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In this lecture, we study two quantities that measures the difference or similarity of two quantum states.

1 Trace distance

1.1 Classical case

Consider two probability distributions p and q, their difference could be quantified by trace distance

D(p,q) =
1

2

!

j

|pj − qj |. (1)

Two important properties of trace distance are

• Nonnegativity: D(p,q) ≥ 0 with equal sign achieved iff p = q.

• Triangle inequality: D(p1,p2) +D(p2,p3) ≥ D(p1,p3).

The operational meaning of trace distance is in probability distinguishability. Suppose we aim to distin-
guish between an event P with probability p and another one Q with probability q. A most general strategy
is that when j happens, we judge it as P and Q with probability f(j) and 1− f(j), with f(j) ∈ [0, 1]. Then
the success probabilities are

"
j p(j)f(j) and

"
j q(j)(1 − f(j)) when the event is P and Q, respectively.

Now, suppose P and Q are uniformly produced, then the probability that we can distinguish P and Q is

Psucc =
1

2

!

j

p(j)f(j) + q(j)(1− f(j)) =
1 +

"
j f(j)(p(j)− q(j))

2
. (2)

We can easily maximize Psucc by choosing f(j) to be 1 if p(j)− q(j) ≥ 0 and 0 otherwise. Then we have

Psucc =
1 +

"
j:p(j)≥q(j) |p(j)− q(j)|

2
. (3)

Note that 0 =
"

j p(j)− q(j) =
"

j:p(j)≥q(j) |p(j)− q(j)|−
"

j:p(j)<q(j) |p(j)− q(j)|, thus
"

j:p(j)≥q(j) |p(j)−
q(j)| = D(p,q) and

Psucc =
1 +D(p,q)

2
. (4)

When p and q are maximally different, we have D(p,q) = 1 and hence they are maximally distinguishable
with Psucc = 1. Otherwise, we have D(p,q) = 0 and we cannot do a better job than blind guess.

1.2 Quantum case

A natural question is to generalize the definition of trace distance to quantum states. Consider two
quantum states ρ and σ, suppose ρ =

"
j pj |j〉 〈j| and σ =

"
j qj |j〉 〈j|, we can similarly define their

distance as Eq. (1). However, when they have a different basis (under spectral decomposition), we need to
change the definition.
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1.2.1 Trance norm

The key idea is to use the trace norm of matrices. For matrix A with a singular value decomposition
A =

"
j λj |sj〉 〈vj |, the trace norm of A is

‖A‖1 = Tr[|A|] = Tr[
√
AA†] =

!

j

|λj |. (5)

Several important properties of the trace norm are

• Non-negativity: ‖A‖1 ≥ 0 with equal sign achieved iff A = 0.

• Triangle inequality: ‖A‖1 + ‖B‖1 ≥ ‖A+B‖1.

• Isometric invariance: ‖UAV ‖1 = ‖A‖1 for isometry U and V 1.

• Convexity: ‖λA+ (1− λ)B‖1 ≤ λ‖A‖1 + (1− λ)‖B‖1.

• Variational characterization 1: ‖A‖1 = maxU :unitary Tr[UA].

• Variational characterization 2: ‖A‖1 = max−I≤P≤ITr[PA] for hermitian A.

1.2.2 Trance distance

The trace distance between two quantum states is defined as

D(ρ,σ) =
1

2
‖ρ− σ‖1. (6)

Trace distance satisfy the following properties.

• Symmetric: D(ρ,σ) = D(σ, ρ).

• Nonnegativity: D(ρ,σ) ≥ 0 with equal sign achieved iff ρ = σ.

• Triangle inequality: D(ρ,σ) +D(σ, γ) ≥ D(ρ, γ).

• Unitary invariance: D(ρ,σ) = D(UρU †, UσU †).

• Tensor product property: D(ρ⊗ γ,σ ⊗ γ) = D(ρ,σ).

• Variational form: D(ρ,σ) = max0≤P≤ITr[P (ρ− σ)].

