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In this lecture, we study quantum error correction, including the Shor code, the stabilizer formalism,
and fault-tolerance.

1 The Shor code

1.1 Classical repetition code

Consider a classical bit x ∈ {0, 1} and suppose bit flip error, i.e., x → x ⊕ 1, happens with probability
p < 0.5. Can we protect x? The answer is yes and a simple strategy is to use redundant information. In
particular, we can use 2n+ 1 bits to encode x as

0L := 00 . . . 0, 1L := 11 . . . 1. (1)

Then we can use majority vote to decide whether it is 0L or 1L. Suppose that error happens independently,
then the failure probability is
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for k ≥ n + 1. Therefore, as long as e(2n+1)p
n+1 ≤ 1 or equivalently

p ≤ e(n+1)
2n+1 , we can exponentially suppress the failure probability1.

1.2 Quantum repetition code — bit flip error

There are several challenges to construct a quantum error correcting code.

• Quantum states are continuous and cannot be cloned — a quantum state is |ψ〉 = a |0〉 + b |1〉 with
continuous a and b, and we cannot clone it to have |ψ〉⊗n.

• Errors are also continuous — a general error channel is E(ρ) =
&

j KjρK
†
j where each Kj = a0I +

a1X + a2Y + a3Z with continuous ai.

• Measurement destroys quantum states — the state collapses if we measure the state or extract infor-
mation.

For quantum state |ψ〉 = a |0〉+ b |1〉, the quantum repetition code is defined as

|ψ〉L = a |0〉L + b |1〉L = a |000〉+ b |111〉 . (3)

1In fact, the bound here is quite loose. We only need p < 1/2 to have exponentially small error.
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We can realize it with the following quantum circuit.

|ψ〉 • •

|0〉

|0〉

What can we do with this code? Suppose independent bit flip error happens to every qubit, i.e., E(ρ) =
(1− p)ρ+ pXρX, then

E1 ◦ E2 ◦ E3(ψL) = (1− p)3ψL + p(1− p)2
'
X1ψLX1 +X2ψLX2 +X3ψLX3

(
+O(p2). (4)

Now the leading order errors are X1ψLX1 +X2ψLX2 +X3ψLX3, which are independent bit flip errors on
each qubit. We can detect these errors by majority vote, or using the nondestructive measurement

P0 = |000〉 〈000|+ |111〉 〈111| ,
P1 = |100〉 〈100|+ |011〉 〈011| ,
P2 = |010〉 〈010|+ |101〉 〈101| ,
P3 = |001〉 〈001|+ |110〉 〈110| ,

(5)

which can be realize using the following circuit

|ψ〉1 • •

E

•

|0〉2 • •

|0〉3 •

|0〉a ✌✌✌

|0〉b ✌✌✌

❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴

Specifically, the ancillary qubit a is 0 iff qubit 1 and 2 are the same and it is 1 otherwise, the ancillary qubit
b is 0 iff qubit 2 and 3 are the same and it is 1 otherwise. Note that the two ancillary qubits effectively
measures an eigenstate of Z1Z2 and Z2Z3. Specifically, when a = 0 (1) we have Z1Z2 = 1 (−1).

Therefore, the there are four cases of the two ancillary qubit measurement corresponds to four eigenstates
of Z1Z2 and Z2Z3, that is the four nondestructive measurement

a = 0, b = 0 ↔ Z1Z2 = 1, Z2Z3 = 1 ↔ P0,

a = 0, b = 1 ↔ Z1Z2 = 1, Z2Z3 = −1 ↔ P3,

a = 1, b = 0 ↔ Z1Z2 = −1, Z2Z3 = 1 ↔ P1,

a = 1, b = 1 ↔ Z1Z2 = −1, Z2Z3 = −1 ↔ P2,

(6)

The ZZ or P measurements are called the syndrome measurements.

