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In this lecture, we introduce Bell inequalities, the concept of quantum nonlocality, and its applications.

1 Framework of nonlocal games

We focus on the nonlocal game scenario, where two distantly separated parties, Alice and Bob, are asked
to play a game. In particular, as shown in Fig. 1, they receive random inputs x and y from a referee with
probability q(x, y), and give outputs a and b, respectively. Consider a payoff function β(a, b, x, y) and denote
the strategy of Alice and Bob by p(a, b|x, y), the average payoff is

I =
!

a,b,x,y

β(a, b, x, y)p(a, b|x, y)q(x, y). (1)

For simplicity, we consider binary inputs and outputs and assume that the inputs are generated uniformly
random with q(x, y) = 1/4. Then we have

Figure 1: Bell Nonlocality. Figure from Nature Physics volume 10, pages 264270 (2014).

We will show that the average payoff obtained from any classical strategy is upper bounded, and such a
bound is called a Bell inequality, i.e.,

I =
1

4

!

a,b,x,y

β(a, b, x, y)p(a, b|x, y) ≤ uC (2)

Yet, this upper bound could be violated when we use quantum strategies. Therefore, the violation of Bell’s
inequality indicated the existence of quantumness. We discuss that this feature could be exploited to design
device independent or self-testing quantum information protocols.

2 Classical, quantum, no-signalling correlations

2.1 Classical

We first consider what is a classical strategy. In the Bell nonlocality scenario, we assume that Alice
and Bob cannot communicate once they have started the game. In this case, Alice and Bob have to use
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independent strategies p(a|x) and p(b|y), respectively, which defines the joint strategy p(a|x)p(b|y). Yet, since
Alice and Bob can communicate before the game, their strategies can indeed depend on some predetermined
rules, say λ. Therefore, any classical strategy could be described by

pC(a, b|x, y) =
!

λ

q(λ)pA(a|x,λ)pB(b|y,λ) (3)

We note that this also includes the cases where the strategy could also vary with different rounds of the
game. The theory described by pC(a, b|x, y) is also called a local hidden variable model (LHVM), since the
correlation1 is actually generated by the local hidden variable λ.

Can we generate any correlation using a classical LHVM? The answer is no and a simple counter example
is as follows,

pSWAP(a, b|x, y) =
"
1 a = y
1 b = x

(4)

which effectively output the swapped inputs of Alice and Bob. Such a probability distribution is equivalent
to the swap gate. Obviously it cannot be realized by LHVM since it is equivalent to sending Alice and Bob’s
inputs to the other party and LHVM is forbid to communicate.

2.2 NS

Can we formalize the requirement of no-communication or no-signaling (NS)? We first define the partial
probability

p(a|x, y) =
!

b

p(a, b|x, y), p(b|x, y) =
!

a

p(a, b|x, y). (5)

Since the output a (b) is determined by Alice (Bob) while the input y (x) is sent to Bob, a no-signaling
strategy thus requires

pNS(a|x, y) = p(a|x, y′), pNS(b|x, y) = p(b|x′, y), (6)

and such a condition is also called the no-signaling condition. It is easy to verify that LHVM satisfy NS.
Can LHVM generate any NS correlation? Interestingly, the answer is still no and an explicit counter

example is the PR-box, defined as

pPR(a, b|x, y) =
"
1/2 a⊕ b = xy
0 otherwise

(7)

At this point, it is not obvious why LHVM cannot generate the PR-box. But we will see this soon using the
CHSH inequality.

2.3 Quantum

Another important family of strategy is using quantum mechanics. Specifically, Alice and Bob can
share some entangled state ρAB and measure the state with POVM {MA

a|x ≥ 0} and {MB
b|y ≥ 0} satisfying

#
aM

A
a|x = IA for all x and

#
bM

B
b|y = IB for all y. The correlation generated in this way is

pQ(a, b|x, y) = Tr[ρAB(M
A
a|x ⊗MB

b|y)] (8)

Again, can you generate any quantum correlation using LHVM? The answer is still no and we will prove
it using the tool of Bell inequalities. In particular, we will introduce a Bell inequality such that the payoff
IC using LHVM is upper bounded by 2, yet the maximal payoff IQ and INS using quantum and NS strate-
gies reach 2

√
2 and 4. The relationship between NS, quantum correlation, and classical LHVMs can be

summarized as in Fig. 2.