Proof. Denote A = ρ− σ. Consider a spectral decomposition of A as A =
"

j λj |ψj〉 〈ψj |. Denote

A+ =
!

j:λj≥0

λj |ψj〉 〈ψj | , A− =
!

j:λj≤0

λj |ψj〉 〈ψj | , (7)

then A = A+ + A− and |A| = A+ − A−. Note that 0 = Tr[A] = Tr[A+] + Tr[A−], thus D(ρ,σ) =
Tr[A+] = −Tr[A−].

Then we have

Tr[P (ρ− σ)] = Tr[PA] = Tr[PA+] + Tr[PA−] ≤ Tr[PA+] ≤ Tr[A+] = D(ρ,σ). (8)

We can further choose P =
"

j:λj≥0 |ψj〉 〈ψj | to achieve the equal sign.

1A matrix U is called an isometry when U†U = I
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• State distinguishability: trace distance D(ρ,σ) measures the probability that we can distinguish be-
tween ρ and σ. Specifically, suppose we have a POVM {Λ, I− Λ}, and the measurement corresponds
to ρ if Λ happens and σ other wise. Then the probability that the strategy succeeds given uniformly
random ρ and σ is

Psucc =
1

2
(Tr[Λρ] + Tr[(I− Λ)σ]) =

1

2
(1 + Tr[Λ(ρ− σ)]). (9)

Maximizing Psucc over all possible Λ ∈ [0, I] we have the maximal success probability maxPsucc =
1+D(ρ,σ)

2 .

• Monotonicity under quantum channels: D(ρ,σ) ≤ D(E(ρ), E(σ)).

Proof. One can check Nielsen’s book for a proof based on the above decomposition. Here we provide
an alternative proof based on the definition of quantum channels. Note that any channel has the form
E(ρA) = TrE [U(ρA ⊗ |0〉 〈0|E)U †]. We first note the monotonicity under partial trace, i.e.,

D(ρA,σA) ≤ D(ρAE ,σAE), (10)

with ρA = TrE [ρAE ] and σA = TrE [σAE ]. We can prove it by using the variational form of trace
distance as

D(ρAE ,σAE) = max
0≤PAE≤IAE

Tr[PAE(ρAE − σAE)],

≥ max
0≤PA≤IA

Tr[PA ⊗ IE(ρAE − σAE)],

= max
0≤PA≤IA

Tr[PA(ρA − σA)],

= D(ρA,σA).

(11)

Now we prove the monotonicity of trace distance under quantum channels

D(ρA,σA) = D(ρA ⊗ |0〉 〈0|E ,σ ⊗ |0〉 〈0|E),
= D(U(ρA ⊗ |0〉 〈0|E)U

†, U(σ ⊗ |0〉 〈0|E)U
†),

≥ D(TrE [U(ρA ⊗ |0〉 〈0|E)U
†],TrE [U(σ ⊗ |0〉 〈0|E)U

†]),

= D(E(ρ), E(σ)).

(12)

The meaning of monotonicity is that when we do the same operation on two quantum states, we cannot
make them more different.

• Strong convexity: D
#"

j pjρj ,
"

j qjσj
$
≤ D(p,q) +

"
j pjD(ρj ,σj).

Proof. We first apply the triangle inequality to have

D
#!

j

pjρj ,
!

j

qjσj
$
≤ D

#!

j

pjσj ,
!

j

qjσj
$
+D

#!

j

pjρj ,
!

j

pjσj
$
,

≤
!

j

D
#
pjσj , qjσj

$
+
!

j

D
#
pjρj , pjσj

$
,

≤ D(p,q) +
!

j

pjD(ρj ,σj)

(13)

Here the second lines uses the triangle inequality of the trace norm.
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• Reduction to classical trace distance. We can measure the quantum state to convert it to a classical
distribution. Consider a POVM {Ej}, with pj = Tr[ρEj ] and qj = Tr[σEj ], then

D(ρ,σ) = max
{Ej}

D(p,q). (14)

We refer to Nielsen’s book for one proof, here we give an alternative proof. Note that POVM could
be understood as a quantum channel as

M(·) =
!

j

Tr[Ej ·] |j〉 〈j| . (15)

Thus D(p,q) = D(M(ρ),N (σ)) and hence D(p,q) ≤ D(ρ,σ) due to the monotonicity property. We
can achieve the equal sign with the eigenbasis of ρ− σ.

