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Dravet Syndrome families and was capable of multiple
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Mosaicism contributes to the etiology of diseases and the origin of mutations

[ 4
y €
., v \\\d
' ' Recde 18
([ ] o :. . o © o ® ° uk
- °
o ® '
° = =
|
Zygote  Genetic change Proliferation Mosaic mutation

(Servick, Science, 2014)

Cases of deleterious mosaicism Cases of parental mosaicism reported in more

reported in more than 50 disorders  than 100 disorders ’

(Freed, Stevens and Pevsner, Genes, 2014)



The limitation of Sanger sequencing might lead clinicians to mistake potential
postzygotic single-nucleotide mosaicisms (pSNMs) for “de novo” mutations

Sanger sequencing De Novo?
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How to screen and guantify mosaicisms in non-cancer disorders?

How many of the “de novo” mutations were undetected parental mosaicisms?
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Technologies to 1dentify and validate mosaicism
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PGM Amplicon Sequencing of Mosaicism (PASM) for detection and
quantification of the mutant allelic fraction (MAF) of mosaicism

— Filters: :
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https://www.thermofisher.com/cn/en/home/life-

science/sequencing/next-generation-sequencing.html (MOdIerd from XU, et al, Hum Mutat, 2015)




PGM Amplicon Sequencing of Mosaicism (PASM) for detection and
quantification of the mutant allelic fraction (MAF) of mosaicism
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PGM Amplicon Sequencing of Mosaicism (PASM) for detection and
quantification of the mutant allelic fraction (MAF) of mosaicism

Filters:
Base quality filter
Read depth filter
Strand bias filter
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MAFs measured by PASM showed strong accordance with results form
corrected micro-droplet digital PCR (mMDDPCR)

Negative log10 transformed MAF by mDDPCR
B

o
6 R2=0.98
;45| 0.005% ¢
""""""""""""" \v.- v \ ﬂ"'"‘c ‘.' N
PASM: 0.3% (0.2% - D.4%)
PASM 0.05:; tél oaé_' 0.6%)
PASM: 52.9% (49.9% - 55.9%)
0 2 < 6 8

Negative log10 transformed MAF theoretical value

MAF by PASM

exon10 =®= exon16 *= exon20~* exon26 “* exond
== exon11=®= exon17 #= exon2t=® exond =*= exon9

=& exon12 =® exon18 *= exon23=* exon5

Genomic
homologs

Ix1Ax2

=o= exon14 =*= exon19 *= exon24=*" exon6 EXons B x3 4 x4
“®= exon15=® exon2 *= exon25* exon7 B x5
|
0.5+ o
0"“
0.4 }.'
'0
T
.
0.34 et
b ‘,*F
*
'0*+
0.2 ﬂﬂw
ot
0"
0.14 o’
0‘ § 2
. R=0.96
} b Residual standard error: 0.01652
00 ;: Degrees of freedom: 170
. '.. P-value < 2.2e-16 by an F test
0.0 0.1 0.2 0.3 0.4 0.5

MAF by mDDPCR

8
(under review)



Dravet syndrome (DS) caused by SCN1A mutations

— Seizures are commonly fever-sensitive and refractory to drug therapy
— Normal early development; psychomotor development delay after seizure onset
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Characteristics of Dravet Syndrome (MIM#607208, Severe Myoclonic Epilepsy of Infancy)
— Seizure onset within 1 year of age; multiple seizure types after 1 year of age
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— More than 70% DS probands have rare missense/Loss-of-Function mutations on SCN1A
— 90-95% of the mutations are “de novo” by Sanger sequencing
— Over 10% family members of the proband had milder phenotype
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(Escayg et al., Nat Genet, 2000 ; Dravet, Epilepsia, 2011)



PASM identified 15 parental mosaicisms in 174 Sanger sequencing
regarded “de novo” DS families

100 -

363 DS families were collected by Dr.
Yuehua Zhang’s group from Peking
University First Hospital since 2005.
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List of the 75% (15 of 20) parental mosaicisms detected by PASM but
missed by Sanger sequencing

