

Deep amplicon resequencing identified parental mosaicism for approximately 10% "*de novo*" SCN1A mutations in Dravet Syndrome families and was capable of multiple validations of mosaicism

Xiaoxu Yang, Ph. D. candidate

Dr. Liping Wei's Laboratory Center for Bioinformatics, School of Life Sciences Peking University, Beijing, China

Oct 18, 2017

Mosaicism contributes to the **etiology** of diseases and the **origin** of mutations

Cases of deleterious mosaicism reported in more than 50 disorders

Cases of parental mosaicism reported in more than 100 disorders (Freed, Stevens and Pevsner, Genes, 2014)

(Servick, *Science*, 2014)

2

The limitation of Sanger sequencing might lead clinicians to mistake potential postzygotic single-nucleotide mosaicisms (**pSNMs**) for "*de novo*" mutations

How to screen and quantify mosaicisms in non-cancer disorders?

How many of the "de novo" mutations were undetected parental mosaicisms?

(Modified from Xu, et al., Hum Mutat, 2015)

Technologies to identify and validate mosaicism

	Sanger sequencing	Pyrosequencing	Micro-droplet digital PCR	PASM	MosaicHunter
Schmatic diagram	Cycle sequencing S* GACTAGATACGAGCGTGA5' (semplats S* CTGAT — CTGATC — CTGATCTAT — CTGATCTATA — CTGATCTATACTATA — CTGATCTATACTATA — CTGATCTATACTATA — CTGATCTATACTATA — CTGATCTATACTATACTATA — CTGATCTATACTATACTATACTATACTATACTATACTAT	The Principle of Pyrasequencing* Technology $D(0_{i_{1}} + d)T^{\mu} \underbrace{O(0_{i_{2}} + d)T}_{i_{2}} O(0$	Funda & Control Decision & Control & Control Decision & Control & Control Decision & Control & Control Decision & Control & Control & Control Decision & Control & Con	Hit simple	
Features	Coventional method widely used	Former gold standard for mosaicism	Ultra-sensitive with Single molecule definition	The first semiconductor sequencing based cost effective ethod. Cost effective of large-scale screen forp SNMs.	A powerful Bayesian based bioinformatic tool for WES and WGS data in unpaired, paired and trio sample
Detection limit	10%	5%	0.01%	0.5%	Could be adjusted with imput
Publication	(Sanger, et al. Proc. Natl. Acad. Sci. USA, 1977)	(Nyren, Petersson, and Uhlent., <i>Anal.</i> <i>Biochem.</i> ,1993)	(Zhong, et al, Lab on a Chip, 2011)	(Xu, Yang, and Wu <i>,et al.</i> <i>Hum. Mutat</i> .,2015)	(Huang <i>et al., Cell Res</i> . 2014 and Huang <i>et al.Nucleic,</i> <i>Acids, Res</i> . 2017)

PGM Amplicon Sequencing of Mosaicism (PASM) for detection and quantification of the mutant allelic fraction (MAF) of mosaicism

https://www.thermofisher.com/cn/en/home/lifescience/sequencing/next-generation-sequencing.html

⁽Modified from Xu, et al., Hum Mutat, 2015)

PGM Amplicon Sequencing of Mosaicism (PASM) for detection and quantification of the mutant allelic fraction (MAF) of mosaicism

https://www.thermofisher.com/cn/en/home/lifescience/sequencing/next-generation-sequencing.html

(Modified from Xu, et al., Hum Mutat, 2015)

PGM Amplicon Sequencing of Mosaicism (PASM) for detection and quantification of the mutant allelic fraction (MAF) of mosaicism

https://www.thermofisher.com/cn/en/home/lifescience/sequencing/next-generation-sequencing.html

⁽Modified from Xu, et al., Hum Mutat, 2015)

MAFs measured by PASM showed strong accordance with results form corrected micro-droplet digital PCR (mDDPCR)

(under review)

Dravet syndrome (DS) caused by SCN1A mutations

- Characteristics of Dravet Syndrome (MIM#607208, Severe Myoclonic Epilepsy of Infancy)
 - Seizure onset within 1 year of age; multiple seizure types after 1 year of age
 - Seizures are commonly fever-sensitive and refractory to drug therapy
 - Normal early development; psychomotor development delay after seizure onset

⁽Claes et al., Am J Hum Genet, 2001)

