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The original framework of quantum theory consists of pure states, unitary evolution, and projective mea-
surements. Here we extend the framework to density matrices, quantum channels, and positive observable
valued measure (POVM).

1 Density matrix

1.1 From pure states to density matrices

There are at least two clear motivations that we need to generalize pure states to density matrices.
First, imagine we have a source that randomly prepares a pure state |ψj〉 with probability pj ≥ 0

satisfying
!

j pj = 1, how can we describe the system? We generally call it an ensemble and denote it as
{pj , |ψj〉}. Suppose we want to evolve the state, it then becomes {pj , U |ψj〉}. Suppose we want to measure
the state, we have outcomes {pj , 〈ψj |O |ψj〉} for observable O. This seems ok, but also quite cumbersome.
If we only want to focus on the average behaviours, or equivalently when we do not know
which state is prepared each time, we have the following equivalent description.

{pj , |ψj〉} ↔ ρ =
"

j

pj |ψj〉 〈ψj | ,

{pj , U |ψj〉} ↔ UρU †,

{pj , 〈ψj |O |ψj〉} ↔ Tr[ρO].

(1)

We can thus use the density matrix ρ to equivalently describe a quantum ensemble.
We can also understand why we need density matrix description when we consider a subsystem of a

larger system. For example, consider a joint state |ψ〉AB of system A and B, what is the expectation value
if we measure OA of system A. From what we have learnt from pure state theory, the expectation value is

〈O〉 = 〈ψ|OA ⊗ idB |ψ〉AB = TrAB[(OA ⊗ idB) · |ψ〉 〈ψ|AB]. (2)

We can apply (partial) trace B first and then we have

〈O〉 = TrA[ρAOA] (3)

with ρA = TrB[|ψ〉 〈ψ|AB]. Therefore, any expectation value on system A could be easily calculated with
ρA. This indeed aligns with the principle of causality. That is, any local operation on system B would not
affect system A (Prove it!).

Definition 1. Quantum states are described by density matrices, which are positive and normalized matrices
satisfying ρ ≥ 0 and Tr[ρ] = 1.
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1.2 Two equivalent ensembles

Theorem 1. We have two equivalent state ensembles

ρ =
"

j

pj |ψj〉 〈ψj | =
"

k

qk |φk〉 〈φk| , (4)

iff there exists a unitary U such that

√
pj |ψj〉 =

"

k

Ujk
√
qk |φk〉 . (5)

If the number of |ψj〉 is different from the number of |φk〉, we add zeros.

Proof. The if part is straightforward. For the only if part, we consider the spectral decomposition of ρ as

ρ =
"

e

pe |e〉 〈e| . (6)

Since {|e〉} is a basis, we can represent |ψj〉 and |φk〉 as

|ψj〉 =
"

e

ψje |e〉 , |φk〉 =
"

e

φke |e〉 . (7)

Then we have
ρ =

"

e

pe |e〉 〈e| =
"

jee′

pjψjeψ
∗
je′ |e〉 〈e′| =

"

kee′

qkφkeφ
∗
ke′ |e〉 〈e′| , (8)

and hence "

j

pjψjeψ
∗
je′ =

"

k

qkφkeφ
∗
ke′ = peδee′ . (9)

Suppose we add zeros so that the three sets {|e〉}, |ψj〉, and |φk〉 have the same length, then we have

√
pj |ψj〉 =

"

e

Uje
√
pe |e〉 ,

√
qk |φk〉 =

"

e

Vke
√
pe |e〉 , (10)

with unitary Uje = ψje and Vke = φke. Then we have

√
pj |ψj〉 =

"

k

(U · V †)jk
√
qk |φk〉 . (11)

1.3 Pauli basis

For any qubit state ρ, we have the Bloch sphere representation

ρ =
1 + %n · %σ

2
, (12)

where %n is a vector with norm less than 1 and %n = Tr[ρ · %σ]. Tensor products of the Pauli basis {id,%σ} also
forms a basis for multi-qubit states.
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1.4 Purification

For any system A described by density matrix ρA, its purification is given by a joint pure state ψAE

satisfying ρA = TrE [ψAE ]. There are several properties of purification.

• Purification is not unique.

• Given two purifications ψ1
AE and ψ2

AE , they are convertible via isometry V , i.e., ψ2
AE = V ψ1

AEV
†

satisfying V †V = 1.

• Given any decomposition of ρA =
!

j pj |ψj〉 〈ψj |A, an explicit purification is |ψ〉AE =
!

j
√
pj |ψj〉A |j〉E .

• Denote the maximally entangled state as |Φ+〉AE =
!

j |jj〉AE , an explicit purification is idA ⊗
√
ρE |Φ+〉AE .

2 Quantum channels

2.1 From unitary to quantum channels

There are at least three ways to see why we need quantum channels.
From the mathematical point of view, quantum channels are just physical transformations of states.

Since we now consider density matrix, its physical transformation now corresponds to quantum channels.
What does physical means? It means linear, completely positive, and trace preserving. Specifically, an
operation E(ρ) is linear iff E(ρ1 + ρ2) = E(ρ1) + E(ρ2). The concept of completely positive is slightly more
involved. An operation is called positive, if EA(ρA) ≥ 0 whenever ρA ≥ 0. However, only positivity is not
sufficient. Consider an entangled state ρAB and a positive operation EA, we cannot guarantee EA(ρAB) ≥ 0
even if we do have EA(ρA) ≥ 0. A notable example is the transpose operation (check it!). Completely
positive is thus a stricter requirement, which says EA(ρAB) ≥ 0 for all ρAB ≥ 0. At last trace preserving just
means Tr[E(ρ)] = Tr[ρ]. To summarize, a quantum channel is defined as follows.

