety case. The algebraic torus case is similar.
By assumption, there is an isomorphism φk : X ×SpecK Speck → G, where G is a

semiabelian variety over k (cf. 2.1). Let L be a subfield of k such that G (and its group
structure) and φk are defined over L and L is finitely generated over K, i.e., there is a
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semiabelian variety GL over L and an isomorphism φL : X ×SpecK SpecL → GL. Then
there exists an affine variety B over K such that K(B) = L, a semiabelian scheme
GB → B over B whose generic fibre is GL. After shrinking B, there is an isomorphism
of B-schemes φB : X×SpecK B → GB whose restriction to the generic fibre is φL. Picking
b ∈ B(K), the restriction of φB to the fibre over b gives an isomorphism between X and
Gb. Here Gb is the fibre of GB → B over b, which is a semiabelian variety over K. �

Remark 2.19. Let P (L) be a property of algebraic varieties and morphisms over an
algebraically closed field L of characteristic zero. Assume that:

for algebraically closed fields k ⊆ k′, P (k) holds true if and only if so does P (k′).(♦)

Then for a fixed algebraically closed field k, P (k) holds true if and only if so does P (C).
Indeed, we may assume that the algebraic varieties and morphisms are defined over a

subfield K ⊆ k which is finitely generated over Q. We then fix an embedding K ⊆ C.
Let k1 ⊆ C (resp. k2 ⊆ k) be the algebraic closure of K in C (resp. k). Identifying the
algebraic varieties and morphisms over k1 and k2 with the isomorphism induced from an
isomorphism k1 → k2. Then the claim follows from (♦).

Lemma 2.20. Let T be a semiabelian variety (resp. an algebraic torus) and τ : T̃ → T

a finite étale cover. Then T̃ is also a semiabelian variety (resp. an algebraic torus).

Proof. We may assume k = C (cf. Lemmas 2.17 and 2.18 and Remark 2.19). Consider
first the semiabelian variety case. Note that κ(T̃ ) = κ(T ) = 0. By the universal property
of the quasi-Albanese map a : T̃ → A (cf. [Iit76]), τ factors through a. In particular, a
is a finite surjective morphism. Moreover, a has irreducible general fibres (cf. [Kaw81,
Theorem 28]). Thus a is an isomorphism and hence X is a semiabelian variety.

When T is further an algebraic torus, it is affine, so is T̃ . Then T̃ being semiabelian
and affine implies that it is an algebraic torus. �

Lemma 2.21 (cf. [NZ10, Lemma 2.12]). Let X be a Q-algebraic torus. Then there is a
finite étale cover πT : T → X such that the following hold.

(1) T is an algebraic torus, and πT is Galois.
(2) If there is another finite étale cover πT ′ : T ′ → X from an algebraic torus T ′, then

there is an étale morphism τ : T ′ → T such that πT ′ = πT ◦ τ .

We call πT the algebraic torus closure of X.

Proof. Since X is a Q-algebraic torus, there is a finite étale morphism πT : T → X

where T is an algebraic torus. After taking its Galois closure, we may assume that πT is
Galois (cf. Lemma 2.20). Then X = T/GT where GT is a finite subgroup of Autvar(T )

(the automorphism group of the variety T ). Let G0 = GT ∩ {translations on T}. Then
T/G0 → X is étale and Galois, and T/G0 is an algebraic torus. So we may assume GT

is translation-free. We next show that πT satisfies the universal property (2).
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Suppose that there is another finite étale cover πT ′ : T ′ → X from an algebraic torus T ′.
By taking the base change and the Galois closure, there exist étale morphisms T̃ → T

and T̃ → T ′ over X such that the composition T̃ → X is Galois. Clearly, T̃ is an
algebraic torus (cf. Lemma 2.20). Then X ∼= T̃ /GT̃ and T ∼= T̃ /HT where GT̃ is a finite
subgroup of Autvar(T̃ ) and HT = Gal(T̃ /T ) is a subgroup of GT̃ . Similarly, T ′ ∼= T̃ /HT ′

where HT ′ = Gal(T̃ /T ′) is a subgroup of GT̃ . Since T and T ′ are both algebraic tori,
HT and HT ′ are translation subgroups of T̃ . By our construction of T , the group HT =

GT̃ ∩ {translations on T̃}. So HT ′ is a subgroup of HT . Hence there is a natural étale
morphism τ : T ′ → T = T ′/(HT/HT ′) such that πT ′ = πT ◦ τ . �

3. Dynamical degrees and arithmetic degrees

In this section, we will upper-bound arithmetic degree by dynamical degree, and show
that the arithmetic degree (like dynamical degree) is preserved by generically finite mor-
phisms; see Propositions 3.11 and 3.13.

3.1. The dynamical degrees. In this part, we work over an algebraically closed field
of arbitrary characteristic. Let X be a variety and f : X 99K X a dominant rational self-
map. Let X ′ be a normal projective variety which is birational to X. Let L be an ample
(or just nef and big) divisor on X ′. Denote by f ′ the rational self-map of X ′ induced by
f . For i = 0, 1, . . . , dimX, and n ≥ 0, define (f ′n)∗(Li) to be the (dimX − i)-cycle on
X ′ as follows: let Γ be a normal variety with a birational morphism π1 : Γ → X ′ and a
morphism π2 : Γ → X ′ such that f ′n = π2 ◦ π−1

1 . Then (f ′n)∗(Li) := (π1)∗π
∗
2(Li). The

definition of (f ′n)∗(Li) does not depend on the choice of Γ, π1 and π2. Then

di(f) := lim
n→∞

((f ′n)∗(Li) · LdimX−i)1/n

is called the i-th dynamical degree of X. The limit converges and does not depend on the
choice of X ′ and L; moreover, if π : X 99K Y is a generically finite and dominant rational
map between varieties and g : Y 99K Y is a rational self-map such that g ◦π = π ◦f , then
di(f) = di(g) for all i; for details, we refer to [Dan20, Theorem 1] (and the projection
formula), or Theorem 4 in its arXiv version.

Proposition 3.2 below is easy when k is of characteristic 0 and Z 6⊆ SingX.

Proposition 3.2. Let X be a variety over an algebraically closed field k of arbitrary
characteristic, and f : X 99K X a dominant rational self-map. Denote by I(f) the inde-
terminacy locus of f . Let Z be an irreducible subvariety in X which is not contained in
I(f) such that f |Z induces a dominant rational self-map of Z. Then di(f |Z) ≤ di(f) for
i = 0, 1, . . . , dimZ.

Proof. Set dX := dimX and dZ := dimZ. Denote by ηZ the generic point of Z.
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We first reduce to the projective case. Let U be an affine open subset of X containing
ηZ and X ′ a projective compactification of U . Denote by f ′ the rational self-map of
X ′ induced by f . Note that f is well-defined at ηZ and f(ηZ) = ηZ . Similarly f ′ is
well-defined at ηZ and f ′(ηZ) = ηZ . Let Z ′ be the Zariski closure of ηZ in X ′. Then
Z ′ 6⊆ I(f ′) and f ′|Z′ induces a dominant rational self-map of Z ′. We have di(f) = di(f

′)

and dj(f |Z) = dj(f
′|Z′) for all i, j (cf. e.g., [Dan20]). After replacing X, f, Z by X ′, f ′, Z ′,

we may assume that X is projective.

Next we reduce to the normal case. Let π : X ′ → X be the normalisation of X. Set
Z ′ := π−1(Z), the set-theoretic preimage of Z. It is reduced, but may not be irreducible.
Let f ′ be the rational self-map ofX ′ induced by f . Since π is finite and I(f ′) ⊆ π−1(I(f)),
f ′ is well-defined at every generic point of Z ′. Since f(ηZ) = ηZ and π−1(ηZ) is finite,
there is some m ≥ 1 and ηZ1 ∈ π−1(ηZ) such that (f ′)m(ηZ1) = ηZ1 . Let Z1 be the
Zariski closure of ηZ1 . Then π(Z1) = Z and π|Z1 : Z1 → Z is finite. Observe that (f ′)m|Z1

induces a dominant rational self-map of Z1. We have di((f ′)m|Z1) = di(f |Z)m for all i.
After replacing X, f, Z by X ′, f ′m, Z1, we may assume that X is normal.

For n ≥ 0, consider the following commutative diagram.

Z̃n

π̃n
1 |Zn

��

pn
// Zn

πn
1 |Zn

��

� � // Γn

πn
1

��

πn
2

##

Z̃
p

// Z �
�

// X
fn

// X

Here Γn is a normal projective variety; the map πn1 is a birational morphism satisfying
I((πn1 )−1) ⊆ I(fn); the map πn2 is a morphism satisfying fn = πn2 ◦ (πn1 )−1; the variety Zn
is the strict transform of Z under (πn1 )−1, i.e.,

Zn = (πn1 )−1(Z \ I((πn1 )−1)) = (πn1 )−1(Z \ I(fn));

the maps p : Z̃ → Z and pn : Z̃n → Zn are the normalisations. Since Z is fn-invariant,
we get the following commutative diagram:

Z̃n

π̃n
1 |Zn

��

π̃n
2 |Z

$$

pn
// Zn

πn
1 |Zn

��

πn
2 |Z

$$

Z̃

p

::
(f̃ |Z)n

// Z̃

p

99
Z

(f |Z)n
// Z.