9

- Genetics of DS :
 - More than 70% DS probands have rare missense/Loss-of-Function mutations on SCN1A
 - 90-95% of the mutations are "de novo" by Sanger sequencing
 - Over 10% family members of the proband had milder phenotype

PASM identified **15 parental mosaicisms** in 174 Sanger sequencing regarded "*de novo*" DS families

363 DS families were collected by Dr. Yuehua Zhang's group from Peking University First Hospital since 2005.

Mutations not found in *SCN1A* by Sanger sequencing
Inherited from parental heterozygous mutations by Sanger sequencing
Inherited from parental mosaic mutations by Sanger sequencing
Inherited mutation not found in available parents by Sanger sequencing
Inherited from parental mosaic mutations by PASM but Sanger "*de novo*" *"De novo*" mutations by PASM and Sanger sequencing

List of the 75% (15 of 20) parental mosaicisms detected by PASM but missed by Sanger sequencing

	Proband mutation information				Mosaic parent information			Mosaic Related Phenotype	Mosaic site information				
Family	Chromosome	Position ^a	Nucleotide	Amino Acid	Parent of	Reference	Alternativ	Epileptic symptoms in	MAFs by	95% Credible Interval		Validation	
			Variations ^b	Variation ^b	Origin	Allele	e Allele	parents	PASM	Lower bound	Upper bound	Pyrosequencing	mDDPCR
DS017	chr2	166848438	c.5347G>A	A1783T	father	С	Т	Father, FS before 5	4.0%	3.8%	4.1%	12%	4.41%
DS027	chr2	166915126	c.337C>A	P113T	father	G	Т	Father, several FS at the early age	25.3%	22.3%	28.5%	43%	-
DS035	chr2	166894440	c.2792G>A	R931H	father	С	Т	Neither	15.0%	14.8%	15.2%	16%	10.24%
DS094	chr2	166848852	c.4933C>T	R1645*	father	G	А	Neither	1.3%	0.8%	1.9%	3%	1.42%
DS101	chr2	166848230	c.5555T>C	M1852T	father	А	G	Neither	6.1%	5.6%	6.7%	26%	6.31%
DS104	chr2	166904137	c.1170+1G>T	-	mother	G	Т	Neither	1.1%	0.9%	1.4%	6%	-
DS117	chr2	166895930	c.2589+3A>T	-	mother	Т	А	Neither	2.3%	2.0%	2.5%	-	-
DS125	chr2	166868765	c.3733C>T	R1245*	father	G	А	Neither	6.6%	6.2%	6.9%	12%	7.15%
DS128	chr2	166868765	c.3733C>T	R1245*	mother	G	А	Neither	13.2%	12.4%	14.1%	19%	13.02%
DS130	chr2	166868772	c.3726_3727in sAT	D1243fsX1270	father	А	Т	Neither	3.3%	2.8%	3.9%	-	-
DS136	chr2	166859043	c.4223G>A	W1408*	mother	С	Т	Mother, undefined epilepsy	9.2%	8.5%	9.9%	22%	11.71%
DS164	chr2	166915194	c.269T>C	F90S	father	А	G	Father, FS at the early age	8.6%	7.9%	9.4%	15%	9.32%
DS166	chr2	166894396	c.2836C>T	R946C	father	G	А	Neither	3.1%	3.1%	3.2%	6%	3.28%
DS188	chr2	166894554	c.2678T>A	L893*	mother	А	Т	Neither	6.3%	1.2%	16.3%	23%	-
DS206	chr2	166901776	c.1439_1442d elCAGA	S481fs*488	father	G	А	Neither	10.7%	9.3%	12.3%	-	-
^a Position c	Position coordinates were based on the UCSC human reference genome version bg19												

^a Position coordinates were based on the UCSC human reference genome version hg19.

^b Nucleotide and amino acid variations were based on RefSeq sequence NM_001165963.1.

