QFT, quantum phase estimation, order finding & Shor’s
algorithm

1. QFT

- Definition ) i i
One such transformation is the discrete Fourier transform. In the usual mathematical
notation, the discrete Fourier transform takes as input a vector of complex numbers,

Zg,-...,xn—1 where the length N of the vector is a fixed parameter. It outputs the
transformed data, a vector of complex numbers ¥y, ..., yn—1, defined by
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The quantum Fourier transform is exactly the same transformation, although the
conventional notation for the quantum Fourier transform is somewhat different. The
quantum Fourier transform on an orthonormal basis |0),...,|N — 1) is defined to be a
linear operator with the following action on the basis states,
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Equivalently, the action on an arbitrary state may be written
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where the amplitudes y, are the discrete Fourier transform of the amplitudes z;. It is not
obvious from the definition, but this transformation is a unitary transformation, and thus
can be implemented as the dynamics for a quantum computer. We shall demonstrate
the unitarity of the Fourier transform by constructing a manifestly unitary quantum
circuit computing the Fourier transform. It is also easy to prove directly that the Fourier
transform is unitary:

Exercise 5.1: Give a direct proof that the linear transformation defined by
Equation (5.2) is unitary.



- 1-qubit example

Consider how the QFT operator as defined above acts on a single qubit state
|¥) = a|0) + B|1). In this case, zg = o, 1 = B, and N = 2. Then,

Yo = %(aexp(Zm’O >2< 0) +,5exp(2m'1 ;( O)) e %(a—l—ﬂ)

and
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such that the final result is the state

Ugrrl) = %(a L B)l0) + %(a B

This operation is exactly the result of applying the Hadamard operator (H) on the qubit:

HZ%E —11]

If we apply the H operator to the state |)) = a|0) + B|1), we obtain the new state:

1 1 =& 3
E(a +8)[0) + E(a - B)I1) = &l0) + BI1)

Notice how the Hadamard gate performs the discrete Fourier transform for N = 2 on the

amplitudes of the state.

- Factorization
In the following, we take N = 2" where 7 is some integer, and the basis |0), .. ., [2" —

1) is the computational basis for an n qubit quantum computer. It is helpful to write the
state |j) using the binary representation j = 7,7, ...J,. More formally, j = 52"~ ! +
§22" 2 +...+ 3,2 Tt is also convenient to adopt the notation 0.5;7;41 - . . jm to represent

the binary fraction j; /2 + ji /4 + - - + 4, /2L,
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- Circuit Realization
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- Complexity

In the case n = 3, the QFT is constructed from three H gates and three controlled-R
gates. For general n, the obvious generalization of this circuit requires n H gates and
(3) = %n(n— 1) controlled R’s. A two qubit gate is applied to each pair of qubits, again
with controlled relative phase 7/2¢, where d is the “distance” between the qubits. Thus
the circuit family that implements QFT has a size of order (log N)2.

We can reduce the circuit complexity to linear in log N if we are willing to settle for
an implementation of fixed accuracy, because the two-qubit gates acting on distantly
separated qubits contribute only exponentially small phases. If we drop the gates acting
on pairs with distance greater than m, than each term in eq. (6.52) is replaced by an
approximation to m bits of accuracy; the total error in zy/2" is certainly no worse than
n2~™, so we can achieve accuracy ¢ in zy/2" with m > log n/e. If we retain only the gates
acting on qubit pairs with distance m or less, then the circuit size is mn ~ nlogn/e.



In contrast, the best classical algorithms for computing the discrete Fourier transform
on 2" elements are algorithms such as the Fast Fourier Transform (FFT ), which com-
pute the discrete Fourier transform using @(n2™) gates. That is, it requires exponentially
more operations to compute the Fourier transform on a classical computer than it does
to implement the quantum Fourier transform on a quantum computer.