Here π̃n1 |Zn (as in the above diagram too) is induced by πn1 |Zn , the map π̃n2 |Zn is induced
by πn2 |Zn and f̃ |Z is induced by f |Z . Let L be an ample divisor on X.
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For i = 0, 1, . . . , dZ , by the projective formula, we have:

di(f) = lim
n→∞

((fn)∗(Li) · LdX−i)1/n = lim
n→∞

((πn2 )∗(Li) · (πn1 )∗(LdX−i))1/n;

di(f |Z) = di(f̃ |Z) = lim
n→∞

(((f̃ |Z)n)∗(p∗(Li)) · p∗(LdZ−i))1/n

= lim
n→∞

(π̃n2 |Zn

∗
(p∗(Li)) · π̃n1 |Zn

∗
(p∗(LdZ−i)))1/n

= lim
n→∞

(p∗n((πn2 )∗(Li)) · p∗n((πn1 )∗(LdZ−i)))1/n

= lim
n→∞

((πn2 )∗(Li) · (πn1 )∗(LdZ−i) · Zn)1/n.

After replacing L by its positive multiple, we may assume that L is very ample and there
are H1, . . . , HdX−dZ ∈ |L| such that

⋂dX−dZ
j=1 Hj is of pure dimension equal to dimZ and

it contains Z as an irreducible component. Then we have:

di(f) = lim
n→∞

((πn2 )∗(Li) · (πn1 )∗(LdZ−i) · (πn1 )∗H1 · · · · · (πn1 )∗HdX−dZ )1/n,(1)

di(f |Z) = lim
n→∞

((πn2 )∗(Li) · (πn1 )∗(LdZ−i) · Zn)1/n.(2)

We need the following:

Lemma 3.3. Let Y be a normal projective variety, L1, . . . , Lr effective and nef Cartier
divisors on Y . Let W be an irreducible component of

⋂r
j=1 Lj, which is of codimension

r in Y (but
⋂r
j=1 Lj is not assumed to be of pure dimension). Then we have W ≤

L1 · · · · · Lr ∈ Nr(Y ), i.e., L1 · · · · · Lr −W is pseudo-effective in Nr(Y ) (the real vector
space of codimension-r cycle classes modulo numerical equivalence).

We return back to the proof of Proposition 3.2. Since
⋂dX−dZ
j=1 Hj is of pure codimension

dX −dZ , it contains Z as an irreducible component, Zn is the strict transform of Z under
(πn1 )−1, and Zn ⊆

⋂dX−dZ
j=1 (πn1 )∗Hj. By Lemma 3.3, we get Zn ≤ (πn1 )∗H1·· · ··(πn1 )∗HdX−dZ .

Since both (πn1 )∗L and (πn2 )∗L are nef, we get

(πn2 )∗(Li) · (πn1 )∗(LdZ−i) · Zn ≤ (πn2 )∗(Li) · (πn1 )∗(LdZ−i) · (πn1 )∗H1 · · · · · (πn1 )∗HdX−dZ .

Applying this to Equations (1) and (2), we get di(f |Z) ≤ di(f). This proves Proposi-
tion 3.2 modulo Lemma 3.3.

We still have to prove Lemma 3.3, by induction on r. The case r = 1 is clear.
Now we assume that r ≥ 2 and Lemma 3.3 holds for r − 1. After relabelling, there

is an irreducible component Wr−1 of
⋂r−1
j=1 Lj of codimension r − 1 such that Wr−1 6⊆ Lr

and W ⊆ Wr−1 ∩ Lr. Then Wr−1 ∩ Lr is of pure codimension r and W is an irreducible
component of it. Thus W ≤ Wr−1 · Lr. By the induction hypothesis, we get Wr−1 ≤
L1 · · · · · Lr−1. Since Lr is nef, we have

W ≤ Wr−1 · Lr ≤ L1 · · · · · Lr−1 · Lr.

This proves Lemma 3.3, and also completes the proof of Proposition 3.2. �
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3.4. Admissible triples. We define an admissible triple to be (X, f, x) where X is
a quasi-projective variety over Q, f : X 99K X is a dominant rational self-map and
x ∈ X(Q) such that f is well-defined at fn(x), for any n ≥ 0.

We say that (X, f, x) dominates (resp. generically finitely dominates) (Y, g, y) if there is
a dominant rational map (resp. generically finite and dominant rational map) π : X 99K Y

such π ◦ f = g ◦ π, π is well defined along Of (x) and π(x) = y.
We say that (X, f, x) is birational to (Y, g, y) if there is a birational map π : X 99K Y

such π◦f = g◦π and if there is a Zariski dense open subset V of Y containing Og(y) such
that π|U : U := π−1(V ) → V is a well-defined isomorphism and π(x) = y. In particular,
if (X, f, x) is birational to (Y, g, y), then (X, f, x) generically finitely dominates (Y, g, y).

Remark 3.5.

(1) If (X, f, x) dominates (Y, g, y) and if Of (x) is Zariski dense in X, then Og(y) is
Zariski dense in Y . Moreover, if (X, f, x) generically finitely dominates (Y, g, y),
then Of (x) is Zariski dense in X if and only if Og(y) is Zariski dense in Y .

(2) Every admissible triple (X, f, x) is birational to an admissible triple (X ′, f ′, x′)

where X ′ is projective. Indeed, we may pick X ′ to be any projective compactifi-
cation of X, f ′ the self-map of X ′ induced from f , and x′ = x.

Lemma 3.6. Let π : X 99K Y be a birational map between projective varieties. Let U be
a open subset of X. If π is well defined on U , V := π(U) is open in Y and π|U : U → V

is an isomorphism, then π−1 is well defined on V and π−1(V ) = U .

Proof. There are birational morphisms π1 : Z → X and π2 : Z → Y such that π = π2◦π−1
1

and π1 is an isomorphism on π−1
1 (U). If Lemma 3.6 holds for π2, then it holds for π. After

replacing X, π, U by Z, π2, π
−1
1 (U), we may assume that π is a morphism.

Let Ũ , Ṽ , X̃, Ỹ be the normalisations of U, V,X, Y , and π̃ : X̃ → Ỹ the morphism
induced by π. Then Ũ is open in X̃, Ṽ is open in Ỹ , π̃(Ũ) = Ṽ and π̃|Ũ : Ũ → Ṽ is an
isomorphism. If Lemma 3.6 holds for π̃, then it also holds for π. So we may assume that
X and Y are normal.

For every y ∈ V , pick x ∈ U , such that π(x) = y. Then {x} = U ∩ π−1(y). So
x is an isolated point in π−1(y). By Zariski’s main theorem π−1(y) is connected. So
π−1(y) = {x}. Then π−1(V ) = U . �

3.7. The set Af (x). When X is projective and L is a Cartier divisor on X, denote by
hL : X(Q)→ R a Weil height function on X associated to L. It is unique up to adding a
bounded function. When we have a morphism π : X → Y , for a Cartier divisor M on Y ,
we may choose hπ∗M to be hM ◦ π. To simplify the notations, in this section, we always
make this choice without saying it.

For a projective admissible triple (X, f, x), let L be an ample divisor on X, we define

Af (x) ⊆ [0,∞]
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to be the limit set of the sequence (h+
L(fn(x)))1/n, n ≥ 0 where h+

L(·) := max{hL(·), 1}.
The following lemma shows that the set Af (x) does not depend on the choice of L and

is invariant in the birational equivalence class of (X, f, x).

Lemma 3.8. Let π : X 99K Y be a dominant rational map between projective varieties.
Let U be a Zariski dense open subset of X such that π|U : U → Y is well-defined. Let L
be an ample divisor on X and M an ample divisor on Y . Then there are constants C ≥ 1

and D > 0 such that for every x ∈ U , we have

(3) hM(π(x)) ≤ ChL(x) +D.

Moreover if V := π(U) is open in Y and π|U : U → V is an isomorphism, then there
are constants C ≥ 1 and D > 0 such that for every x ∈ U , we have

(4) C−1hL(x)−D ≤ hM(π(x)) ≤ ChL(x) +D.

Proof. There is a birational morphism π1 : Z → X and a dominant morphism π2 : Z → Y

such that π = π2 ◦ π−1
1 and π1 is an isomorphism on π−1

1 (U). If Lemma 3.8 holds for π1

and π2, it holds for π. So we may assume that π is a morphism.
For Inequality (3), we may assume that CL − π∗M is ample on X for some integer

C ≥ 1. Then there is a constant D > 0 such that for every x ∈ U ,

hM(π(x)) = hπ∗M(x) ≤ ChL(x) +D.

Next we prove Inequality (4) and hence assume that π is a birational morphism. By
Inequality (3), we only need to prove the first part of Inequality (4). Assume that V is
open in Y and π|U : U → V is an isomorphism. By Lemma 3.6, U = π−1(V ).

Set F(m) = π∗OY (mM)⊗OX(−L). Then π∗F(m) ∼= OY (mM)⊗π∗OX(−L) is globally
generated for m � 1. We have a surjective morphism of sheaves φ : O⊕rY → π∗F(m).
Pulling back by π, we have ψ : O⊕rX → π∗π∗F(m)→ F(m).