Mosaic Related

Proband mutation information Mosaic parent information Phenotype Mosaic site information
Family " 95% Credible I
. Nucleotide Amino Acid Parent of Reference Alternati Eplleptlc_ MAFs by Interval Validation
Chromosome  Position 2 s o - symptoms in
Variations Variation P Origin Allele e Allele PASM Lower  Upper .
parents bound  bound Pyrosequencing mDDPCR
DS017 chr2 166848438  C.5347G>A A1783T father C T [ Tt ZS eSOt 4.0% 38%  4.1% 12% 4.41%
Father, several
DS027 chr2 166915126 €.337C>A P113T father G T FS at the early 25.3% 22.3% 28.5% 43% -
age
DS035 chr2 166894440 €.2792G>A R931H father C T Neither 15.0% 14.8% 15.2% 16% 10.24%
DS094 chr2 166848852 €.4933C>T R1645* father G A Neither 1.3% 0.8% 1.9% 3% 1.42%
DS101 chr2 166848230  ¢.5555T>C M1852T father A G Neither 6.1% 5.6% 6.7% 26% 6.31%
DS104 chr2 166904137 ¢.1170+1G>T - mother G T Neither 1.1% 0.9% 1.4% 6% -
DS117 chr2 166895930 ¢.2589+3A>T - mother T A Neither 2.3% 2.0% 2.5% - -
DS125 chr2 166868765 €.3733C>T R1245* father G A Neither 6.6% 6.2% 6.9% 12% 7.15%
DS128 chr2 166868765 €.3733C>T R1245* mother G A Neither 13.2% 124% 14.1% 19% 13.02%
DS130 chr2 166868772 C'372§;\_3|_727m D1243fsX1270 father A T Neither 3.3% 2.8% 3.9% - -
Mother,
DS136 chr2 166859043  c.4223G>A W1408* mother C T undefined 9.2% 8.5% 9.9% 22% 11.71%
epilepsy
DS164 chr2 166915194  ¢.269T>C FO0S father A G Fatlzrﬁ;iga; the 8.6% 79%  9.4% 15% 9.32%
DS166 chr2 166894396 €.2836C>T R946C father G A Neither 3.1% 3.1% 3.2% 6% 3.28%
DS188 chr2 166894554 C.2678T>A L893* mother A T Neither 6.3% 1.2% 16.3% 23% -
DS206 chr2 166901776 Gl eniD S481fs*488 father G A Neither 10.7% 9.3% 12.3% - -

elCAGA
aPosition coordinates were based on the UCSC human reference genome version hgl9.
b Nucleotide and amino acid variations were based on RefSeq sequence NM_001165963.1.

(Xu, et al., Hum Mutat, 2015)



List of the 75% (15 of 20) parental mosaicisms detected by PASM but
missed by Sanger sequencing

Mosaic Related
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(Xu, et al., Hum Mutat, 2015)



Validated pSNMs detected by PASM and missed by Sanger sequencing

6.6% by PASM
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MDDPCR analysis of 56 paternal sperm sample found the MAFs are
significantly higher in paternal sperm than blood in DS families

Square root transformed MAF by mDDPCR
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*** n-value = 0.00098 by a paired
Jsingle-tail Wilcoxon
rank-sum test

\

'?

blood sperm
After conditional probability correction, P’ = 0.033

In three cases, mosaicism were
detected by mDDPCR with ultra-
low fraction and only detectable
In sperm but not in blood.
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(under review)



Parental multiple peripheral samples were collected
In 75% fathers paternal sperm were measured with the highest MAF

mosaic father sperm
|{£ mosaic parent hair follicle
mosaic parent urine
mosaic parent blood
{ mosaic parent saliva
mosaic parent oral epithelium
non-mosaic parent blood
\ control blood

proband blocd

MAF
0.5

0.4
0.3
0.2
0.1
0.0

DS203 DS166 DS017 DS101 DS312 DS314 DS003 DS001 DS276 DS128 DS004 DS307 DS287

Paternal mosaic Maternal mosaic

97.78% multiple parental tissues were detected with mosaicism. 15

(under review)



DS mosalic parents with milder epileptic phenotypes have
significant higher MAF

m With epileptic phenotypes m  Without epileptic phenotypes

Families with parental Families with
mosaic mutations “de novo” mutations

*P =0.0143
Odds Ratio = 5.8657
By a Fisher’s Exact Test

Single-tail Mann Whitney U test
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(Xu, et al., Hum Mutat, 2015)



PASM validated 199/376 child mosaicisms and 31/71 parental mosaicisms from
753 blood-DNA-available families with autism spectrum disorders (ASD)

[ SSC WES data (2,374 families) )

!