To see the equivalence between the ZZ operators and the projectors P , we first define the projector of
ZiZk = ±1 as ΠZiZk=±1 = (I±ZiZk)/2. For example, ΠZ1Z2=1 = (I+Z1Z2)/2 = (|00〉 〈00|+ |11〉 〈11|)12⊗ I3
and ΠZ2Z3=−1 = (I − Z2Z3)/2 = I1 ⊗ (|01〉 〈01| + |10〉 〈10|)23. Then the projector with both Z1Z2 = 1 and
Z2Z3 = −1 is ΠZ1Z2=1&Z2Z3=−1 = ΠZ1Z2=1ΠZ2Z3=−1 = |001〉 〈001|+ |110〉 〈110| = P3.

Using the four measurements in Eq. (5), we can therefore detect which error happens. That is, Pi

corresponds to the case of bit flip error on the ith qubit (i ∈ [1, 3]). Then we can apply a recovery operation
to correct single qubit errors. The above discussion ignores the case with more than one errors and it is not
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hard to see that we cannot detect or correct more those cases. Now we study whether error correction is
useful at all. Without error correction, the state is E(ψ) whose fidelity to ψ is

F (E(ψ),ψ) =
)

〈ψ|E(ψ)|ψ〉 =
)

(1− p) + p 〈ψ|X |ψ〉 〈ψ|X|ψ〉, (7)

with a minimal value of
√
1− p. With error correction, we have the ideal encoded state |ψ〉L and the

corrected noisy state ρ = [(1− p)3 + 3p(1− p)2]ψL + . . . . The fidelity of the corrected state is

F (ρ,ψL) =
)

Tr[ψLρ] ≥
)

(1− p)3 + 3p(1− p)2 =
)

1− 3p2 + 2p3. (8)

To have F (ρ,ψL) > F (E(ψ),ψ), we need 1− 3p2 + 2p3 ≥ 1− p or equivalently p < 1/2. Therefore, as long
as p < 1/2, we can decrease the error or increase the state fidelity.

1.3 Quantum repetition code — phase flip error

Now suppose the error channel is E(ρ) = (1− p)ρ+ pZρZ, can we still detect and correct those errors?
Lets see how phase flip affects the state. For state |ψ〉 = a |0〉+ b |1〉, we have

Z |ψ〉 = a |0〉 − b |1〉 , (9)

which flips the phase instead of the value, just as the name of the error indicates. While this error seems
quite different from the bit flip error, they are actually very related. Remember the transformation between
X and Z with Z = HXH, a phase flip error could thus be understood as a bit flip error in a different basis.
Remember that a transformation of operator is equivalent to a corresponding transformation of the state,
i.e., 〈ψ|[U †OU ]|ψ〉 = 〈ψ̃|O|ψ̃〉 with |ψ̃〉 = U |ψ〉. Therefore, we can apply the HL = H⊗3 on the encoded
state to have

|ψ〉L = HL(a |0〉L + b |1〉L) = a |+〉L + b |−〉L = a |+++〉+ b |−−−〉 , (10)

with the circuit

|ψ〉1 • • H

|0〉2 H

|0〉3 H

Now suppose Z1 error happens on qubit 1, we have

Z1 |ψ〉L = a |−++〉+ b |+−−〉 , (11)

which is analog to the effect of a X1 error on a |0〉L + b |1〉L. Focusing on the cases with zero and one error,
we can apply a transformed nondestructive measurements of Eq. (5),

{HLPiHL}, (12)

to detect phase errors. Specifically, the measurement HLPiHL detects the error Zi on the ith qubit with
i ∈ {1, 2, 3}. The circuit to detect errors is

|ψ〉1 • • H

E

H •

|0〉2 H H • H •

|0〉3 H H •

|0〉a ✌✌✌

|0〉b ✌✌✌

❴ ❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴ ❴
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The relation between the a, b measurement outcomes and the nondestructive measurements HLPiHL is

a = 0, b = 0 ↔ X1X2 = 1, X2X3 = 1 ↔ HLP0HL,

a = 0, b = 1 ↔ X1X2 = 1, X2X3 = −1 ↔ HLP3HL,

a = 1, b = 0 ↔ X1X2 = −1, X2X3 = 1 ↔ HLP1HL,

a = 1, b = 1 ↔ X1X2 = −1, X2X3 = −1 ↔ HLP2HL,

(13)

Here we can similarly understand the a and b measurement as X1X2 and X2X3, respectively.