Definition 2. A quantum channel is a completely positive, trace preserving (CPTP) linear map.

A much more physical way to understand quantum channels is to consider the subsystem dynamics of a
joint evolution. Consider state ρA and an ancillary state |0〉 〈0|E under a joint evolution UAE , the evolved

state becomes UAE(ρA ⊗ |0〉 〈0|E)U
†
AE . If we only focus on system A, can we follow a similarly spirit to get

the effective evolution on system A? Specifically, we want to partial trace E as

TrE [UAE(ρA ⊗ |0〉 〈0|E)U
†
AE ] =

"

j

〈j|EUAE(ρA ⊗ |0〉E 〈0|E)U
†
AE |j〉E ,

=
"

j

〈j|EUAE |0〉E ρA 〈0|E U †
AE |j〉E ,

=
"

j

KjρAK
†
j ,

(13)

where Kj = 〈j|UAE |0〉E . Therefore the effective quantum evolution on system A is

EA(ρA) =
"

j

KjρAK
†
j . (14)

We can verify that
!

j K
†
jKj = idA.

At last, we introduce the Kraus representation of quantum channels just as Eq. (14), which bridges the
previous two formulations. We can show that
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Theorem 2. (1) Any Kraus operation of Eq. (14) is a quantum channel, i.e., a CPTP linear map, and vice
versa. (2) Any Kraus operation of Eq. (14) can be physically implemented by a joint unitary on the state
with another ancillary state.

To prove (1), we need to introduce another equivalent representation of channels, the Choi matrix, defined
as

ΦEA = EA ⊗ idE(Φ
+
AE), (15)

where Φ+
AE =

!
i,j |ii〉 〈jj| is the unnormalized maximally entangled state. It is easy to see that ΦEA =

EA(|i〉 〈j|A)⊗ |i〉 〈j|E , therefore
EA(|i〉 〈j|A) = TrE [ΦEA · |i〉 〈j|TE ] (16)

or we have the inverse transform
EA(ρA) = TrE [ΦEA · ρTE ]. (17)

Note that ρE is defined as the density matrix of ρA.

Now we prove (1) that any CPTP map has a Kraus representation (the other direction is quite straight-
forward).

Proof. For any CP map EA, its Choi matrix ΦEA is positive. Consider a decomposition of ΦEA as

ΦEA =
"

j

|ψj〉AE 〈ψj |AE , (18)

where |ψj〉AE are unnormalized. Suppose |ψj〉AE =
!

k |ψjk〉A |k〉E with unnormalized states |ψjk〉A, we
have

EA(ρA) = TrE

#"

j

|ψj〉AE 〈ψj |AE · ρTE
$
,

= TrE

# "

j,k,k′

|ψjk〉A |k〉E 〈ψjk′ |A 〈k′|E · ρTE
$
,

=
"

j,k,k′

|ψjk〉A 〈ψjk′ |A · 〈k′|E ρTE |k〉E ,

=
"

j,k,k′

|ψjk〉A 〈ψjk′ |A · 〈k|A ρA |k′〉A ,

=
"

j

#"

k

|ψjk〉A 〈k|A
$
ρA

#"

k′

|k′〉A 〈ψjk′ |A

$
,

(19)

which agrees with the Kraus form if we let Kj =
!

k |ψjk〉A 〈k|A. It is easy to show that TP guarantees!
j K

†
jKj = idA.

To see (2), we need to construct a joint unitary such that it is equivalent to the Kraus form. Using
ancillary state |0〉, the unitary can be constructed as

UEA =
"

j

Kj ⊗ |j〉E 〈0|E + · · · =

%

&&'

K1 . . .
K2 . . .
K3 . . .
... . . .

(

))* (20)

Here we swap the A and E indices for easier matrix representation. We can see that only the first column
is determined so the unitary is not fixed.
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2.2 Equivalent Kraus representations

Theorem 3. Suppose two Kraus channels {Kj} and {K̃k} are equivalent, then there exists a unitary U such
that Kj =

!
k UjkK̃k.

Proof. The proof follows from an inverse construction of the previous proof and applying Theorem 1 to
Eq. (18).

2.3 Typical quantum channels

• State preparation E(C) = ρ.

• Unitary or isometry E(ρ) = UρU †.

• Measurement E(ρ) =
!

j Tr[ρOj ] |j〉 〈j|. (We will study this soon)

• Typical qubit channels (consider their effect on a general qubit state)

– Dephasing channel E(ρ) = (1− p)ρ+ pZρZ.

– Depolarizing channel E(ρ) = (1− p)ρ+ p(XρX + Y ρY +ZρZ). (Note that 1
4(ρ+XρX + Y ρY +

ZρZ) = I/2.)

– Amplitude damping channel K0 =
√
γ |0〉 〈1| and K1 = |0〉 〈0|+

√
1− γ |0〉 〈1|.

– Erasure channel E(ρ) = (1− p)ρ+ p |2〉 〈2|.

3 POVM

A most general measurement is to correlate the system with some ancillary qubit, apply a joint unitary,
and measure the ancillary state. It thus corresponds a measurement channel as

M(ρ) =
"

j

〈j|E TrA[UAE(ρA ⊗ |0〉 〈0|E)U
†
AE ] |j〉E |j〉 〈j|E . (21)

Following the above derivation the measurement channel is

M(ρ) =
"

j

Tr[K†
jKjρA] |j〉 〈j|E . (22)

Denote Oj = K†
jKj , then a POVM corresponds to positive Oj satisfying

!
j Oj = id. For example,

{|0〉 〈0| /3, |1〉 〈1| /3, |±〉 〈±| /3, |±i〉 〈±i| /3} is a valid POVM (construct it).
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