Remove abnormal data
(2,361 families left)
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.
Use MosaicHunter trio mode to
detect candidate de novo SNVs in
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detect candidate child pSNMs

I
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rldent‘ify specific error pattern of |
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adjust filters
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detectable parental mosaicism
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pSNMSs using PASM inforSNPs and SSC WGS data
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Burden and phenotype analysis

ASD-risk gene discovery using
TADA (de novo het mutations +
\_PSNMs) and network analysis |

MosaicHunter, a bioinformatic software we developed
for pPSNMs was used to detect WES data of 2361 ASD
families from the Simons Simplex Collection
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(Modified from Dou, et al., Hum Mutat, 2017)



De novo SNVs with detectable parental mosaicism with low MAFs
showed two fold enrichment in ASD probands versus unaffected siblings
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(Dou, et al., Hum Mutat, 2017)



Conclusions

 Parental mosaicism is responsible for a considerable
proportion in seemingly “de novo” mutations in Mendelian
disorders such as DS

» Mosaicism increased the risk of ASD by approximately 6% -

» The framework containing MosaicHunter, PASM and
MDDPCR we built brought new insights into the origin,
transmission, and effect of mutations
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Appendix Detection and quantitation for mosaicism

Detection
DHPLC (denaturing high performance liguid chromatography)
MS (mass spectrometry)
RFLP (restricted fragment length polymorphisms)
SSCP/HD (single-strand conformation polymorphism/heteroduplex analysis)
PTT (protein truncation test)

Properties
Unable to quantify the fraction of mutant alleles
Detection limit as low as 0.5%

Quantitation
Pyrosequencing
Mismatch-high resolution melting curve
TagMan assays based digital PCR or allele-specific g°PCR (TagMAMA)
MIP (molecular inversion probes), RCA (rolling circle amplification) based NGS approaches
Ultra deep sequencing: MDS (maximum-depth sequencing) and duplex sequencing
Properties
Special designed assay required
Limit: cost-effective approaches only have 5%-10% detection limit, those with detection limit lower than 0.1% were not
affordable for large-scale screening

Large-scale quick quantification of low-freq mosaicism is required for distinguish mosaicism from “de novo” mutations



Appendix Bayesian model for calculating the fraction of mutant alleles

0: theoretical fractions of the mutant alleles

o: number of reads support mutant alleles

n: the total number of reads mapped to the position
r: unobserved "real" number of allele count

P(0) : prior

P(r|6; n): the likelihood of Bernoulli sampling
P(o|r; g): the summarized probabilities

P(6]o)

P(@|o) «< P(8)P(0|6) t | |
! ! !
— P(6) Z P(0,716) | L
r Honno: Mosaic : Het :
— P(6) Z P(r|6) P(o|r) | o
r ! ! !

= P(0) )., P(r|6;n) P(o|r; q) | | | S

Equation 0 cutoff Il cutoff I cutoff 111 2«

(unpublished data)



Appendix

Design probe-based genotyping

Micro-droplet digital PCR, mDDPCR for benchmarking PASM

Data analysis and calculation of the 95%

gPCR assays binominal confidence intervals
! S 7
I -" — - I Mutant alielic fracticns measured in negatie controks
] 0.6098005 : I 4e-044
R | O '
o - ———— - - - ’I ) : §3*°°
QC for the genotyping assay with : ‘ e | B
gPCR end-point genotyping method : P P e :
: I Oe+00 . qn— -.:-’
W, : - : Lot bt et it
4 i
\
Fragmentation of DNA samples — Micro droplet generation, PCR
through sonication amplification and micro-droplet detection
W,
(Under review)
Source Sense
cDNA sample + assays
oil ; ;
oo e
Laser spot Load MM Romovo
@ O sample + Pamho;samplc emulsion, cap ﬁuocr:;::m t Analyze results
- assay (8) collect emulsion Stdp & droplets 25

http://covarisinc.com/products/afa-ultrasonication/m-series/

thermal cycle

(Modified from Chen, et al., Mol Ther Nucleic Acids, 2013)



Appendix Genotype and phenotype of patient mosaicism in SCN1A
mutated DS affected families
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Appendix

Benchmark PASM with standards and replicates

-logio(PASM measured fractions of mutant allele)
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Appendix Stability of PASM with different PCR cycles
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(Xu, et al., Hum Mutat, 2015)