1.4 The Shor code

Since the encoding circuits are different for bit and phase flip errors, can we combine them to correct
both of them? The answer is yes with the Shor code. The basic idea is to use code concatenation. We first
apply the phase flip code to have

|0〉L = |+++〉 = (|0〉+ |1〉)⊗3

2
√
2

, |1〉L = |−−−〉 = (|0〉 − |1〉)⊗3

2
√
2

. (14)

Then for each of |0〉 and |1〉, we apply the bit flip code with |0〉 → |000〉 and |1〉 → |111〉. Then we have the
Shor code

|0〉L =
(|000〉+ |111〉)⊗3

2
√
2

, |1〉L =
(|000〉 − |111〉)⊗3

2
√
2

. (15)

The encoding circuit is

|ψ〉1 • • H • •

|0〉2
|0〉3

|0〉4 H • •

|0〉5
|0〉6

|0〉7 H • •

|0〉8
|0〉9

We can now detect any single qubit phase or bit flip error. For example, suppose a bit flip error happens
to the first qubit, we can then measure Z1Z2 and Z2Z3 to detect it. Any other bit flip error could be
detected similarly. On the other hand, suppose a phase flip error happen to the first qubit, then we can
measure X1X2X3X4X5X6 and X4X5X6X7X8X9 to detect it. To summarize, we can measure the following
observables

Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9,

X1X2X3X4X5X6, X4X5X6X7X8X9,
(16)

and any single qubit bit or phase flip error could be detected using those measurement outcomes.
Can we do more than this? Suppose both bit and phase flip errors happen to the first qubit, we can

actually still detect it using the measurement results of Z1Z2, Z2Z3, X1X2X3X4X5X6 and X4X5X6X7X8X9.
This works for simultaneous bit and phase flip errors on any qubit.
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However, a practical error may be like E(ρ) =
&

j KjρK
†
j with Kj = a0I + a1X + a2Y + a3Z, which is a

superposition of the bit, phase, bit+phase errors. Can we still correct them. For simplicity, we assume that
an error KjρK

†
j happens to the first qubit of state |ψ〉L. Then we have

Kj |ψ〉L = a0 |ψ〉L + a1X1 |ψ〉L + a2Y1 |ψ〉L + a3Z1 |ψ〉L . (17)

Now we measure Z1Z2, Z2Z3, X1X2X3X4X5X6 and X4X5X6X7X8X9, or equivalently applying one of the
16 projectors ΠZ1Z2=±1, ΠZ2Z3=±1, ΠX1X2X3X4X5X6=±1, and ΠX4X5X6X7X8X9=±1. Suppose we have obtained
Z1Z2 = −1, Z2Z3 = −1, X1X2X3X4X5X6 = −1 and X4X5X6X7X8X9 = −1, then the state is projected to

ΠZ1Z2=−1ΠZ2Z3=−1ΠX1X2X3X4X5X6=−1ΠX4X5X6X7X8X9=−1Kj |ψ〉L = a2Y1 |ψ〉L . (18)

Therefore, when we apply the non-destructive syndrome measurements, we also project the state to either
|ψ〉L, X1 |ψ〉L, Y1 |ψ〉L, or Z1 |ψ〉L, i.e., one of the state with single qubit I, X, Y , Z errors. So as long as
we can correct discrete single qubit I, X, Y , Z errors, we can also correct continuous errors!

Now we analyze whether the state fidelity is improved with the Shor code. Consider the depolarizing
channel E(ρ) = (1− p)ρ+ p/3(XρX + Y ρY +ZρZ) as a special case, the fidelity without error correction is

F (ψ, E(ψ)) =
)

Tr[ψEψ] =
)

Tr[ψ[(1− 4p/3)ψ + 2p/3]] =
)

1− 2p/3 = 1− p/3 +O(p2). (19)

On the other hand, suppose we encode the state using the Shor code with logical state ψL and independent
depolarizing channel happens to every qubit. Since we can correct all single qubit errors, the corrected state
is ρ =

'
(1− p)9 + 9p(1− p)8

(
ψL + . . . , and the fidelity is

F (ψL, ρ) ≥
)

(1− p)8(1 + 8p) = 1− 18p2 +O(p3) (20)

Consider infidelity as a measure of error, the infidelity is then quadratically improved from p/3 to 18p2. In
practice, we can apply code concatenation to further decrease errors.