2 Fidelity

2.1 Classical case

Again consider two probability distributions p and q, we can quantify their similarity as

F (p,q) =
!

j

√
pjqj . (16)

Fidelity F or infidelity 1− F is not a distance measure, but it does quantify how close or different the two
distributions are. In particular, we have F = 1 if p = q and F = 0 if p and q are maximally distinguishable
(prove it).

Trace distance and fidelity are also related. On the one hand,

D(p,q) =
1

2

!

j

|pj − qj |

=
1

2

!

j

|√pj −
√
qj ||

√
pj +

√
qj |

≥ 1

2

!

j

|√pj −
√
qj |2

=
1

2

!

j

pj + qj − 2
√
pjqj

= 1− F (p,q).

(17)

Therefore, whenever the fidelity F (p,q) is close to 1, it also means that their trace distance D(p,q) is close
to 0.

There is another important relation

D(p,q) ≤
%

1− F (p,q)2. (18)

We leave its proof after we introduce the quantum fidelity.

2.2 Quantum case

Special pure states Consider two special pure states |ψ〉 =
"

j
√
pj |j〉 and |φ〉 =

"
j
√
qj |j〉, their fidelity

is defined as
F (ψ,φ) = | 〈ψ|ψ〉 | =

!

j

√
pjqj . (19)
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Special mixed states Consider two special mixed states ρ =
"

j pj |j〉 〈j| and σ =
"

j qj |j〉 〈j|, their
fidelity is defined as

F (ρ,σ) = Tr[
√
ρ
√
σ] =

!

j

√
pjqj . (20)

One may then suggest to define the fidelity of two general quantum states as F (ρ,σ) = Tr[
√
ρ
√
σ].

However, this may fail since
√
ρ
√
σ is no more hermitian and the trace may give complex numbers. In order

to have a real valued fidelity, we thus define it as

F (ρ,σ) = Tr[|√ρ
√
σ|] = Tr

&'√
ρσ

√
ρ

(
. (21)

We examine the definition from the following aspects.

• The definition is consistent with the special pure and mixed state cases. Furthermore, when either ρ
or σ is a pure state, say ρ = ψ, we have

F (ψ,σ) =
%

〈ψ|σ|ψ〉. (22)

Therefore, the fidelity between ψ and σ could be understood as the expectation value of measuring
observable σ of state ψ.

• The fidelity is also symmetric with F (ρ,σ) = F (σ, ρ).

• F (ρ,σ) ∈ [0, 1] with F (ρ,σ) = 1 iff ρ = σ.

• Unitary invariance F (ρ,σ) = F (UρU †, UσU †).

• Multiplicativity: F (ρ1 ⊗ ρ2,σ1 ⊗ σ2) = F (ρ1,σ1)F (ρ2,σ2).

• Triangle inequality. Although the quantum fidelity F violates the triangle inequality, we can define
A = arccosF representing the angle between the two states. Then we have

A(ρ,σ) +A(σ, γ) ≥ A(ρ, γ). (23)

The proof assumes uses the following Uhlmann’s Theorem and the triangle inequality of angles (see
Nielsen’s book for the proof).

• Uhlmann’s Theorem:
F (ρ,σ) = max

ψ,φ
F (ψ,φ), (24)

where ψ and φ are purifications (using the same ancillary system) of ρ and σ respectively.