Now (π∗π∗F(m))|U ∼= F(m)|U , so the restriction of ψ to U gives a surjective morphism
ψ|U = π∗φ|U : O⊕rU → F(m)|U . This implies that mπ∗M −L has its base locus outside U .
Hence there is a constantD > 0 such that for every x ∈ U , hM(π(x)) ≥ m−1hL(x)−D. �

3.9. The arithmetic degree. More generally, for every admissible triple (X, f, x), we
define Af (x) to be Af ′(x′) where (X ′, f ′, x′) is an admissible triple which is birational to
(X, f, x) such that X ′ is projective. By Lemma 3.8, this definition does not depend on
the choice of (X ′, f ′, x′). We define (see also [KS16]):

αf (x) := supAf (x), αf (x) := inf Af (x).

We say that αf (x) is well-defined and call it the arithmetic degree of f at x, if αf (x) =

αf (x); and, in this case, we set

αf (x) := αf (x) = αf (x).
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By Lemma 3.8, if (X, f, x) dominates (Y, g, y), then αf (x) ≥ αg(y) and αf (x) ≥ αg(y).

Applying Inequality (3) of Lemma 3.8 to the case where Y = X and M = L, we get
the following trivial upper bound: let f : X 99K X be a dominant rational self-map, L
any ample line bundle on X and hL a Weil height function associated to L; then there is
a constant C ≥ 1 such that for every x ∈ X \ I(f), we have

(5) h+
L(f(x)) ≤ Ch+

L(x).

For a subset A ⊆ [1,∞), define A1/` := {a1/` | a ∈ A}. We have the following simple
properties, where the second half of (iii) used Inequality (5).

(i) Af (x) ⊆ [1,∞).
(ii) Af (x) = Af (f

`(x)), for any ` ≥ 0.
(iii) Af (x) =

⋃`−1
i=0(Af`(f

i(x)))1/`. In particular, αf`(x) = αf (x)`, αf`(x) = αf (x)`.

Lemma 3.10 below is easy but fundamental for the reduction to invariant subvarieties.

Lemma 3.10 (cf. e.g., [MMSZ20, Lemma 2.5]). Let f : X → X be a surjective endo-
morphism of a projective variety X and W ⊆ X an f -invariant closed subvariety. Then
αf |W (x) = αf (x) for any x ∈ W (Q).

The next result generalises [Mat20, Theorem 1.4] to the singular case.

Proposition 3.11. For every admissible triple (X, f, x0), we have α(x0) ≤ d1(f).

Proof. We may assume that X is projective. Let L be an ample divisor on X, and hL a
Weil height function associated to L. We may assume that hL ≥ 1. After replacing f by
a suitable iteration and x0 by fn(x0) for some n ≥ 0 and noting that d1(fn) = d1(f)n and
by 3.9 (iii), we may assume that the Zariski closure Zf (x0) of Of (x0) is irreducible. After
replacing X by Zf (x0) and noting that, by Proposition 3.2, d1(f |Zf (x0)) ≤ d1(f) while
the value α(x0) for the point x0 being in X or in Zf (x0) is the same (cf. Lemma 3.10),
we may assume that Of (x0) is Zariski dense in X.

Take a smooth projective variety Y with a birational surjective morphism π : Y → X.
Take a Zariski closed proper subset Ẑ ⊆ X such that π restricts to an isomorphism
Y \ Z → X \ Ẑ =: U where Z = π−1(Ẑ). Lift f on X to g := π−1 ◦ f ◦ π : Y 99K Y . Let
H be an ample divisor on Y and hH a Weil height function associated to H with hH ≥ 1.
By Lemma 3.8, there is a constant B ≥ 1 such that for every x ∈ U ,

(6) B−1hH(π−1(x)) ≤ hL(x) ≤ BhH(π−1(x)).

The proof of [Mat20, Theorem 3.2] showed that for every r > 0, there is a constant
K ≥ 1 and an integer ` ≥ 1, such that for every y ∈ Y , satisfying y, g`(y), . . . , g`n(y) ∈
Y \ I(g`), we have

(7) hH(g`n(y)) ≤ K(d1(g) + r)`nhH(y).
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Set V := π(π−1(U) \ I(g`)) and Z ′ := X \ V . By Inequalities (6) and (7), for every
point p ∈ X satisfying p, f `(p), . . . , f `n(p) ∈ V , we have

(8) hL(f `n(p)) ≤ B2K(d1(f) + r)`nhL(p).

By Inequality (5), there is a C ≥ (d1(f) + r)` such that for any p ∈ X \ I(f `), we have

(9) hL(f `(p)) ≤ ChL(p).

For every n ≥ 0, define W (n) := {0 ≤ i ≤ n | f `i(x0) ∈ Z ′} and wn := #W (n). Since
Of (x0) is Zariski dense in X, by the weak dynamical Mordell–Lang [BHS20, Theorem
1.10] (see also [BGT15, Theorem 1.4], [Gig14, Theorem 1.6]), we have

(10) lim
n→∞

wn/n = 0.

By Equality (10) and Lemma 3.12 below, we have

αf (x0)` = αf`(x0) = lim sup
n→∞

hL(f `n(x0))1/n

≤ lim
n→∞

(B2K)(wn+1)/nC2wn/n(d1(f) + r)`(1−wn/n) = (d1(f) + r)`.

So we have αf (x0) ≤ d1(f) + r. Letting r tend to 0, we get αf (x0) ≤ d1(f). This proves
Proposition 3.11, modulo Lemma 3.12 below. �

Lemma 3.12. With the assumption in the proof of Proposition 3.11, for n ≥ 0, we have

hL(f `n(x0)) ≤ (B2K)wn+1C2wn(d1(f) + r)`(n−wn)hL(x0).

Proof. Consider the decomposition of the finite set W (n) as a disjoint union of subsets
of consecutive integers:

W (n) =
m⊔
i=1

{ni, ni + 1, . . . , ni + si − 1}

where si ≥ 1, ni+1 ≥ ni + si + 1 for i = 1, . . . ,m. We have
∑m

i=1 si = wn. In particular
m ≤ wn. Note that {0, . . . , n} \W (n) is a union of at most m + 1 maximal subsets of
consecutive numbers. Applying Inequality (8) for those maximal subsets of consecutive
numbers in {0, . . . , n} \W (n) and Inequality (9) for the others, we get

hL(f `n(x0)) ≤ (B2K)m+1C
∑m

i=1(si+1)(d1(f) + r)`(n−
∑m

i=1(si+1))hL(x0)

= (B2K)m+1Cm+wn(d1(f) + r)`(n−m−wn)hL(x0)

≤ (B2K)wn+1C2wn(d1(f) + r)`(n−wn)hL(x0).

For the last inequality, we used the fact that 1 ≤ m ≤ wn and d1(f) + r > 1. This proves
Lemma 3.12 (and also Proposition 3.11). �

The property of KSC 1.5 is preserved under generically finite dominant morphism.
Indeed:
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Proposition 3.13. Let π : X → Y be a generically finite dominant morphism between
quasi-projective varieties over Q. Let f : X → X and g : Y → Y be quasi-finite dominant
endomorphisms satisfying π ◦ f = g ◦ π. Then we have:

(1) The f -orbit of x ∈ X is Zariski dense if and only if so does the g-orbit of π(x) ∈ Y .
In this case, αf (x) exists if and only if so does αg(π(x)) and they take the same value.

(2) KSC 1.5 holds for (X, f) if and only if KSC 1.5 holds for (Y, g).

Proof. We have d1(f) = d1(g) (cf. e.g., [Dan20]). It is clear that for every x ∈ X, Of (x)

is Zariski dense in X if and only if Og(π(x)) is Zariski dense in Y . Note also that both
π(X) and Y \ π(X) are g−1-invariant. Pick projective compactifications X ′ of X and Y ′

of Y such that π extends to a morphism π′ : X ′ → Y ′.
We first consider the special case where π′ is finite. Then for every ample divisor D on

Y ′, π′∗D is ample on X ′. So for every x ∈ X, αf (x) and αg(π(x)) converges in the same
time and take the same value. Then KSC 1.5 holds for (X, f) if and only if KSC 1.5
holds for (Y, g).

The above argument shows that we can replace X,X ′, Y, Y ′ by their normalisations.
So we may assume that all of them are normal. Let X ′ π1−→ Y ′1

π2−→ Y ′ be the Stein
factorization of π′. Set Y1 := π−1

2 (Y ). Since Y1 is the normalisation of Y in k(X), g
induces an endomorphism g1 : Y1 → Y1 such that g1 ◦π1|X = π1 ◦f and π2 ◦g1 = g ◦π2|Y1 .
Since π2 is finite, for every y1 ∈ Y1, αg1(y1) and αg(π2(y1)) converge in the same time and
take the same value, and KSC 1.5 holds for (Y1, g1) if and only if KSC 1.5 holds for (Y, g).
After replacing Y, g, π by Y1, g1, π1|X , we may assume that π : X → Y is birational.