Appendix

Stability of PASM with different
amounts of input template DNA
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(Xu, et al., Hum Mutat, 2015)



Appendix  ROC of PASM, use mDDPCR as gold standard

ROC curve for PASM
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Appendix  Types of functional mutations in SCN1A in the DS probands

\

= Missense mutation (n=99, 44.4%)
Nonsense mutation (n=46, 20.6%)
Insertion (n=13, 5.8%)

= Deletion (n=36, 16.1%)

= Splice site mutation (n=21, 9.4%)

= Gene duplication (n=1, 0.4%)

= Gene deletion (n=7, 3.1%)
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Quantification of Sanger sequencing
detectable mosaicism by PASM

Family DS003
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Fractions of mutated allele measured by PASM in peripheral blood

Appendix
Family DSo01 Family DSo02

S.,EU 0.4 Eo.-;

i =
Number  Variants Proband
DS001 c.1118delT 49.19+£1.92%
DS002 c¢4351C>A 48.30+£2.40%
DS003 ¢.2593 C>T 46.10+£2.65%
DS004 ¢.5003C>G  56.07+0.37%
DS005 ¢.4302G>A  47.36+2.55%

Mother
5.64+1.62%

Father

32.61+1.88%

18.05+1.05%

18.21+0.32%

21.15£1.86%

13.26+1.42%

0.00£0.01%

Negative control
0.79+£0.16%
0.03+0.00%
0.17+0.02%
0.00+£0.01%
0.28+0.26%
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Appendix

26 parental mosaicisms were detected from the blood
sample of 112 SCN1A mutated DS families by mDDPCR

Corrected mutant allelic fractions by mDDPCR
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mDDPCR regarded parental mosaic families
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(under review)
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=

DS203

DS296

DS308

Proband blood

hree paternal mosaicisms were only detectable in the
father’s sperm
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Conditional probability correction for the MAF elevation

Appendix in paternal sperm
Psp,T
Fopir =7 -
Prisp * Pop P probability of transmitting a deleterious mutation to a child
= Prioy - Poy + Prio - P Py probab!l!ty of observ!ng an MAF In sperm higher than blood
MAF, 440 * 0.5 Py;: probability of observing an MAF in sperm lower than blood
= J MAF,,, ... the larger of the MAFs measured in paternal blood and sperm
MAF,4rge - 0.5 + MAFgpqy - 0.5 g )
MAF, MAF,,, ;- Smaller of the MAFs measured in paternal blood and sperm
_ arge
MAFlarge + MAFsmall
Equation 1
n
Peorrected = l_[Pi,smT
n VAR After conditional probability correction,
- l_[ Llarge P’=0.033
=1 MAFi,large + MAFi,small ’
Equation 2

(revision submitted)



Appendix

Extracellular

A——

Intracellular

Locations of the mutations on the domain
structures of SCN1A protein

omain
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Domain Il
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@ Parental heterozygous mutations
@ Parental mosaic mutations
@ “De novo” mutations

/N v

Domain lll Domain IV
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Appendix Functional predictions of SCN1A mutations
P by SIFT

0.4
o
Q
&}
@
-
L
w
0.2
b
H
-
0.0 %
dbSNP SCN1A Variant Database Chinese cohort “De novo” by PASM Parental mosaic Parental heterozygous

Missense variations in SCNTA

37
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Functional predictions of SCN1A mutations

Appendix by MutationAssessor
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Functional predictions of SCN1A mutations

Appendix by Polyphen2 (HDIV)
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Functional differences of SCN1A mutations

Appendix by Protscale
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Appendix

Possible explanation for the higher MAF In
sperm than blood



Appendix

~10 replications Pre-PGC
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(Rahbari et al., Nat Genet, 2015)



SCN1A is on the top list of positive selected

Appendix somatic mutations in normal human skin

Ran Number of
k Gene name variants
1 NOTCH1 451
2 NOTCH?2 194
3 FAT1 147
4 MUC17 147
5 FAT4 143

O 0.79 mm?
6 APOB 133 B €D 1.57 mm?
7 MLL2 102 (O 314 mm?
8 SPHKAP 102
9 PREX?2 92
10 SCN1A 92
1 TP53 ol N | g I et
12 BAI3 90 i e
13 ERBB4 89 = g
14 GRM3 85 i
15  PPP1R3A 81
16 SALL1 81 sa 190 NOTOHS 100
7 NOTCHS 14 E;giﬁ%%ﬂj E . teee e il
18 SCNIIA 72 gy e ey e :;‘:;:358;5 vz
19  ADAMTSIS8 62 43
20 GRIN2A 58