Proof. Denote the system of ρ and σ as A and the ancillary system as E. Consider the maximally
entangled state |Φ+〉 =

"
j |jj〉, an explicit purification of ρ or σ is |ψ〉AE =

√
ρA ⊗ IE |Φ+〉AE or

|φ〉AE =
√
σA ⊗ IE |Φ+〉AE . Then an arbitrary purification of ρ or σ is UE |ψ〉AE or VE |φ〉AE . Now we

have
F (ψ,φ) = | 〈φAE |VEUE |ψAE〉 |,

= | 〈Φ+|AE

√
σAVEUE |

√
ρA |Φ+〉AE |,

= |Tr[√σA
√
ρA · VEUE |]|.

(25)

Here the last line uses the identity Tr[A†B] = 〈Φ+|A⊗B|Φ+〉. Using the variational form of the trace
norm, we have

max
ψ,φ

F (ψ,φ) = max
UEVE

|Tr[√σA
√
ρA · VEUE |]| = |Tr[|√σA

√
ρA|]| = F (ρ,σ). (26)
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The Uhlmann’s Theorem could be regarded as a variational form of the fidelity, : ich links complicated
mixed fidelity with pure state fidelity.

• Monotonicity under quantum channels: F (ρ,σ) ≥ F (E(ρ), E(σ)).

Proof. Similar to the proof for trace distance, we only need to show the increase of fidelity under
partial trace, which can be proved using Uhlmann’s Theorem.

• Strong concavity, F (
"

j pjρj ,
"

j qjσj) ≥
"

j
√
pjqjF (ρj ,σj).

Proof. Suppose we have the purifications ψj and φj of ρj and σj that achieves F (ρj ,σj) = F (ψj ,φj).
Then |ψ〉 =

"
j
√
pj |ψj〉 |j〉 and |φ〉 =

"
j
√
qj |φj〉 |j〉 are respectively the purifications of

"
j pjρj and"

j qjσj . Then we have

F (
!

j

pjρj ,
!

j

qjσj) ≥ F (ψ,φ) =
!

j

√
pjqj | 〈ψj |φj〉 | =

!

j

√
pjqjF (ρj ,σj). (27)

Here the first inequality uses the the Uhlmann’s Theorem.

• Reduction to classical fidelity. Consider a POVM {Ej} with pj = Tr[ρEj ] and qj = Tr[σEj ], then

F (ρ,σ) = min
{Ej}

F (p,q). (28)

The proof of F (p,q) ≥ F (ρ,σ) is similar to the one for trace distance. The POVM that achieves
the the equal sign is the eigenbasis of the the Fuchs-Caves measurement M = ρ−1/2

%√
ρσ

√
ρρ−1/2.

Denote the spectral decomposition of M =
"

x λx |x〉 〈x| with non-negative eigenvalues (see Nielsen’s
book for the construction insights), and note MρM = σ. We have

F (p,q) =
!

x

%
〈x| ρ |x〉 · 〈x|σ |x〉,

=
!

x

%
〈x| ρ |x〉 · 〈x|MρM |x〉,

=
!

x

%
〈x| ρ |x〉 · 〈x|λxρλx |x〉,

=
!

x

λx 〈x| ρ |x〉 ,

= Tr[Mρ],

= Tr

&
ρ−1/2

'√
ρσ

√
ρρ−1/2ρ

(
,

= F (ρ,σ).

(29)

Note that when ρ is no invertible, we can define Πρ to be the projection onto the support of ρ and
prove F (ρ,σ) = F (ρ,ΠρσΠρ).

3 Relation between trace distance and fidelity

Pure states For two pure states ψ and φ, trace distance and fidelity are actually equivalent

D(ψ,φ) =
%

1− F (φ,ψ)2. (30)
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General case In general, we have

1− F (ρ,σ) ≤ D(ρ,σ) ≤
%

1− F (ρ,σ)2. (31)

The first inequality could be proven by using the reduction to classical trace distance and fidelity and their
relation as we proved in Eq. (17). For the second inequality, we consider the purification of ρ and σ, i.e., ψ
and φ, that achieves the fidelity according to Uhlmann’s theorem. Then we have

D(ρ,σ) ≤ D(ψ,φ) =
%

1− F (φ,ψ)2 =
%

1− F (ρ,σ)2. (32)

7