Let V be the subset of Y consisting of points y ∈ Y such that #π−1(y) = 1. Since
Y ′ is normal and by applying Zariski’s Main Theorem to π′, we have V = {y ∈ Y |
dim π−1(y) = 0}. Moreover, π|U : U := π−1(V ) → V is an isomorphism. Since g is
quasi-finite, both V and Y \ V are g−1-invariant. In particular, for x ∈ X (resp. y ∈ Y ),
if Of (x) (resp. Og(y)) is Zariski dense, we have Of (x) ⊆ U (resp. Og(y) ⊆ V ). Then
(X, f, x) is birational to (Y, g, π(x)). Now Proposition 3.13 follows from Lemma 3.8. �

Lemma 3.14 below allows us to replace f by any positive power whenever needed.

Lemma 3.14. Let X be a (quasi-projective, when we discuss KSC 1.5) variety and
f : X 99K X a dominant rational self-map. The following statements are equivalent.

(1) (X, f) satisfies ZDO 1.1 (resp. AZO 1.4, KSC 1.5).
(2) There is an ` ≥ 1, such that (X, f `) satisfies ZDO 1.1 (resp. AZO 1.4, KSC 1.5).

Proof. For the ZDO and AZO parts, we refer to [Xie22, Propositions 2.2 and 3.29].
For the KSC part, note that d1(f)` = d1(f `) and αf (x)` = αf`(x) when the latter

exists, for any ` ≥ 1 and x ∈ X (cf. 3.9 (iii)). Also, Of (x) is Zariski dense if and only if
so is Of`(x). Then the lemma follows. �
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4. Endomorphisms descending along a fibration

This section treats endomorphisms descending along fibrations, especially A1-fibrations.

Lemma 4.1. Let Xi, Bi be varieties, and πi : Xi → Bi a surjective morphism with a
general fibre irreducible (i = 1, 2). Let f : X1 → X2 be a finite surjective morphism
which descends to a surjective morphism g : B1 → B2. Then f |(X1)b : (X1)b → (X2)g(b) is
surjective for any closed point b ∈ B1.

Proof. Set X ′2 := X2 ×B2 B1. Since a general fibre of π2 is geometrically irreducible, X ′2
is irreducible. Denote by φ1 : X ′2 → X2 and φ2 : X ′2 → B1 the two natural projections,
respectively. The natural morphism τ : X1 → X1 ×B2 B1 is a closed embedding, noting
that g is separated. Since f is finite, f ×B2 id : X1 ×B2 B1 → X ′2 = X2 ×B2 B1 is finite.
Then f ′ := (f×B2 id)◦τ : X1 → X ′2 is finite. We have the following commutative diagram.

X1

f ′
//

π1
��

f

((

X ′2
φ1

//

φ2{{

X2

π2
��

B1

g
// B2

Since φ1 is generically finite and f is surjective, f ′ is dominant. Then f ′ being finite and
dominant implies it is surjective. For any b ∈ B1, f ′((X1)b) = (X ′2)b. Since φ1((X ′2)b) =

(X2)g(b), we have f((X1)b) = φ1(f ′((X1)b)) = φ1((X ′2)b) = (X2)g(b). �

Lemma 4.2. Let f : X1 → X2 be a morphism between normal varieties, and πi : Xi → Bi

a surjective morphism to a smooth curve (i = 1, 2). Suppose that a general fibre F1 of π1

is irreducible. Suppose further that f(F1) is contained in a fibre of π2 (this holds when
F1 is a curve with κ(B2) > κ(F1), e.g., when π1 is an A1-fibration and κ(B2) ≥ 0). Then
f descends to a morphism f |B1 : B1 → B2 (which is surjective if so is f).

Proof. Take normal compactifications Xi ⊆ Xi, Bi ⊆ Bi such that the natural extensions
πi : Xi 99K Bi (i = 1, 2) and f : X1 99K X2 are morphisms.

Since B1 is smooth of dimension one, π1 is flat and hence has equi-dimensional con-
nected fibres. By the assumption and the rigidity lemma (cf. [Deb01, Lemma 1.15]),
π2 ◦ f contracts one and hence every fibre of π1, and then π2 ◦ f factors through π1

via some f |B1
: B1 → B2. Since π1 : X1 → B1 is surjective, every b ∈ B1 is mapped to

π2(f((X1)b)) ∈ B2, i.e., f |B1
(B1) ⊆ B2. Hence the (surjective) morphism f : X1 → X2

descends, via the surjections πi : Xi → Bi, to a (surjective) morphism f |B1 : B1 → B2.
Note that if F1 is a curve and f(F1) dominates B2 via π2 then κ(F1) ≥ κ(f(F1)) ≥

κ(B2), and note also κ(A1) = −∞. Then the lemma follows. �
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Proposition 4.3. Let π : X → B be a surjective morphism from a normal quasi-projective
variety to a smooth curve with a general fibre irreducible. Let f : X → X be a finite sur-
jective morphism which descends to a surjective morphism g : B → B (this is the case
when Lemma 4.2 is satisfied). Let Σ0 ⊆ B (resp. Σ1 ⊆ B) be the set of b ∈ B such that
the fibre Xb is reducible (resp. irreducible and non-reduced). Then we have:

(1) g−1(Σ0) = Σ0. Hence g induces a surjective endomorphism of B \ Σ0.
(2) If g is étale (this is the case when κ(B) ≥ 0; cf. Lemma 2.13), then g−1(Σ1) = Σ1,

hence g induces a surjective endomorphism of B \ (Σ0 ∪ Σ1).
(3) If κ(B) = 1, or if κ(B) ≥ 0 and π has a reducible fibre or a non-reduced fibre, then

g is an automorphism of finite order.

Proof. Lemma 4.1 implies that f maps the fibre Xb onto Xg(b) for any b ∈ B. Thus
g−1(Σ0) ⊆ Σ0. Now Σ0 is a finite set, so g−1(Σ0) = Σ0.

If g is étale, then g∗b is reduced for any b ∈ B. This implies that g−1(Σ1) ⊆ Σ1. Since
Σ1 is a finite set, we have g−1(Σ1) = Σ1.

(3) follows from (1), (2) and Lemma 2.12. �

Lemma 4.4. Let X be a smooth affine surface and π : X → B an A1-fibration. Then
every fibre has support equal to a disjoint union of A1’s. Hence, either π is an A1-bundle,
or it has a reducible or non-reduced fibre.

Proof. Extend π to π : X → B from a smooth projective surface to a smooth projective
curve with the boundary D = X \X an SNC divisor. Then D consists of a cross-section
of π and some fibre components. Noting that D supports a connected ample effective
divisor by Lemma 2.2, the affine X contains no compact P1, and every fibre of π : X → B

consists of P1’s and has dual graph a connected tree, the lemma follows. �

Proposition 4.5. Let X be a smooth affine surface over k and f : X → X a finite
surjective morphism. Let π : X → B be a surjective A1-fibration. Suppose that |πét

1 (X)| =
∞, and B = A1 or P1. Then f descends to an automorphism f |B on B of finite order.

Proof. Our proof closely follows [GZ08, Lemmas 3.5–3.6]. We consider the case B = A1

only since the case B = P1 is similar.
We first prove that the surjective endomorphism f descends to a surjective endomor-

phism f |B on B. By Lemma 4.2, we only need to show the property P (k): f(F ) is
contained in a fibre of π for a general fibre F of π. The property P (k) satisfies (♦) of
Remark 2.19. So we may assume k = C. Note that the (topological) fundamental group
π1(X) of X is infinite by the assumption that |πét

1 (X)| =∞.
Let F1, . . . , Fr be all multiple fibres of π : X → B with multiplicity mi ≥ 2 (cf. Defini-

tion 2.9). If r ≤ 1, then π1(X) is finite cyclic of order upper-bounded by the multiplicity
of Fr (cf. Proof of [Nor83, Lemma 1.5], or [GMM21, Lemma 1.1.11]). Thus r ≥ 2.
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By Proposition 2.10, there is a finite surjective morphism B′ → B with ramification
index equal to mi at every point of B′ lying over the point π(Fi) such that the normali-
sation X ′ of X ×B B′ is étale over X, the induced fibration π′ : X ′ → B′ has no multiple
fibre and the fibres of π′ lying over Fi are all reducible (see also Lemma 4.4).

Suppose the contrary that the property P (C) is false. Then the normalisation of f(F )

equals A1 (because κ(f(F )) ≤ κ(F ) = κ(A1) = −∞), so it is simply connected and
dominates B via π : X → B. Take an irreducible component F ′ ⊆ X ′ of the inverse of
f(F ) via the étale map X ′ → X. Then F ′ has normalisation equal to A1 and dominates
B′. Thus −∞ = κ(A1) ≥ κ(π′(F ′)) ≥ κ(B′). So B′ ∼= A1. This and that π′ : X ′ → B′

has all fibres non-multiple, with the help of [Nor83, Lemma 1.5], imply that π1(X ′) = (1).
Hence π1(X) is finite too, a contradiction to the assumption. Thus P (C) and hence P (k)

hold true. So f descends to a surjective endomorphism f |B.
Next we show that f |B is an automorphism of finite order. Clearly, this property also

satisfies (♦) of Remark 2.19. So we may assume that k = C in the following.
Let Σ0 ⊆ X (resp. Σ′0 ⊆ X ′) be the set of points over which the fibres of π (resp. π′)

are reducible. By Proposition 4.3, (f |B)−1(Σ0) = Σ0. Iterating f , we may assume that
f−1 stabilises every component in every reducible fibre of π : X → B. Thus f |B restricts
to a surjective endomorphism of B \ Σ0.