1For two random variables X and Y , we say they are correlated simply mean p(X,Y ) ∕= p(X)p(Y ).
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Figure 2: No-signalling, quantum, and classical correlations. Here the value is related to the CHSH inequality
by I ′ = 8I − 4. Figure from Rev. Mod. Phys. 86, 419 (2014).

3 CHSH inequality

3.1 Definition

The CHSH inequality is different from the original inequality proposed by Bell, but it is much easier to
understand and is more widely studied now. The payoff function of the CHSH inequality is defined by

β(a, b|x, y) =
"
1 a⊕ b = xy
0 otherwise

(9)

The payoff table with nonzero payoff β is given in Table 1.

Table 1: Payoff table for the CHSH inequality.
x y a b β

0 0 0 0 1
0 0 1 1 1

0 1 0 0 1
0 1 1 1 1

1 0 0 0 1
1 0 1 1 1

1 1 0 1 1
1 1 1 0 1
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3.2 NS

First we can prove that the average payoff I is upper bounded by 1. That is

I =
1

4

!

a,b,x,y

β(a, b, x, y)p(a, b|x, y),

=
1

4

!

a⊕b=xy

p(a, b|x, y),

≤ 1

4

!

xy

1,

= 1.

(10)

Here we have used the normalization condition
#

ab p(a, b|x, y) = 1. It is not hard to see that the PR-box
achieves this upper bound.

3.3 LHVMs

Next, we prove that the average payoff IC using LHVMs is upper bounded by 3/4. First, we have

IC =
1

4

!

a⊕b=xy

pC(a, b|x, y),

=
1

4

!

a⊕b=xy

!

λ

q(λ)pA(a|x,λ)pB(b|y,λ),

≤ 1

4
max

pA(a|x,λ),pB(b|y,λ)

!

a⊕b=xy

pA(a|x,λ)pB(b|y,λ),

(11)

so that we can focus on
#

a⊕b=xy pA(a|x,λ)pB(b|y,λ). Denote pA(a|x,λ) and pB(b|y,λ) by pAx (a) and pBy (b),
respectively, we have

!

a⊕b=xy

pA(a|x,λ)pB(b|y,λ) = pA0 (0)p
B
0 (0) + (1− pA0 (0))(1− pB0 (0)) + pA0 (0)p

B
1 (0) + (1− pA0 (0))(1− pB1 (0)),

+ pA1 (0)p
B
0 (0) + (1− pA1 (0))(1− pB0 (0)) + pA1 (0)(1− pB1 (0)) + (1− pA1 (0))p

B
1 (0),

=
1

2

$
2pA0 (0)− 1

% $
2pB0 (0)− 1

%
+

1

2

$
2pA0 (0)− 1

% $
2pB1 (0)− 1

%

+
1

2

$
2pA1 (0)− 1

% $
2pB0 (0)− 1

%
− 1

2

$
2pA0 (0)− 1

% $
2pB1 (0)− 1

%
+ 2.

(12)
Here we have used pA0 (0)p

B
0 (0) + (1 − pA0 (0))(1 − pB0 (0)) =

1
2

$
2pA0 (0)− 1

% $
2pB0 (0)− 1

%
+ 1

2 . Denote OA
i =

2pAi (0)− 1 and OB
i = 2pBi (0)− 1, which satisfy |OA

i |, |OB
i | ∈ [−1, 1], we have2

!

a⊕b=xy

pA(a|x,λ)pB(b|y,λ) =
1

2
[OA

0 O
B
0 +OA

0 O
B
1 +OA

1 O
B
0 −OA

1 O
B
1 ] + 2,

≤ 1

2

$
|OA

0 ||OB
0 +OB

1 |+ |OA
1 ||OB

0 −OB
1 |
%
+ 2,

≤ 3.