- Simplification

In fact, if we are going to measure in the computational basis immediately after
implementing the QFT (or its inverse), a further simplification is possible — no two-qubit
gates are needed at all! We first remark that the controlled — R, gate acts symmetrically
on the two qubits — it acts trivially on |00), |01), and |10), and modifies the phase of |11)
by €4, Thus, we can interchange the “control” and “target” bits without modifying the
gate. With this change, our circuit for the 3-qubit QFT can be redrawn as:
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Once we have measured |yy), we know the value of the control bit in the controlled- R;
gate that acted on the first two qubits. Therefore, we will obtain the same probability
distribution of measurement outcomes if, instead of applying controlled-R; and then
measuring, we instead measure yq first, and then apply (R;)¥ to the next qubit, condi-
tioned on the outcome of the measurement of the first qubit. Similarly, we can replace
the controlled-R; and controlled- Ry gates acting on the third qubit by the single qubit
rotation

(R2)¥ (Ra)", (6.58)

(that is, a rotation with relative phase w(.y1y0)) after the values of y; and yo have been
measured.

Altogether then, if we are going to measure after performing the QFT, only n
Hadamard gates and n — 1 single-qubit rotations are needed to implement it. The QFT
is remarkably simple!

2. Quantum phase estimation

- Basic algorithm

Quantum phase estimation is one of the most important subroutines in quantum
computation. It serves as a central building block for many quantum algorithms. The objective
of the algorithm is the following:

Given a unitary operator U, the algorithm estimates 8 in U|)) = e2™|4)). Here |4) is an
eigenvector and e2™ is the corresponding eigenvalue. Since U is unitary, all of its
eigenvalues have a norm of 1.



1 2 3 4
[ [ [ [

H | * | | /7( |
| | | | -
| | | I '&: V\
| | | [
| [ [ [

H [ [ s [
| I I I

0)%* 1 : LQFTHH— 1 [2%0)

} - L+
[ | [ C
f 1 —— |
| | | [
[ [ | [

H t t ——
| | [ a [
| | | [

|Q/)> : U2t—l U2t—2 ] U2() : : :

[ | | [

i. Setup: [t) is in one set of qubit registers. An additional set of n qubits form the counting register on which we will store the value 2"6:

|%0) = [0)*"[4))

ii. Superposition: Apply a n-bit Hadamard gate operation H®" on the counting register:

%1} = ")

iii. Controlled Unitary Operations: We need to introduce the controlled unitary CU that applies the unitary operator U on the target register only if its
corresponding control bit is |1). Since U is a unitary operator with eigenvector ) such that U|¢) = e2™%|)), this means:

UZ)I‘!&) — U2j_lU|¢) — U2)_le2m'0|¢> - 627”'2)0|¢)

Applying all the n controlled operations CU? with 0 < j < n — 1, and using the relation |0) ® |} + 1) ® e>™|y) = (|0) + €2™%|1)) ® |¢):

) = ¢ (10) + 1)) @ - ® (10) + > 1)) @ ([0) + 1)) @ )

27
1 2"-1 )

= 621r19k|k) ® |¢>
27 =0

where k denotes the integer representation of n-bit binary numbers.

iv. Inverse Fourier Transform: Notice that the above expression is exactly the result of applying a quantum Fourier transform as we derived in the notebook
on Quantum Fourier Transform and its Qiskit Implementation. Recall that QFT maps an n-qubit input state |z) into an output as

QFT|z) =
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Replacing z by 2"6 in the above expression gives exactly the expression derived in step 2 above. Therefore, to recover the state |2"6), apply an inverse
Fourier transform on the auxiliary register. Doing so, we find
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v. Measurement: The above expression peaks near z = 2"6. For the case when 2" is an integer, measuring in the computational basis gives the phase in
the auxiliary register with high probability:

[%a) = [270) ® |9)

For the case when 2" is not an integer, it can be shown that the above expression still peaks near z = 2" with probability better than 4/7r2 ~ 40% [1].



- Performance
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