The argument in [GZ08, Lemma 3.5] shows that f induces an isomorphism of the group
π1(X). Thus the covering theory implies that f lifts to a finite surjective morphism
f ′ : X ′ → X ′, via the étale covering X ′ → X.

By the compatibility of f, π on X and f ′, π′ on X ′, our f ′ descends to a surjective
morphism f ′|B′ : B′ → B′. The same Proposition 4.3 implies that (f ′|B′)−1(Σ′0) = Σ′0 and
f ′|B′ restricts to a surjective endomorphism of B′ \ Σ′0.

Note that |Σ′0| ≥ 2 (since the fibres lying over the r ≥ 2 of fibres Fi are reducible).
Thus B′ \ Σ′0 is the affine curve B′ with at least two points removed, hence κ(B′ \
Σ′0) = 1 (alternatively, since all fibres of the A1-fibration π′ : X ′ → B′ are non-multiple,
|π1(X ′)| =∞ and [Nor83, Lemma 1.5] imply that |π1(B′)| =∞, so κ(B′) ≥ 0 and hence
κ(B′ \ Σ′0) = 1). Therefore, f ′|B′\Σ′0 and hence f |B are automorphisms of finite order
(cf. Lemma 2.12). �

Lemma 4.6. Let πi : Xi → Bi be an A1-bundle from a smooth surface to a smooth curve
(i = 1, 2). Let f : X1 → X2 be a finite surjective morphism which descends to a surjective
morphism g : B1 → B2. Take any P1-bundle π′i : Vi → Bi as a partial compactification of
πi (which exists by Lemma 2.3). Then f extends to a surjective morphism f : V1 → V2.

Proof. Note that Hi = Vi \ Xi is an irreducible π′i-horizontal curve since every fibre of
πi : Xi → Bi is A1. Extend f as a rational map f : V1 99K V2 with indeterminacy being
several points on H1. Take a composition of blow ups µ : V ′1 → V1 such that f ′ = f ◦ µ is
a morphism and µ(Exc(µ)) ⊆ H1. Since f descends to g, we have π2◦f ′ = g◦π1◦µ. Take
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a (−1)-curve C ⊆ Exc(µ). If f ′(C) is not a point, then f ′(C) = H2, since f−1(X2) = X1;
but then π2(f ′(C)) = g(π1(µ(C))) is a point, a contradiction. So we may contract C,
preserving f ′ as a morphism. Continuing this process, f : V1 → V2 is a (surjective)
morphism. �

Lemma 4.7. Let X be a smooth affine surface and f : X → X a finite surjective mor-
phism with deg(f) ≥ 2. Let π : X → B be a surjective A1-fibration. Suppose B has an
elliptic curve B as its compactification. Then (X, f) satisfies both AZO 1.4 and KSC 1.5.

Proof. Note that κ(B) ≥ κ(B) = 0. By Lemma 4.2, f descends to a surjective endomor-
phism g : B → B. If B 6= B, then κ(B) = 1 and g is of finite order by Lemma 2.12; hence,
both AZO 1.4 and KSC 1.5 hold trivially (cf. Lemmas 2.16 and 3.14). Assume B = B.
We may assume also that π : X → B is an A1-bundle; otherwise, g is of finite order by
Lemma 4.4 and Proposition 4.3, and we are done again. By Lemma 4.6, X embeds into a
P1-bundle V over B and f extends to a surjective endomorphism on V with f(X) = X.
The lemma follows from Remark 1.8. �

5. Semiabelian varieties: Proof of Theorem 1.7

The aim of this section is to prove Theorem 1.7 the proof of which is similar to the proof
of [Xie22, Theorem 1.14]. In Subsection 1.2, we briefly recalled some basic properties of
the adelic topology and gives basic examples of adelic open subsets. See [Xie22, Section
3] for the definition and more detailed discussions of adelic topology. We begin with some
notation and lemmas.

Lemma 5.1. Suppose that there is a subvariety V of G such that dimV ≥ 1 and f |V = id.
Then k(G)f 6= k.

Proof. We may assume that 0 ∈ V . Then f is an isogeny. We have V ⊆ Ker(f − id). So
dim Ker(f − id) ≥ 1. Write the minimal polynomial of f , killing f on G (or equivalently
fC on GC), as (1 − t)rP (t) where P (1) 6= 0. We have r ≥ 1. Set N := (id−f)r−1P (f)

and B = N(G). Then dimB ≥ 1 and B ⊆ Ker(f − id). Further, f descends to f |B =

id: B → B via N . Pick a nonconstant rational function F on B. Set H := N∗F = F ◦N ,
which is a nonconstant rational function on G. We conclude the proof with:

f ∗H = F ◦N ◦ f = F ◦ (f |B) ◦N = F ◦ id ◦N = H. �

For every closed subset V ⊆ G, define

SV := {a ∈ G | a+ V = V }.

Then SV is a group subvariety of G. Denote by S0
V the identity component of SV . Then

S0
V ⊆ G is a semiabelian subvariety.
Assume that V is irreducible and invariant under f . Set B := G/S0

V and denote by
π : G → B the quotient morphism. There is a unique endomorphism f |B : B → B such
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that f |B ◦ π = π ◦ f . Since f is dominant, f |B is also dominant. Set VB := π(V ). By
[Abr94, Theorem 3], κ(VB) = dimVB. By Lemma 2.12, there is some ` > 0 such that
(f `|B)|VB = id. Observe that if dimVB = 0, V takes the form a+ S0

V for some a ∈ V .

Lemma 5.2. Assume that dimVB ≥ 1. Then k(G)f 6= k.

Proof. By Lemma 2.16, replacing f by f `, we may assume that (f |B)|VB = id. Since π
is surjective, we only need to show that there is a nonconstant rational function H on B
satisfying (f |B)∗H = H. This is achieved by applying Lemma 5.1 to f |B, B and VB. �

Lemma 5.3. Suppose that k(G)f = k. Then:

(1) Every irreducible f -invariant subvariety V takes the form a + G0 where a ∈ G and
G0 is a semiabelian subvariety of G.

(2) Suppose further f is an isogeny. Then the fixed point set Fix(f) of f is finite and
V ∩ Fix(f) 6= ∅.

Proof. By Lemma 5.2, V = a+G0, with a ∈ G and G0 a semiabelian subvariety of G.
Now assume that f is an isogeny. Since f(V ) = V , f(a) + f(G0) = a+G0. It follows

that f(G0) = G0 and f(a) − a ∈ G0. By Lemma 5.1, Fix(f) is finite and (f − id)|G0

is an isogeny. So there is some x ∈ G0 such that f(x) − x = a − f(a). It follows that
f(a+ x) = a+ x and a+ x ∈ a+G0 = V . This concludes the proof. �

Now we are ready for:

Proof of Theorem 1.7. We may assume that k(G)f = k. Also, we may replace f by an
iteration (cf. Lemmas 2.16 and 3.14). Let K be a subfield of k which is finitely generated
overQ satisfyingK = k, such thatG and f are defined overK. There exists a semiabelian
variety GK overK and an endomorphism fK : GK → GK such that G = GK×SpecKSpeck
and f = fK ×SpecK id.

We first treat the case where f is an isogeny. Denote by G[2] the finite subgroup of
the 2-torsion points in G. By Lemma 5.1, Fix(f) is finite. After replacing K by a finite
extension, we may assume that all points in Fix(f) ∪G[2] are defined over K.

By abusing notation, we will use addition to denote the group operation on the semi-
abelian variety G, i.e., regard G as an additive group. For every ` ∈ Z, denote by
[`] : G→ G the morphism x 7→ `x. Since [3] ◦ f = f ◦ [3], we have [3](Fix(f)) ⊆ Fix(f).
There is some m ≥ 1 such that for every x ∈ Fix(f), we have [32m](x) = [3m](x).

By [Xie22, Proposition 3.24], replacing f by a positive iteration, there is a nonempty
adelic open subset P of G(k) such that for every point z ∈ P , the orbit closure Zf (z) :=

Of (z) is irreducible. Then we have f(Zf (z)) = Zf (z). By Lemma 5.3, Zf (z) takes the
form a+H where H is a semiablian subvariety of G and a ∈ Fix(f).

Our G fits the following exact sequence

1 −→ Gr
m −→ G −→ A −→ 1,
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where A is an abelian variety of dimension s. We have |G[2]| = 22s+r. Moreover, for
every semiabelian subvariety H ′ of G, we have

(∗) |G[2] ∩H ′| = |H ′[2]| ≤ |G[2]|

and the last equality holds if and only if H ′ = G.
Pick an embedding τ : K ↪→ C3. We note that 0 ∈ GK(C3) is an attracting fixed point

for [3]. There exists an open neighbourhood U ⊆ GK(C3) of 0 such that for every x ∈ U ,
limn→∞[3n]x = 0. Let P be an adelic open subset of G(k). Then

C := P ∩ (∩y∈G[2]GK(τ, y + U))

is a nonempty basic adelic open subset of G(k) (cf. Remark 1.3).
We only need to show that for every x ∈ C, Zf (x) = G. Denote by Iτ the set of

field embeddings j : k ↪→ C3 with j|K = τ . For j ∈ Iτ , denote by φj : G(k) ↪→ GK(C3)

the embedding induced by j : k ↪→ C3. For every y ∈ G[2], there is some jy ∈ Iτ such
that ay := φjy(x) ∈ y + U . As remarked early on, we can write Zf (x) = a + H with
a ∈ Fix(f) and H a semiablian subvariety of G. Then for n ≥ 1, we have [3nm](Zf (x)) =

[3nm](a+H) = [3m](a) +H.
We note that ay = φjy(x) ∈ φjy(Zf (x)) for every y ∈ G[2]. Then for every n ≥ 0,

y ∈ G[2], we have

y + [3nm](ay − y) = [3nm](ay) ∈ φjy([3m](a) +H).