List of the 75% (15 of 20) parental mosaicisms detected by PASM but missed by Sanger sequencing

Proband mutation information				Mosaic parent information			Mosaic Related Phenotype	Mosaic site information					
Family	Chromosome	Position ^a	Nucleotide	Amino Acid	Parent of	Reference	Reference Alternativ	Epileptic symptoms in	MAFs by	95% Credible Interval		Validation	
			Variations ^b	Variation ^b	Origin	Allele	e Allele	parents	PASM	Lower bound	Upper bound	Pyrosequencing	mDDPCR
DS017	chr2	166848438	c.5347G>A	A1783T	father	С	Т	Father, FS before 5	4.0%	3.8%	4.1%	12%	4.41%
DS027	chr2	166915126	c.337C>A	P113T	father	G	Т	Father, several FS at the early age	25.3%	22.3%	28.5%	43%	-
DS035	chr2	166894440	c.2792G>A	R931H	father	С	Т	Neither	15.0%	14.8%	15.2%	16%	10.24%
DS094	chr2	166848852	c.4933C>T	R1645*	father	G	А	Neither	1.3%	0.8%	1.9%	3%	1.42%
DS101	chr2	166848230	c.5555T>C	M1852T	father	А	G	Neither	6.1%	5.6%	6.7%	26%	6.31%
DS104	chr2	166904137	c.1170+1G>T	-	mother	G	Т	Neither	1.1%	0.9%	1.4%	6%	-
DS117	chr2	166895930	c.2589+3A>T	-	mother	Т	А	Neither	2.3%	2.0%	2.5%	-	-
DS125	chr2	166868765	c.3733C>T	R1245*	father	G	А	Neither	6.6%	6.2%	6.9%	12%	7.15%
DS128	chr2	166868765	c.3733C>T	R1245*	mother	G	А	Neither	13.2%	12.4%	14.1%	19%	13.02%
DS130	chr2	166868772	c.3726_3727in sAT	D1243fsX1270	father	А	Т	Neither	3.3%	2.8%	3.9%	-	-
DS136	chr2	166859043	c.4223G>A	W1408*	mother	С	Т	Mother, undefined epilepsy	9.2%	8.5%	9.9%	22%	11.71%
DS164	chr2	166915194	c.269T>C	F90S	father	А	G	Father, FS at the early age	8.6%	7.9%	9.4%	15%	9.32%
DS166	chr2	166894396	c.2836C>T	R946C	father	G	А	Neither	3.1%	3.1%	3.2%	6%	3.28%
DS188	chr2	166894554	c.2678T>A	L893*	mother	А	Т	Neither	6.3%	1.2%	16.3%	23%	-
DS206	chr2	166901776	c.1439_1442d elCAGA	S481fs*488	father	G	А	Neither	10.7%	9.3%	12.3%	-	-
^a Position c	oordinates were	based on the	UCSC human ret	forence genome ver									

^a Position coordinates were based on the UCSC human reference genome version ng1y.

^b Nucleotide and amino acid variations were based on RefSeq sequence NM_001165963.1.

(Modified from Xu, *et al.*, *Hum Mutat*, 2015)

mDDPCR analysis of 56 paternal sperm sample found the MAFs are significantly **higher** in paternal sperm than blood in DS families

In three cases, mosaicism were detected by mDDPCR with ultralow fraction and only detectable in sperm but not in blood. Parental multiple peripheral samples were collected in **75%** fathers paternal **sperm** were measured with the **highest** MAF

97.78% multiple parental tissues were detected with mosaicism.

DS mosaic parents with milder epileptic phenotypes have significant higher MAF

(Xu, et al., Hum Mutat, 2015)

PASM validated 199/376 child mosaicisms and 31/71 parental mosaicisms from 753 blood-DNA-available families with autism spectrum disorders (ASD)

MosaicHunter, a bioinformatic software we developed for pSNMs was used to detect WES data of 2361 ASD families from the Simons Simplex Collection

(Modified from Dou, et al., Hum Mutat, 2017)

De novo SNVs with detectable parental mosaicism with low MAFs showed two fold enrichment in ASD probands versus unaffected siblings

¹⁸

Conclusions

- Parental mosaicism is responsible for a considerable proportion in seemingly "*de novo*" mutations in Mendelian disorders such as DS
- Mosaicism increased the risk of ASD by approximately 6%

• The framework containing MosaicHunter, PASM and mDDPCR we built brought new insights into the origin, transmission, and effect of mutations

Acknowledgements

Dr. Liping Wei weilp@mail.cbi.pku.edu.cn

Dr. Yuehua Zhang zhangyhdr@126.com

Center for bioinformatics, School of Life Sciences, Peking University

Mr. Adam Yongxin Ye Dr. August Yue Huang Dr. Yanmei Dou Mr. Ziyi Li

Human Genetic Resources Core Facility, Center for Life Sciences Dr. Qixi Wu Mrs. Zhe Yu Mr. Sheng Wang