Revisiting the aforementioned three challenges, we overcome them using the following ideas.

• Quantum states are continuous and cannot be cloned — we can encode the state into a subspace of a
larger entangled state.

• Errors are also continuous — errors become effectively discrete when we apply syndrome measurements.

• Measurement destroys quantum states — we apply non-destructive syndrome measurements.

2 A general theory of QEC

The theory of error correction could be understood abstractly as follows. We first encode the state, say
a qubit, into a multi-qubit entangled state |ψL〉 = a |0〉L+ b |1〉L. The logical state space {|0〉L , |1〉L} is only
a subspace of the physical state space and we denote the projection from the physical space to the logical
space as Π. For example, the projection of the Shor code is

Π = ΠZ1Z2=1ΠZ2Z3=1ΠZ4Z5=1ΠZ5Z6=1ΠZ7Z8=1ΠZ8Z9=1ΠX1X2X3X4X5X6=1ΠX4X5X6X7X8X9=1. (21)

That is, for any 9-qubit state |ψ〉, applying the projection Π |ψ〉 projects it into the code space. Now, suppose

an error channel E(ψL) =
&

j KjψLK
†
j happens to the logical state ψL, it now becomes a mixture of states

ρj = KjψLK
†
j . We denote the state space with Kj error as Sj = {Kj |ψL〉 , ∀ψL}. Then error correction

works if Sj forms orthogonal subspaces so that there exist a projective measurement {Πj} to distinguish
them, as shown in Fig. 1(b). Specifically, we need

〈ψ|LK†
jKk |ψ〉L = djk, ∀ |ψ〉L , (22)
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Figure 1: Illustration of quantum error correction. From Nielsen & Chuang’s book.

for diagonal djk. Note that |ψ〉L = Π |ψ〉L, the above equation is equivalent to

〈ψ|LΠK†
jKkΠ |ψ〉L = djk, ∀ |ψ〉L , (23)

or
ΠK†

jKkΠ = djkΠ. (24)

Here we thus proved the necessary condition of error correction (not strictly, see discussion below). We can

further prove that the above equation is sufficient for error correction. When we have ΠK†
jKkΠ = djkΠ,

we can explicitly construct the projective measurement {Πj} to distinguish between Sj . Consider the polar

decomposition of KkΠ = Uk

*
ΠK†

kKkΠ =
√
dkkUkΠ with some unitary Uk, the effect of Kk on the logical

space is thus equivalent to a unitary Uk. Now define projectors {Πk = UkΠU
†
k}, we have

ΠkKk |ψ〉L = UkΠU
†
kKk |ψ〉L = Kk |ψ〉L , (25)

and ΠkΠj = δk,j . Therefore, we can apply a projective measurement {Πk}, which distinguishes Sj or Kj .
Then we can apply the inverse map of Uj to rotate the space Sj or state Kj |ψ〉L back to {|ψ〉L}.

In the above analysis, we assumed that we need to perfectly distinguish the errors Kj . However, we have
seen that even if Kj is a sum of Pauli errors (in this case, we cannot distinguish them), we can still correct
them. Actually, we can prove that

Theorem 1. If error correction works for channel with Kraus operators {Ej}, it also works for channels
with Kraus operators {Kk =

&
k cjkEj}, which is a linear combination of Ej.

The idea is very similar to our analysis of the Shor code. Basically, since {Πk} project the state to the
subspace Sj = {Kj |ψL〉 , ∀ψL}, applying the projection {Πk} also project {Kk =

&
k cjkEj} into a mixture

of {Ej}, which becomes correctable.
Taking the above theorem into account, we thus arrive at the final result for the condition of error

correction.
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Theorem 2. Suppose the logical state is defined by a projector P and consider errors with Kraus operator
{Kj} , a necessary and sufficient condition for the existence of an error-correction protocol is

PK†
jKkP = αjkP, (26)

for any hermitian matrix αjk.

We refer to Nielsen & Chuang’s book for the detailed and rigourous proof.
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