(13)

Putting everything back to Eq. (11), we thus have

IC ≤ 3/4. (14)

This inequality is usually called the Bell (here CHSH) inequality.

2Here the last line could be proved as follow. Let x = OB
0 + OB

1 and y = OB
0 − OB

1 , we have |x + y| ≤ 2 and |x − y| ≤ 2.
Then we can prove it by linear programming.
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3.4 Quantum

We can then give an explicit quantum strategy that can beat the LHVM bound. Define a projective
measurement as {Π0(θ),Π1(θ)} with Π0(θ) = |ψ0(θ)〉 〈ψ0(θ)| and Π1(θ) = |ψ1(θ)〉 〈ψ1(θ)|, and

|ψ0(θ)〉 = cos θ |0〉+ sin θ |1〉 ,
|ψ1(θ)〉 = − sin θ |0〉+ cos θ |1〉 .

(15)

The state Alice and Bob share is the Bell state |Φ+〉AB = (|00〉AB + |11〉AB)/
√
2 and the measurement basis

is chosen as
MA

i|0 = Πi(0), MA
i|1 = Πi(π/2), MB

i|0 = Πi(π/8), MB
i|1 = Πi(−π/8), (16)

We can then calculate the average payoff using this strategy as I = cos(π/8)2 ≈ 0.85 ≥ IC, which show the
violation of the Bell inequality using LHVMs.

Finally, we can show that the above strategy is optimal. Similar to the proof of LHVMs, we first define
OA

i and OB
i as follows

OA
i = MA

0|i −MA
1|i, OB

i = MB
0|i −MB

1|i. (17)

Then we can show that

IQ =
1

4

!

a⊕b=xy

Tr[ρAB(M
A
a|x ⊗MB

b|y)],

=
1

8
Tr

&
ρAB

'
OA

0 ⊗OB
0 +OA

0 ⊗OB
1 +OA

1 ⊗OB
0 −OA

1 ⊗OB
1

( )
+

1

2
.

(18)

Without loss of generality, we can consider a pure state ρAB = |ψ〉 〈ψ|AB and we show

〈ψ|AB OA
0 ⊗OB

0 +OA
0 ⊗OB

1 +OA
1 ⊗OB

0 −OA
1 ⊗OB

1 |ψ〉AB

=‖
'
OA

0 ⊗OB
0 +OA

0 ⊗OB
1 +OA

1 ⊗OB
0 −OA

1 ⊗OB
1

(
|ψ〉AB ‖,

≤‖
'
OA

0 ⊗OB
0 +OA

0 ⊗OB
1

(
|ψ〉AB ‖+ ‖

'
OA

1 ⊗OB
0 −OA

1 ⊗OB
1

(
|ψ〉AB ‖,

≤‖
'
OB

0 +OB
1

(
|ψ〉AB ‖+ ‖

'
OB

0 −OB
1

(
|ψ〉AB ‖.

(19)

Denote |ψi〉 = OB
i |ψ〉AB, we have

‖
'
OB

0 +OB
1

(
|ψ〉AB ‖+ ‖

'
OB

0 −OB
1

(
|ψ〉AB ‖ = ‖ |ψ0〉+ |ψ1〉 ‖+ ‖ |ψ0〉 − |ψ1〉 ‖,

=
*

2 + 2ℜ 〈ψ0|ψ1〉+
*

2− 2ℜ 〈ψ0|ψ1〉,
≤ 2

√
2.

(20)

Finally, we have

IQ ≤ 2 +
√
2

4
. (21)

4 Applications

The Bell inequality has wide applications for designing self-testing or device independent quantum infor-
mation protocols. Recall that a violation of the Bell inequality implies the existence of quantum entangle-
ment. Therefore, the measurement outcomes must have genuine/unpredictable randomness. Such a feature
could thus be used to generate randomness. Since the randomness is guaranteed by the violation of the Bell
inequality without assuming the realization, it is thus robust to device implementation errors, and hence
called device independent. Bell inequality can also be used for quantum key distribution, blind quantum
computing, etc. One can read Rev. Mod. Phys. 86, 419 (2014) for more detailed discussions.
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