Department of pediatrics, Peking University First Hospital Dr. Xiaojing Xu Dr. Aijie Liu Dr. Zhichao Zhang Dr. Xiru Wu

Beijing Institute of Genomics, Chinese Academy of Sciences Dr. Kaile Wang

Deep amplicon resequencing identified parental mosaicism for approximately 10% *"de novo" SCN1A* mutations in Dravet Syndrome families and was capable of multiple validations of mosaicism

Xiaoxu Yang, Ph. D. candidate

Dr. Liping Wei's Laboratory Center for Bioinformatics, School of Life Sciences Peking University, Beijing, China

Oct 18, 2017

Ethics Statement

- This study and its sample collection and detection procedures were approved by the Institutional Review Board at Peking University (IRBPU) and the Ethics Committee of Peking University First Hospital.
- Project number: IRB00001052-11087
- Written informed consent was provided by participants or their statutory guardians before enrollment.

Detection and quantitation for mosaicism

Appendix

Detection

DHPLC (denaturing high performance liquid chromatography)

MS (mass spectrometry)

RFLP (restricted fragment length polymorphisms)

SSCP/HD (single-strand conformation polymorphism/heteroduplex analysis)

PTT (protein truncation test)

Properties

Unable to quantify the fraction of mutant alleles Detection limit as low as 0.5%

Quantitation

Pyrosequencing

Mismatch-high resolution melting curve

TaqMan assays based **digital PCR** or allele-specific qPCR (**TaqMAMA**)

MIP (molecular inversion probes), RCA (rolling circle amplification) based NGS approaches

Ultra deep sequencing: MDS (maximum-depth sequencing) and duplex sequencing

Properties

Special designed assay required

Limit: cost-effective approaches only have 5%-10% detection limit, those with detection limit lower than 0.1% were not affordable for large-scale screening

Large-scale quick quantification of low-freq mosaicism is required for distinguish mosaicism from "de novo" mutations²³

Appendix Bayesian model for calculating the fraction of mutant alleles

 θ : theoretical fractions of the mutant alleles o: number of reads support mutant alleles n: the total number of reads mapped to the position r: unobserved "real" number of allele count $P(\theta)$: prior $P(r|\theta; n)$: the likelihood of Bernoulli sampling

P(o|r;q): the summarized probabilities

$$P(\theta|o) \propto P(\theta)P(o|\theta)$$

= $P(\theta) \sum_{r} P(o,r|\theta)$
= $P(\theta) \sum_{r} P(r|\theta) P(o|r)$
= $P(\theta) \sum_{r} P(r|\theta;n) P(o|r;q)$

Equation 0

Appendix Micro-droplet digital PCR, **mDDPCR** for benchmarking PASM

http://covarisinc.com/products/afa-ultrasonication/m-series/

Appendix Genotype and phenotype of patient mosaicism in *SCN1A* mutated DS affected families

(revision submitted)

Appendix Benchmark PASM with standards and replicates

Unpublished data)

Appendix

Stability of PASM with different PCR cycles

(Xu, et al., Hum Mutat, 2015)

Appendix

Stability of PASM with different amounts of input template DNA

Appendix ROC of PASM, use mDDPCR as gold standard

30 (unpublished data)

Appendix Types of functional mutations in *SCN1A* in the DS probands

- Missense mutation (n=99, 44.4%)
- Nonsense mutation (n=46, 20.6%)
- Insertion (n=13, 5.8%)
- Deletion (n=36, 16.1%)
- Splice site mutation (n=21, 9.4%)
- Gene duplication (n=1, 0.4%)
- Gene deletion (n=7, 3.1%)

Appendix

Quantification of Sanger sequencing detectable mosaicism by PASM

		Fractions of mutated allele measured by PASM in peripheral blood							
Number	Variants	Proband	Mother	Father	Negative control				
DS001	c.1118 del T	49.19±1.92%	5.64±1.62%	32.61±1.88%	0.79±0.16%				
DS002	c.4351C>A	48.30±2.40%	[18.05±1.05%	$0.03{\pm}0.00\%$				
DS003	c.2593 C>T	46.10±2.65%	[18.21±0.32%	0.17±0.02%				
DS004	c.5003C>G	56.07±0.37%	21.15±1.86%	$0.00{\pm}0.01\%$	$0.00{\pm}0.01\%$				
DS005	c.4302G>A	47.36±2.55%	13.26±1.42%		0.28±0.26%				