(Summarized from the supp data of Martincorena et al., Science, 2015)



Cell-level selection might explain the paternal age effect (PAE)
and elevated mosaic MAFs in parental germline in disorders
caused by cancer-related genes

c.34G>A p.G12S
c.34G>C p.G12R

m c.34CG>T p.G12C
c.35G>A p.G12D

m c.35G>T p.G12V

m c.34_35GG=>TT p.G12F

m c.35_36GC>AA p.G12E

Appendix

c.35_36GC>AT p.G12D

= .35 36GC>TA p.G12V
c.35_36GC>TT p.G12V

m ¢.34G>A;c.36C>T p.G12S

Birth re=0.74"*
revalence =V
P h=185) | [
Sperm
data
Proliferation of mutant cell / Intratubular' [n=ag] . . I
due to selfish selection g SP:J:E;S;):IC
Prevalence s=0.70%
55 o e I
0 20 40 60 80 100
Spermatocﬂic Percentage (%)
seminoma
(Lim, et al., PLoS One, 2012) (Giannoulatou, et al., Proc Natl Acad Sci USA, 2013)

Wilson et al. estimated that the male germ line has experienced 160 genome replications in a 20-year-old
male and 610 genome replications in a 40-year-old male.

; . . 44
For disorders not caused by oncogenes, MAFs in sperm and blood remains largely unknown



Appendix

Advantages of MosaicHunter



Appendix  MosaicHunter incorporates various probabilistic models
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(Huang, et al., Nucleic Acids Res., 2017)



MosaicHunter was benchmarked with very low false positive rate
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(Huang, et al., Nucleic Acids Res., 2017)



Appendix

PSNMs: burden and autistic phenotype



Appendix
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(Dou, et al., Hum Mutat, 2017)



Appendix

— OR (-

——  Pvalue of Fisher's exact test =
- - P value of Wilcoxon rank sum test :
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Appendix pSNMs with low MAFs contribute to autistic traits

SRS score

10

SRS: Social Responsiveness Scale, a scoring system by the teacher to measure the autistic phenotype
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SRS-A score

Mosaic fathers transmitting missense/LoF pSNMs to
Appendix probands seem to have higher SRS-A scores, the

phenomenon was not observed in mothers

SRS-A: Social Responsiveness Scale for Adult, a scoring system to measure the autistic phenotype of ASD parents
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Appendix

Application of PASM and mDDPCR on ultra-low-
fraction mosaic mutations in Cancer



PASM and mDDPCR were also powerful for

Appendix

and validation of other NGS techniques
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(Wang, et al. Nat Comms 2017)




Appendix

PASM + Ampliseq validated positive and negative low-

Type Candidate —*— Neighbourhood

b

Type Candidate = Meighbourhood

0.010

MAF

0.005

0.000 -

s

0.004

Ni~chr7: 151,817 944 T=>G

Type Candidate —= Neighbourhood

0.0g
% 0.067
= |
0.02

0.004

T2~chr3: 75,787,829 C=>G

Type Candidate —= Neighbeurhood

T2~chr9: 5,090,748 T=>C

0.08 4
% 0044
=
0.021
0l ———y—
T1~chr16: 71,008,389 A=>C
e
Type Candidate —= Neighbourhood
4e-05
22051
%
= 2e-05
18051
Oe-+00 1 . . .

— —
T2~chr6: 11,190,973 G=+A

Type Candidate —— Meighbourhoad

0.09

0.004 -

T2~chr15: 90,145,059 G=>C

frequency mutations by 02n-seq

Type Candidate —* Neighbourhood

001 —— —— —— |

T2~chri: 11,008,799 T==A

Type Candidate —* Neighbourhood

0004 -

T2~chr8: 104,897 577 G==A

Type Candidate —— Neighbourhood
0000125
0000100
p_ 0.000075
<
= 0.000050

0.000025

0.0000004

T2~chr17: 42,824 878 G=>T 55

(Wang, et al. Nat Comms 2017)



An example for parental mosaicism transmitted to children and
cause severe disorders

Appendix

56
(Huang, et al., Cell Res., 2014)