Since ay − y ∈ U , letting n → ∞, we get y ∈ φjy([3m](a) + H). Since y is defined
over K, we have y ∈ [3m](a) + H. It follows that G[2] ⊆ [3m](a) + H. In particular,
0 ∈ [3m](a) + H, so H = [3m](a) + H ⊇ G[2]. Thus, H[2] = G[2]. Hence H = G as we
remarked after the display (∗) early on. It follows that Zf (x) = G.

Now we treat the general case. Let V be a subvariety of G which has minimal dimension
in all f -periodic subvarieties. By Lemma 5.3, V is a translate of a semiabelian subvariety
of G. After changing the origin of G and replacing f by a suitable iterate, we may assume
that V itself is a semiabelian subvariety of G and f(V ) = V . Set B := G/V and denote
by π : G→ B the quotient morphism. There is an endomorphism f |B : B → B such that
f |B ◦ π = π ◦ f . Since f(V ) = V and f is dominant, f |B is an isogeny. Then, by the
completed isogeny case, there is a nonempty adelic open subset D of B(k) such that for
every x ∈ D, the orbit Of |B(x) is Zariski dense in B. By [Xie22, Proposition 3.24], after
replacing f by a positive iteration, there is a nonempty adelic open subset P of G(k)

such that for every point z ∈ P , its orbit closure Zf (z) is irreducible.
We claim that for every x ∈ π−1(D)∩P , we have Zf (x) = G. Indeed, since Of |B(π(x))

is Zariski dense in B, we have π(Zf (x)) = B. So Zf (x) ∩ V 6= ∅. Since f(Zf (x) ∩ V ) ⊆
Zf (x) ∩ V , there is an f -periodic subvariety contained in Zf (x) ∩ V . The minimality
of dimV implies that V ⊆ Zf (x). By Lemma 5.3 and noting that V is an semiabelian
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subvariety, Zf (x) is a semiabelian subvariety of G. Then Zf (x) contains a fibre V of
π : G→ B and dominates B, hence is equal to G. �

6. Case of log Kodaira dimension ≥ 0: Proofs of Theorems 1.9 and 1.10

This section deals with smooth affine surfaces of non-negative log Kodaira dimensions.

Proposition 6.1. Let X be a smooth affine surface and f : X → X a finite surjective
morphism of degree ≥ 2. Suppose κ(X) = 1. Then we have:

(1) There is a surjective morphism π : X → B to a smooth curve B such that f descends
to an automorphism f |B : B → B of finite order.

(2) There exists a finite surjective morphism B′′ → B from a smooth curve such that
the normalisation X ′′ of X ×B B′′ is an étale cover of X and the induced mor-
phism π′′ : X ′′ → B′′ is a trivial Gm-bundle. Moreover, after iteration, f lifts to an
endomorphism f ′′ on X ′′ such that π′′ ◦ f ′′ = π′′.

Proof. Take a log smooth compactification (V,D) of X. Then κ(V,KV +D) = κ(X) = 1.
Hence KV +D has a Zariski decomposition KV +D = P +N . By Proposition 2.11, the
nef part P is semi-ample.

Let Γ be a desingularisation of the graph of the rational map f : V1 = V 99K V = V2

(extending f : X → X) with two projections pi : Γ → Vi. Since f−1(X) = X, we have
p−1

1 (D) = p−1
2 (D) (=: DΓ). By the log ramification divisor formula, KΓ +DΓ = p∗i (KV +

D) + Ei for some effective divisor Ei for i = 1, 2 (cf. [Iit82, Theorem 11.5]). Now the
following composition self-map f ∗ is an injective linear transformation

(†) f ∗ : H0(V2, s(KV +D))→ H0(Γ, s(KΓ +DΓ)) ∼= H0(V1, s(KV +D))

and hence an isomorphism, for any s ≥ 1.
Take s sufficiently large and divisible. Then Φ|s(KV +D)| = Φ|sP | as rational maps,

where the latter is a well-defined morphism (the Iitaka fibration of X) with connected
fibres. Since the f ∗ in the (†) above is an isomorphism, f : X → X descends to an
automorphism f |Bm on the base Bm of the Iitaka fibration Φ|sP | : V → Bm. Note that
dimBm = κ(X) = 1.

Let π = (Φ|sP |)|X : X → B := π(X). Then f |Bm restricts to (an automorphism) f |B.
Taking normalisation, we may assume that B is smooth. Then κ(F ) = 0 for a general
fibre F of π, by the definition of the Iitaka fibration (cf. [Iit82]). Now F is a smooth affine
curve with κ(F ) = 0, so F ∼= Gm i.e., π is a Gm-fibration. By Lemma 2.14, e(X) = 0.
By the Suzuki formula (cf. [Suz77], [Gur97]), every fibre of π has support Gm.

Let {miFi}ri=1 (r ≥ 0) be the set of multiple fibres miFi of X → B lying over a point
bi. Set B0 = B \{b1, . . . , br}, X0 = π−1(B0). Then f |B0 is induced by Proposition 4.3. By
Lemma 2.7, κ(B0) = κ(X0) ≥ κ(X) = 1, so κ(B0) = 1. Therefore f |B0 (and hence f |B)
are automorphisms of finite order, say the identity, after iterating f (cf. Lemma 2.12).
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Moreover, either B is irrational or r ≥ 3. By Proposition 2.10, there is a finite surjective
morphism B′ → B, from smooth B′, such that the normalisation X ′ of X ×B B′ is an
étale cover of X with the projection π′ : X ′ → B′ being a Gm-bundle.

Now f lifts to an endomorphism f ′ on X ′ such that π′◦f ′ = π′. Applying [GZ08, Claim
3.2a], there is a finite étale cover B′′ → B′ such that π′′ : X ′′ = X ′×B′B′′ → B′′ is a trivial
Gm-bundle. Clearly, f ′ lifts to an endomorphism f ′′ on X ′′ such that π′′ ◦ f ′′ = π′′. �

Proposition 6.2. Let X be a smooth affine surface over k, and f : X → X a finite
surjective morphism of degree ≥ 2. Suppose κ(X) = 0. Then there is a finite étale cover
πT : T → X from an algebraic torus T ∼= G2

m and f lifts to an endomorphism fT on T .

Proof. Assume first that k = C. We begin with:

Claim 6.3. X is a Q-algebraic torus (over k = C).

Proof of Claim 6.3. By Lemma 2.14, the topological Euler number e(X) = 0. This and
the Artin vanishing Hj(X,C) = 0 (j > dimX = 2) for affine varieties (cf. [Art73,
Corollaire 3.5]) imply the first Betti number b1(X) ≥ 1. Let (V,D) be a log smooth com-
pactification of X. The E1-degeneration of the logarithmic Hodge-to-de Rham spectral
sequence (cf. [Del71, Corollaire 3.2.13]) implies:

1 ≤ b1(X) = h0(V,Ω1
V (logD)) + h1(V,OV ) = h0(V,Ω1

V (logD)) + h0(V,Ω1
V ) ≤ 2q(X),

where the log irregularity q(X) := h0(V,Ω1
V (logD)). Hence the quasi-Albanese map

a : X → S is non-trivial (to a semiabelian variety) with dimS = q(X) ≥ 1.
By [Kaw81, Theorem 28], the map a is dominant with general fibre irreducible. Let

T ⊆ S be the maximal subtorus and A := S/T , a (projective) abelian variety. Then we
get the dominant composition b : X → S → A.

Suppose first that dimS = 2 = dimA. Then S = A and a : X → A is a birational
morphism. Take a log smooth compactification X ⊆ V such that the map a extends to
a morphism a : V → A. Since the map a is also birational, we have κ(V ) = 0. But this
contradicts κ(X) = 0 since D = V \X is a big divisor and so is KV +D (cf. Lemma 2.2).
Therefore, this case cannot happen.