Appendix

26 parental mosaicisms were detected from the blood sample of 112 *SCN1A* mutated DS families by mDDPCR

Appendix Three paternal mosaicisms were only detectable in the father's **sperm**

34

(under review)

Appendix

Conditional probability correction for the MAF elevation in paternal sperm

$$P_{sp|T} = \frac{P_{sp,T}}{P_T}$$

$$= \frac{P_{T|sp} \cdot P_{sp}}{P_{T|sp} \cdot P_{sp} + P_{T|bl} \cdot P_{bl}}$$

$$= \frac{MAF_{large} \cdot 0.5}{MAF_{large} \cdot 0.5 + MAF_{small} \cdot 0.5}$$

$$= \frac{MAF_{large}}{MAF_{large}} + MAF_{small}$$

 P_T : probability of transmitting a deleterious mutation to a child P_{sp} : probability of observing an MAF in sperm higher than blood P_{bl} : probability of observing an MAF in sperm lower than blood MAF_{large} : the larger of the MAFs measured in paternal blood and sperm MAF_{small} : smaller of the MAFs measured in paternal blood and sperm

Equation 1

$$P_{corrected} = \prod_{i=1}^{n} P_{i,sp|T}$$
$$= \prod_{i=1}^{n} \frac{MAF_{i,large}}{MAF_{i,large} + MAF_{i,small}}$$

After conditional probability correction, P' = 0.033

Equation 2

35

(revision submitted)

Appendix

Locations of the mutations on the domain structures of SCN1A protein

AppendixFunctional predictions of SCN1A mutations
by SIFT

AppendixFunctional predictions of SCN1A mutations
by MutationAssessor

AppendixFunctional predictions of SCN1A mutations
by Polyphen2 (HDIV)

Appendix Functional differences of SCN1A mutations by Protscale

(Xu, et al., Hum Mutat, 2015)

Possible explanation for the higher MAF in sperm than blood

(Rahbari et al., Nat Genet, 2015)

Appendix

SCN1A is on the top list of positive selected somatic mutations in normal human skin

Ran k	Gene name	Number of variants					
1	NOTCH1	451					
2	NOTCH2	194					
3	FAT1	147					
4	MUC17	147					
5	FAT4	143					
6	APOB	133					
7	MLL2	102					
8	SPHKAP	102					
9	PREX2	92					
10	SCN1A	92					
11	TP53	91					
12	BAI3	90					
13	ERBB4	89					
14	GRM3	85					
15	PPP1R3A	81					
16	SALL1	81					
17	NOTCH3	74					
18	SCN11A	72					
19	ADAMTS18	62					
20	GRIN2A	58					

(Summarized from the supp data of Martincorena et al., Science, 2015)

Wilson *et al.* estimated that the male germ line has experienced 160 genome replications in a 20-year-old male and 610 genome replications in a 40-year-old male.

For disorders not caused by oncogenes, MAFs in sperm and blood remains largely unknown

Appendix

Advantages of MosaicHunter

Appendix MosaicHunter incorporates various probabilistic models

Beta-binomial model for exome/captured data

Trio Mode

Paired Mode

(Huang, et al., Nucleic Acids Res., 2017)

MosaicHunter was benchmarked with very low false positive rate

(Huang, et al., Nucleic Acids Res., 2017)

pSNMs: burden and autistic phenotype

Appendix MAF of missense/loss-of-function pSNMs were validated to be higher from ASD probands than from unaffected siblings

Appendix Contribution of missense/Loss-of-Function child pSNMs with high mutant allele fractions to ASD diagnoses

(Dou, et al., Hum Mutat, 2017)

Appendix pSNMs with low MAFs contribute to autistic traits

SRS: Social Responsiveness Scale, a scoring system by the teacher to measure the autistic phenotype

Mosaic fathers transmitting missense/LoF pSNMs toAppendixprobands seem to have higher SRS-A scores, thephenomenon was not observed in mothers

SRS-A: Social Responsiveness Scale for Adult, a scoring system to measure the autistic phenotype of ASD parents

Application of PASM and mDDPCR on ultra-lowfraction mosaic mutations in Cancer

PASM and mDDPCR were also powerful forAppendixultra-low fraction mosaicism in cancer samplesand validation of other NGS techniques

Appendix

PASM + Ampliseq validated positive and negative lowfrequency mutations by o2n-seq

Appendix An example for parental mosaicism transmitted to children and cause severe disorders

(Huang, et al., Cell Res., 2014)