QCQI：Assignment \＃1

1 Vector Bases

Suppose $\left|\alpha_{i}\right\rangle(i=0, \ldots, n-1)$ are n vectors in an n dimensional Hilbert space，we call $\left\{\left|\alpha_{i}\right\rangle\right\}$ to be a basis when $\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle=\delta_{i j}(i, j=0, \ldots, n-1)$ ．（1）Prove that $\left\{\left|\alpha_{i}\right\rangle\right\}$ is a basis iff $\sum_{i=0}^{n-1}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|=\boldsymbol{I}$ ； （2）Find the operator \boldsymbol{M} such that $\sum_{i=0}^{n-1} i^{2}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right| \boldsymbol{M}=\boldsymbol{M} \sum_{i=0}^{n-1} i^{2}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|$ ；（3）Prove that any n dimensional vector can be expressed as $|\psi\rangle=\sum_{i} \psi_{\alpha_{i}}\left|\alpha_{i}\right\rangle$ ；（4）Suppose there is another basis $\left\{\left|\beta_{i}\right\rangle\right\}$ ， prove that there exists a unitary such that $\left|\alpha_{i}\right\rangle=U\left|\beta_{i}\right\rangle, \forall i$ ．
（Hint：use ket bra notations）

2 Direct sums and tensor products

（1）Consider vectors $|+\rangle=(|0\rangle-|1\rangle) / \sqrt{2}$ and $|\Psi\rangle=(|00\rangle+|11\rangle) / \sqrt{2}$ ，calculate $\left|\psi_{1}\right\rangle=|+\rangle \oplus|\Psi\rangle$ and $\left|\psi_{2}\right\rangle=|+\rangle \otimes|\Psi\rangle$ ．
（2）Consider the matrix

$$
\boldsymbol{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

calculate

$$
\begin{equation*}
A=\left\langle\psi_{1}\right| \boldsymbol{X} \oplus(\boldsymbol{X} \otimes \boldsymbol{X})\left|\psi_{1}\right\rangle, \quad B=\left\langle\psi_{2}\right| \boldsymbol{X} \otimes \boldsymbol{X} \otimes \boldsymbol{X}\left|\psi_{2}\right\rangle \tag{1}
\end{equation*}
$$

3 Norms

Norms on a vector space can be defined as functions satisfying three conditions：1．absolute scalability：$\|a \boldsymbol{v}\|=|a| \cdot\|\boldsymbol{v}\| ; 2$ ．if $\|\boldsymbol{v}\|=0$ ，then \boldsymbol{v} is a zero vector；3．triangle inequality：$\|\boldsymbol{u}\|+\|\boldsymbol{v}\| \geq$ $\|\boldsymbol{u}+\boldsymbol{v}\|$
（1）prove that norm is a positive definite function．
（2）recall the definition of p－norm，is $\frac{1}{2}$－norm a well defined norm？and why？

4 SVD and spectral decomposition

（1）Suppose \boldsymbol{A} is a $m \times n$ matrix $\boldsymbol{A}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right]$ where $\boldsymbol{w}_{i}(i=1, \ldots n)$ are m dimensional column vectors satisfying $\boldsymbol{w}_{i}^{T} \boldsymbol{w}_{j}=0(i \neq j)$ ．Do SVD decomposition for \mathbf{A} ．
(2) Suppose the \boldsymbol{A} matrix is defined as follows

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\sqrt{2} & 2 & 2 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(2a) Do SVD decomposition for \mathbf{A}.
(2b) Solve the minimum problem $\min _{x \in \mathbb{R}^{3}}\|\boldsymbol{A} x-b\|_{2}$ where

$$
b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

5 Special matrices

(1) Prove that the eigenvalue of a unitary operator is $e^{i \theta}$.
(2) Prove that the eigenvalue of a projection operator is either 1 or 0.
(3) Prove that the eigenvalue of a Hermitian operator is real.

6 Functions of normal matrices

Suppose the spectral decomposition of a normal matrix M is $M=\sum_{i} \lambda_{i} \Pi_{i}$ with $\Pi=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$.
(1) Show that Π is a projection operator;
(2) Show that $M^{n}=\sum_{i} \lambda_{i}^{n} \Pi_{i}$ for any positive integer n.
(3) Consider the \boldsymbol{X} matrix of question 2, calculate $e^{i \boldsymbol{X} \theta}$.
(4) Use the spectral decomposition to show that matrix $K=-i \log (U)$ is Hermitian for any unitary matrix U.

7 Schmidt decomposition

A tensor product state $|\psi\rangle$ can be written in the form of $|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$. Given three states:

$$
\left|\Psi_{1}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}},\left|\Psi_{2}\right\rangle=\frac{|00\rangle+|11\rangle+|01\rangle+|10\rangle}{\sqrt{2}},\left|\Psi_{3}\right\rangle=\frac{|00\rangle+|01\rangle+|10\rangle}{\sqrt{2}}
$$

(1) Determine whether the above states are tensor product states.
(2) Compute the rank of matrix $A=\sum_{i, j} a_{i, j}|i\rangle\langle j|$ with $a_{i, j}=\langle i j \mid \Psi\rangle(i, j=0,1)$.
(3) Find the Schmidt decomposition of the above states, i.e., find two bases $\left\{\left|\psi_{i}\right\rangle\right\}$ and $\left\{\left|\phi_{i}\right\rangle\right\}$ such that $|\Psi\rangle=\sum_{i} \lambda_{i}\left|\psi_{i}\right\rangle\left|\phi_{i}\right\rangle$.

8 Matrix-vector duality

For any matrix $M=\sum_{i j} M_{i j}|i\rangle_{B}\left\langle\left. j\right|_{A}\right.$, we can map it to a vector $\left.\mid M\right\rangle=\sum_{i j} M_{i j}|j\rangle_{A}|i\rangle_{B}$.
(1) Prove that $\operatorname{tr}\left[M^{\dagger} N\right]=\langle M \mid N\rangle$.
(2) Suppose $|\Psi\rangle=\sum_{j}|j\rangle_{A}|j\rangle_{A}$, prove that $|M\rangle=\left(I_{A} \otimes M\right)|\Psi\rangle$.
(3) Given the a SVD of M, show the Schmidt decomposition of $|M\rangle$.