When dimS = 1 (resp. dimA = 1) we set Y := S (resp. Y := A); when S = T and
dimT = 2, we let T → Y := Gm be any projection; let b : X → Y be the natural dominant
morphism, and F its general fibre. By Iitaka’s subadditivity (cf. [Iit82, Theorem 11.15]),
0 = κ(X) ≥ κ(F ) + κ(b(X)) ≥ κ(F ) + κ(Y ). By the easy addition (cf. [Iit82, Theorem
11.9]), 0 = κ(X) ≤ κ(F ) + dimY ; hence κ(F ) 6= −∞. Combining the above all, we
get κ(F ) = 0 = κ(Y ) and b is surjective. Hence F ∼= Gm since F ⊆ X is affine, and
either Y is an elliptic curve or Y ∼= Gm. Thus X → Y is a surjective Gm-fibration.
Since e(X) = 0 by Lemma 2.14, every fibre of π has support Gm by the Suzuki formula
(cf. [Suz77], [Gur97]).
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By Proposition 2.10, there is a finite surjective morphism φ : B′ → B such that the
normalisation X ′ (still affine) of X ×B B′ is étale over X and the induced morphism
π′ : X ′ → B′ is a Gm-bundle. By Lemma 2.7, κ(B′) = κ(X ′) (= κ(X) = 0). This and
Corollary 2.8 imply that B′ ∼= Gm. By Lemma 2.7 again, there is a finite étale cover
θ : B′′ → B′ (of degree ≤ 2) such that the base change π′′ : X ′′ → B′′ of π′ via θ is a
trivial Gm-bundle. Since B′ is isomorphic to Gm so is its étale cover B′′. Now X ′′ is a
trivial Gm-bundle over B′′ ∼= Gm, so X ′′ ∼= G2

m. This proves Claim 6.3. �

We return back to the proof of Proposition 6.2. Now for a general field k, we can use
the same argument as in Remark 2.19 to conclude that X is a Q-algebraic torus over
k, with the help with Claim 6.3 and Lemma 2.18; note that any (connected) finite étale
cover of Xk comes from a such one of XC (cf. Lemma 2.17). Then, as a consequence of
Lemma 2.21, f lifts to the algebraic torus closure πT : T ∼= G2

m → X. �

Now we are ready for the following two proofs.

Proof of Theorem 1.9. It follows from Propositions 6.1 (and its proof) and 6.2. �

Proof of Theorem 1.10. By Remark 1.6, for the ZDO 1.1 part, we only need to prove
AZO 1.4; further, for the AZO 1.4 part, we may assume that (X, f) is defined over an
algebraically closed field whose transcendence degree over Q is finite. For the KSC 1.5
part, as usual, we assume that (X, f) is defined over Q. By [Xie22, Corollary 3.33], we
may assume that deg(f) ≥ 2.

If κ(X) = 2, then f is an automorphism of finite order by Lemma 2.12, contradicting
the extra assumption that deg(f) ≥ 2.

If κ(X) = 1, then Proposition 6.1 implies that there is a finite étale cover φ : X ′′ → X

such that X ′′ admits a Gm-bundle structure π′′ : X ′′ → B′′ and some iteration of f lifts
to f ′′ : X ′′ → X ′′ and satisfies π′′ ◦f ′′ = π′′. Thus AZO 1.4 and KSC 1.5 hold for (X ′′, f ′′)

and hence also for (X, f) (cf. Lemma 3.14, [Xie22, Lemma 3.30] and Proposition 3.13).
If κ(X) = 0, then by Proposition 6.2, there is a finite étale cover φ : G2

m → X such
that f lifts to f ′ : G2

m → G2
m. AZO 1.4 for semiabelian varieties is proved in Theorem 1.7

and KSC 1.5 for them is proved in [MS20]. So AZO 1.4 and KSC 1.5 hold for (X, f) too
(cf. [Xie22, Lemma 3.30] and Proposition 3.13). �

7. Extensions of polynomial maps: Proofs of Theorems 1.11 and 1.13

The aim of this section is to show that Adelic Zariski Dense Orbit Conjecture (AZO 1.4)
is stable under extension by polynomial maps (cf. Theorem 7.1). With the help of this, we
prove Theorems 1.11 and 1.13. The aim of this section is to prove Theorem 1.7 the proof
of which is similar to the proof of [Xie22, Theorem 1.14]. See Subsection 1.2 for a briefly
introduction of adelic topology and a basic example of adelic open subset. We follows
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the notations from there. See [Xie22, Section 3] for the definition and more detailed
discussions of the adelic topology.

Let k be an algebraically closed field of finite transcendence degree over Q. We prove:

Theorem 7.1. Let X be a projective variety over k, and f1 : X 99K X a dominant
rational self-map. Assume that AZO 1.4 holds for the pair (X, f1) (this is the case when
dimX = 1, cf. Lemma 3.14). Let f2 ∈ k(X)[y]\k(X) be a nonconstant polynomial. Then
AZO 1.4 and hence ZDO 1.1 hold for the dominant rational self-map f : X×P1 99K X×P1

sending (x, y) to (f1(x), f2(x, y)).

Definition 7.2. We say a pair (X, f) satisfies Strong Adelic Zariski Dense Orbit-property
(SAZO-property for short) if the f -orbit of an adelic general point is well-defined and
Zariski dense in X.

Proof of Theorem 7.1. The proof is similar to the proof of [Xie22, Theorem 4.1]. We may
replace f1 and f by iterations (cf. Lemmas 2.16 and 3.14).

Denote by π : X × P1 → X the first projection. If H ∈ k(X)f1 \ k, then π∗H ∈
k(X × P1)f \ k. So we may assume that SAZO-property holds for (X, f1). For every
z ∈ X × P1 (resp. x ∈ X), denote by Zf (z) (resp. Zf1(x)) the Zariski closure of the
f -orbit Of (z) of z (resp. the f1-orbit Of1(x1) of x).

If degy(f2) = 1, Theorem 7.1 holds by [Xie22, Theorem 3.34]. Now assume d :=

degy(f2) ≥ 2. Write f2(x, y) =
∑d

i=0 ai(x)yi with ai ∈ k(X). There is a Zariski dense
open subset X ′ of X such that ai ∈ O(X ′) (0 ≤ i ≤ d) and ad(x) 6= 0 for any x ∈ X ′.

We may assume that there is a nonempty adelic open subset A ⊆ X such that for every
x ∈ A, the f1-orbit of x is well-defined and Zariski dense in X. Let K be a subfield of k
which is finitely generated over Q, such that K = k and f1, f2, X are defined over K.

By [Xie22, Proposition 3.24], replacing f by an iteration, there is a nonempty adelic
open subset B ⊆ (X × P1)(k) such that for every point z ∈ B, the f -orbit of z is
well-defined and Zf (z) is irreducible. By [Xie22, Proposition 3.24] again, replacing f

by a positive power, we may assume that there exist a prime p ≥ 3, an embedding
i : K ↪→ Cp, and an open subset V ' (C◦p)dimX of XK(Cp) which is f1-invariant, such
that the f1-orbits of the points in V are well-defined and f1|V = id mod p. Moreover,
there is an analytic action Φ: C◦p × V → V of (C◦p,+) on V such that for every n ∈ Z≥0,
we have Φ(n, ·) = fn1 |V (·). In particular, fp

n

1 (x)→ x when n→∞ for every x ∈ V .
There is someM ≥ 1 such that for every i = 0, 1, . . . , d and x ∈ V , we have |ai(x)| ≤M

and |ad(x)| ≥ M−1. Pick some R > M2. Let U be the disc {|y| ≥ R} ∪ {∞} in
P1(Cp), where y is the affine coordinate of P1. Then f is well-defined on V × U and
f(V × U) ⊆ V × U . Moreover, for every (x, y) ∈ V × U , ` ≥ 0, we have f `+pn(x, y) →
(f `1(x),∞) ⊆ V × {∞} when n → ∞. In particular, we have Zf1(π(z))× {∞} ⊆ Zf (z).
This property is purely algebraic, so for every z ∈ C := (X × P1)K(i, U × V ), we have
Zf1(π(z))× {∞} ⊆ Zf (z).
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By [Xie22, Proposition 3.18] or Remark 1.3, π−1(A)∩B ∩C ∩ (X ×A1) is a nonempty
adelic open subset of (X × P1)(k). For every z ∈ π−1(A) ∩B ∩ C ∩ (X × A1), we have

(1) the orbits of z and π(z) are well-defined;
(2) Zf1(π(z)) = X;
(3) Zf (z) is irreducible;
(4) Zf1(π(z))× {∞} ⊆ Zf (z); and
(5) z ∈ Zf (z) \ (X × {∞}).

It follows that Zf (z) = X × P1. This proves Theorem 7.1. �

Theorem 7.1 above is the key in the following proof.

Theorem 7.3. Let X := A1 ×Gm. Let f : X → X be a finite surjective endomorphism.
Then AZO 1.4 and hence ZDO 1.1 hold for (X, f).

Proof. Note that κ(Gm) = 0. By Lemma 4.2, f descends along the natural projection
π : X → B = Gm. Hence f is of the form in Theorem 7.1. The result follows. �

Now we are ready for the following two proofs.

Proof of Theorem 1.11. AZO 1.4 is known when deg(f) = 1 (cf. [Xie22, Corollary 3.33]).
So we always assume further deg(f) ≥ 2 for the AZO 1.4 part.

If κ(X) ≥ 0, then (1) and (2) follow from Theorem 1.10. Suppose that κ(X) = −∞.
Then there is an A1-fibration π : X → B since X is affine and by the open surface theory
(cf. [Miy01, Ch. 3, Theorem 1.3.2]). If κ(B) = −∞, then f descends to an automorphism
f |B on B of finite order by applying Proposition 4.5. In this case, both AZO 1.4 and
KSC 1.5 are vacuously true (cf. Lemma 2.16). So we may assume that κ(B) ≥ 0. By
Lemma 4.2, f descends to a surjective endomorphism f |B of B. If deg(f) = 1, then f |B
is an automorphism of B. We see that d1(f) = 1 (cf. [Dan20, Theorem 4], arXiv version)
and hence (3) holds.

We may assume deg(f) ≥ 2 for both (1) and (2). We may assume also that κ(B) =

0 and π : X → B is an A1-bundle; otherwise, g is of finite order by Lemma 4.4 and
Proposition 4.3, and we are done as before. By Lemmas 4.7 and 2.15, AZO 1.4 and
KSC 1.5 are true unless X ∼= A1×Gm (cf. Lemma 2.16). Then (2) follows, and (1) holds
true by Theorem 7.3. �

Proof of Theorem 1.13. It follows from Theorem 7.1 by induction on the factors. �

8. Maps with larger first dynamical degree: Proof of Theorem 1.14

In this section, we consider Zariski Dense Orbit Conjecture (ZDO 1.1) via the arith-
metic degree. Let X be a projective variety over Q and f : X → X a surjective morphism.

The following is a generalisation of [MSS18, Lemma 9.1] to the singular case, but the
proof of [MSS18, Lemma 9.1] is valid even in the singular case.
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Proposition 8.1. Assume that d1(f) > 1. Let D 6≡ 0 be a nef R-Cartier divisor on X

such that f ∗D ≡ d1(f)D. Let V ⊆ X be a subvariety of positive dimension such that
(DdimV · V ) > 0. Then there exists a nonempty open subset U ⊆ V and a set S ⊆ U(Q)

of bounded height such that for every x ∈ U(Q) \ S we have αf (x) = d1(f).

Remark 8.2. Let C be an irreducible curve which is a complete intersection of dimX−1

of ample effective divisors on X. Then (D · C) > 0.

As defined in [MMSZZ22], an f -periodic subvariety V is said to be of Small Dynamical
Degree (SDD for short) if the first dynamical degree d1(f s|V ) < d1(f s) for some s ≥ 1

such that f s(V ) = V .

Definition 8.3. We say that (X, f) satisfies the SDD condition if there is an f−1-invariant
Zariski closed proper subset Z ofX such that all irreducible f -periodic proper subvarieties
not being contained in Z, are SDD.

The SDD condition is a dynamical property of the algebraic dynamics system (X, f).

Theorem 8.4. If (X, f) satisfies the SDD condition, then ZDO 1.1 holds for (X, f).

Proof. Set ` := dimX. By the assumption, there is an f−1-invariant Zariski closed subset
Z of X such that all f -periodic proper subvarieties not being contained in Z, are SDD.

Assume first d1(f) = 1. Since (X, f) satisfies the SDD condition, there is no proper
f -periodic subvarieties outside Z. Pick any point x ∈ X(Q) \ Z and let Zf (x) be the
Zariski closure of the f -orbit Of (x) of x. Then, for some t ≥ 1, f t(x) is contained in a
f -periodic subvariety of Zf (x) (cf. [MMSZ20, Lemma 2.7]), which is hence either equal
to X or contained in Z. In the latter case, x is contained in f−t(Z) = Z, which is a
contradiction. Thus the theorem is true when d1(f) = 1.

Now we may assume that d1(f) > 1. By the generalised Perron-Frobenius theorem
due to Birkhoff, there is a nonzero nef R-divisor D ∈ N1(X) := NS(X) ⊗Z R such that
f ∗D ≡ d1(f)D. Let H1, . . . , H`−1 be general very ample divisors on X. By applying
Bertini’s theorem to the pullback of |Hi| to a smooth model of X, we may assume that
C := H1 ∩ · · · ∩ H`−1 is irreducible and it is not contained in Z. By Remark 8.2, we
may apply Proposition 8.1 to the curve C. By the Northcott property, there is a point
x ∈ C(Q) \ Z with αf (x) = d1(f).

For some t ≥ 1, s ≥ 1, our f t(x) is contained in an f s-invariant irreducible component
V of Zf (x) (cf. [MMSZ20, Lemma 2.7]). If V = X then Zf (x) = X and we are done.
If V ⊆ Z then x ∈ f−t(V ) ⊆ f−t(Z) = Z, absurd. Thus V is not contained in Z, and
is an f s-invariant proper subvariety of X. Hence V is SDD. So d1(f s|V ) < d1(f s). Set
y := f t(x) ∈ V . Then αf (y) = αf (x) = d1(f). Now (cf. Lemma 3.10)

d1(f s|V ) < d1(f)s = αf (y)s = αfs(y) = αfs|V (y),

which contradicts Proposition 3.11. This proves Theorem 8.4. �
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It is clear that the SDD condition is satisfied when dimX = 1 and ord(f) =∞. There
are still some nontrivial examples where the SDD condition is satisfied.

Proposition 8.5. Let f : X → X be a dominant endomorphism of projective variety.
Assume either one of the following two conditions.

(1) dimX = 2, d1(f) > 1 and d1(f) ≥ d2(f); or
(2) dimX = 3, and d1(f) > d3(f) = 1.

Then either there is an f ∗-invariant nonconstant rational function on X, or (X, f) sat-
isfies the SDD condition.

Proof. Fix an embedding Q ↪→ C. If there are infinitely many f−1-periodic pairwise
component non-overlapping hypersurfaces of X, then we may find sufficiently many f−1-
invariant (not necessarily irreducible) hypersurfaces and hence so does for (XC, fC). By
[Can10, Theorem B], (fC)∗ preserves a nonconstant rational function on XC and hence
so does (X, f) (cf. Lemma 2.16). Thus we may assume that there is an f−1-invariant
hypersurface Z such that for every hypersurface H of X, if it is f−m-invariant for some
m ≥ 1, then we have H ⊆ Z.

Let V be any irreducible f -periodic subvariety of period m ≥ 1. If dimV = 0, then we
have d1(fm) > 1 = d1(fm|V ).

Assume that (1) holds. We may assume that dimV = 1 and V 6⊆ Z. Hence f−m(V ) =

V ∪ V ′ for some (nonempty) curve V ′ 6= V . Then deg(fm|V ) < deg(fm) ≤ d1(fm).
Now assume that (2) holds. Since f is an automorphism, all f -periodic hypersurfaces

are contained in Z. So we may assume that dimV = 1 and V 6⊆ Z. Since f is an
automorphism and V is a curve, d1(fm|V ) = deg(fm|V ) = 1 < d1(fm). �

Remark 8.6. The proof of Proposition 8.5 still works when f is a rational self-map. We
omit the details and leave its verification to interested readers (also because Theorem 8.4
is not extendable to the rational map case at the moment).

Proposition 8.7. Let f : X → X be a dominant endomorphism of a smooth projective
variety of dimension d ≥ 2. Suppose d1(f) > maxdi=2{di(f)}. Then (X, f) satisfies the
SDD condition.

Proof. Let V be any irreducible f -periodic subvariety of period m ≥ 1. We only need to
show that d1(fm|V ) < d1(fm). We may assume that dimV ≥ 1. After replacing f by
fm, we may assume that m = 1.

Set ` := dimV ∈ {1, . . . , d − 1}. Denote by q : N1(X) → N1(V ) the restriction
homomorphism. Let H be an ample class in N1(X). Note that q(N1(X)) is an (f |V )∗-
invariant subspace of N1(V ).

Suppose the contrary that d1(f |V ) = d1(f). Then

lim
n→∞

‖(fn|V )∗(q(H))‖1/n = d1(f |V ) = d1(f)
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where ‖ · ‖ is any norm on q(N1(X)). Since the cone Nef(X)|V contains an ample divisor
on V , there is some D ∈ N1(X) such that D|V ∈ Nef(V ) \ {0} and (f |V )∗(D|V ) ≡
d1(f)D|V , noting that d1(f |V ) = d1(f) by the extra assumption. In other words, we have
0 6= V · D ∈ Nd−`+1(X) (the real vector space of codimension-(d − ` + 1) cycle classes
modulo numerical equivalence), and f ∗D ≡ d1(f)D + F where F · V ≡ 0. Since V is
f -invariant, f∗V = deg(f |V )V . Since f∗f ∗ = deg(f) id on Nd−`(X) we get f ∗V ≡ bV

where b = deg(f)/ deg(f |V ) ≥ 1. Then we have

f ∗(D · V ) = f ∗D · f ∗V ≡ bd1(f)(D · V ).

Since bd1(f) ≥ d1(f) > dd−`+1(f), we get a contradiction. �

Now we are ready for:

Proof of Theorem 1.14. It follows from Theorem 8.4 and Propositions 8.5 and 8.7. �

Remark 8.8. The case (1) of Theorem 1.14 is already proved in [JXZ20]. However, the
method there is different.

The following example shows that the SDD condition does not hold in general.

Example 8.9. Let X = P2 and f : X → X the endomorphism (x, y)→ (x2, y2), in affine
coordinates. Then we have d1(f) = 2. For two coprime positive integers a, b, the curve
Ca,b = {xayb = 1} is f -invariant and d1(f |Ca,b

) = 2. This implies that SDD condition
does not hold for the pair (X, f).
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